首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
1998年夏季风爆发前后南海上混合层的特征及成因   总被引:7,自引:1,他引:7  
利用1998年“南海季风实验(SCSMEX)”南北部两个点的资料,采用J.Launianen和T.Vihma提出的方法,计算了潜热通量、感热通量和风应力,分析了南海上混合层动力、热力特征及其与南海夏季风爆发之间的关系。发现在西南季风爆发前后,南海北部、南部的两个观测点的海洋上混合层温度和深度随时间的变化具有不同的特点:北部混合层温度经历由高到低再变高,混合层深度经历由浅变深再变浅的3个时段;南部混合层温度经历由低到高再变低,混合层深度经历由深变浅再变深的3个时段。这与南海南、北部海面的风和海面热通量具备不同的特征有关。在5~6月南海上混合层动力、热力特征基本受局地风与短波辐射控制,海面潜热和感热的作用较小。在5月份,南海南部观测点海面附近存在浅薄的高盐高密度层,在60m以上的上层海洋内存在着许多高盐高密度核。在1998年“南海季风实验”期间南海南、北部两个观测点都存在较浅薄的障碍层,在西南季风爆发期间,南海北部观测点的障碍层较厚达到20m以上。  相似文献   

2.
在对长江中下游夏季降水进行分型的基础上,分析了长江流域南北两支雨带与春季太平洋海温的相关关系,并采用NCAR/CAM 3.0大气环流模式对前期海温进行了敏感性试验,结果表明:赤道东太平洋区域(150~90°W,5°S~5°N)的海温异常对两支雨带夏季降水有重要影响,海温正异常时南支雨带旱、北支雨带不明显,海温负异常时南支雨带涝、北支雨带旱;前期赤道东太平洋海温强迫可以在北半球对流层激发出遥相关波列,并影响长江流域南北两支雨带的旱涝分布,前期赤道东太平洋海温对南支雨带的影响比北支雨带大。  相似文献   

3.
The influences of horizontal advection and horizontal diffusion on the variability of sea surface salinity in stochastically forced systems are investigated. Basic ideas are developed using a two dimensional box model and then extended to a more realistic three dimensional ocean general circulation model. It is shown that, in the absence of advection and diffusion, the ocean response is essentially that predicted by Taylor's random walk model. Advection becomes important when the advective time scale is less than the response time of the mixed layer to the stochastic forcing. Advection of parcels from regions of upwelling into regions of downwelling limits their exposure time to the stochastic forcing and thus the maximum attainable variance in the system (variance increases linearly with time). Regions of upwelling and downwelling may be introduced through the thermohaline overturning circulation or by the wind driven Ekman transport, depending on the specific model configuration. Horizontal diffusion is found to be important when the diffusive time scale is less than the mixed layer response time. The primary role of diffusion is to reduce the effective stochastic forcing through rapid mixing of uncorrelated surface forcing events. Because sea surface salinity does not have a negative feedback with the atmosphere, it is more strongly influenced by weak horizontal processes than sea surface temperature (SST). Accurate knowledge of the stochastic forcing amplitude, decorrelation time, and length scale and distribution are critical to model the variance of sea surface salinity. Aspects of the ocean model which strongly influence the variability of sea surface salinity include the surface velocity, horizontal diffusivity, and the mixed layer depth. Implications on modeling of the ocean and coupled ocean-atmosphere systems are discussed.  相似文献   

4.
A coupled ocean and sea-ice pan-Arctic model forced by the Intergovernmental Panel on Climate Change A1B climate scenario is used to study the evolution of ice and ocean surface conditions within the Canadian Arctic Archipelago (CAA) during the twenty-first century. A summer ice-free CAA is likely by the end of our simulation. Sea ice undergoes significant changes from the mid-2020s to the mid-2060s in both concentration and thickness. The simulation shows a shrinking of 65% and a thinning of 75% in summer over the 40 years, resulting in a partially open Northwest Passage by the 2050s. However, ice in central Parry Channel might increase due to a decrease in export from April to June, linked to a reduced cross-channel sea surface height (SSH) gradient, before melting thermodynamically. On a larger scale, the central CAA throughflow will experience a significant decrease in both volume and freshwater transport after 2020, which is related to the change in the SSH difference between the two ends of Parry Channel, particularly the lifting of SSH in Baffin Bay. With a lower albedo, a warmer ocean is simulated, particularly in summer. The sea surface salinity within the CAA demonstrates a strong decadal oscillation without a clear trend over the entire simulation. A north–south pattern, separated by Parry Channel, is also found in the changes of ocean temperature and salinity fields due to different ice conditions.  相似文献   

5.
用伴随相关型(ACP)分析了中国7月降水和气温与全球热带SSTA的POP(主振荡型)间的关系,得到当两个典型的传播POP处在E1Nino事件发展相位时中国夏季总体呈南北旱,中间涝的形势,其中江淮流域,华中,东北东部和西北大部为降水正距平,华北,华南为负距平,降水偏多(少)时相应的气温偏低(高),当两个传播型的典型模态处于LaNina事件发展相位时情况则相反。  相似文献   

6.
R.W. Stewart     
Abstract

The physical mechanism that causes an interdecadal oscillation in a coarse resolution sector ocean model forced by mixed boundary conditions is studied. The oscillation is characterized by large fluctuations in convective activity and air/sea heat exchange on a decadal timescale. Changes in the subsurface temperature and surface salinity are essential for the existence of the oscillation. It is shown that a large part of these variations can be explained with the hypothesis of a constant ocean velocity field. This may easily lead to the erroneous conclusion that the oscillation is mainly a “nondynamical” phenomenon. In this paper it is demonstrated that the ocean dynamics play an essential role in explaining decadal oscillations.  相似文献   

7.
Sea level change predicted by the CMIP5 atmosphere–ocean general circulation models (AOGCMs) is not spatially homogeneous. In particular, the sea level change in the North Atlantic is usually characterised by a meridional dipole pattern with higher sea level rise north of 40°N and lower to the south. The spread among models is also high in that region. Here we evaluate the role of surface buoyancy fluxes by carrying out simulations with the FAMOUS low-resolution AOGCM forced by surface freshwater and heat flux changes from CO2-forced climate change experiments with CMIP5 AOGCMs, and by a standard idealised surface freshwater flux applied in the North Atlantic. Both kinds of buoyancy flux change lead to the formation of the sea level dipole pattern, although the effect of the heat flux has a greater magnitude, and is the main cause of the spread of results among the CMIP5 models. By using passive tracers in FAMOUS to distinguish between additional and redistributed buoyancy, we show that the enhanced sea level rise north of 40°N is mainly due to the direct steric effect (the reduction of sea water density) caused by adding heat or freshwater locally. The surface buoyancy forcing also causes a weakening of the Atlantic meridional overturning circulation, and the consequent reduction of the northward ocean heat transport imposes a negative tendency on sea level rise, producing the reduced rise south of 40°N. However, unlike previous authors, we find that this indirect effect of buoyancy forcing is generally less important than the direct one, except in a narrow band along the east coast of the US, where it plays a major role and leads to sea level rise, as found by previous authors.  相似文献   

8.
The first two leading modes of interannual variability of sea surface temperature in the Tropical Indian Ocean (TIO) are governed by El Niño Southern Oscillation and Indian Ocean Dipole (IOD) respectively. TIO subsurface however does not co-vary with the surface. The patterns of the first mode of TIO subsurface temperature variability and their vertical structure are found to closely resemble the patterns of IOD and El Niño co-occurrence years. These co-occurrence years are characterized by a north–south subsurface dipole rather than a conventional IOD forced east–west dipole. This subsurface dipole is forced by wind stress curl anomalies, driven mainly by meridional shear in the zonal wind anomalies. A new subsurface dipole index (SDI) has been defined in this study to quantify the intensity of the north–south dipole mode. The SDI peaks during December to February (DJF), a season after the dipole mode index peaks. It is found that this subsurface north–south dipole is a manifestation of the internal mode of variability of the Indian Ocean forced by IOD but modulated by Pacific forcing. The seasonal evolution of thermocline, subsurface temperature and the corresponding leading modes of variability further support this hypothesis. Positive wind stress curl anomalies in the south and negative wind stress curl anomalies in the north of 5°S force (or intensify) downwelling and upwelling waves respectively during DJF. These waves induce strong subsurface warming in the south and cooling in the north (especially during DJF) and assist the formation and/or maintenance of the north–south subsurface dipole. A thick barrier layer forms in the southern TIO, supporting the long persistence of anomalous subsurface warming. To the best of our knowledge the existence of such north–south subsurface dipole in TIO is being reported for the first time.  相似文献   

9.
The response of a two-dimensional thermohaline ocean circulation model to a random freshwater flux superimposed on the usual mixed boundary conditions for temperature and salinity is considered. It is shown that for a wide range of vertical and horizontal diffusivities and a box geometry that approximates the Atlantic Ocean, 200–300 yr period oscillations exist in the basic-state, interhemispheric meridional overturning circulation with deep convection in the north. These fluctuations can also be described in terms of propagating salinity anomalies which travel in the direction of the thermohaline flow. For large horizontal (K h = 15 × 103 m2/s) and small vertical (K v = 0.5 × 10–4 m2/s) diffusivities, the random forcing also excites deca-millennial oscillations in the basic structure of the thermohaline circulation. In this case, the meridional circulation pattern slowly oscillates between three different stages: a large positive cell, with deep convection in the North Atlantic and upwelling in the south; a symmetric two-cell circulation, with deep convection in both polar regions and upwelling near the equator; and a large negative cell, with deep convection in the South Atlantic and upwelling in the north. Each state can persist for 0 (10 kyr).  相似文献   

10.
Abstract

The Geosat radar altimeter data from ~60 repeat cycles of the Exact Repeat Mission (ERM) over the period November 1986 to September 1989 have been analysed to show the annual variations of the sea‐surface slopes, corrected for ocean tides, over the Scotian Shelf and the Grand Banks. A coastal tidal model developed at the Bedford Institute of Oceanography, combined with the global tidal model of Schwiderski, is employed to remove the tidal signals from the sea‐surface heights over those regions. Linear regression is used to estimate the sea‐surface slopes over the inner shelf region, the outer shelf region, or a combination of the two along the Geosat ground tracks. Harmonic analysis is applied to the time series of sea‐surface slopes to derive the annual signals, showing that amplitudes are of order of 5 × 10‐7 (5 cm/100 km) with onshore slopes positive in winter and negative in summer.

The largest annual cycles occur over the outer portion of the Laurentian Channel and the southern Grand Banks. The annual cycles differ between the eastern and western portions of the Scotian Shelf: in the east, the signal is synchronized with that of the Laurentian Channel, whereas in the west, the phase of the signal is advanced by 2–3 months. The annual signals over the eastern Scotian Shelf are comparable and consistent with historical hydrographie data along the Halifax Hydrographie Section. The amplitude and phase over the western Scotian Shelf are consistent with the adjusted sea level at the Halifax Station. The annual variability of the sea‐surface slopes over the Scotian Shelf and the Grand Banks is thought to be induced by the seasonal outflow from the Gulf of St Lawrence through Cabot Strait, and possibly by an annual cycle in the Slope Water current.  相似文献   

11.
Abstract

Monthly mean sea‐level pressure (SLP) data from the Northern Hemisphere for the period January 1952‐December 1987 are analysed. Fluctuations in this field over the Arctic on interannual time‐scales and their statistical association with fluctuations farther south are determined. The standard deviation of the interannual variability is largest compared with that of the annual cycle along the seaboards of the major land masses. The SLP anomalies are generally in phase over the entire Arctic Basin and extend south over the northern Russia and Canada, but tend to be out of phase with fluctuations at mid‐latitudes. The anomalies are most closely associated with fluctuations over the North Atlantic and Europe except near the Chukchi Sea to the north of Bering Strait. The associations with the North Pacific fluctuations become increasingly more prominent at most Arctic sites (e.g. the Canadian Arctic Archipelago) as the time‐scale increases.

Associations between the SLP fluctuations and atmospheric indices that represent processes affecting sea‐ice drift (wind stress and wind stress curl) are determined. In every case local associations dominate, but some remote ones are also evident. For example, changes in the magnitude of the wind stress curl over the Beaufort Sea are increased if the atmospheric circulation over the North Pacific is intensified; wind stress over the region where sea ice is exchanged between the Beaufort Gyre and the Transpolar Drift Stream is modulated by both the Southern and North Atlantic Oscillations.

Severe sea‐ice conditions in the Greenland Sea (as measured by the Koch Ice Index) coincide with a weakened atmospheric circulation over the North Atlantic.  相似文献   

12.
王彰贵  巢纪平 《气象学报》1990,48(4):438-449
本文应用带通滤波统计方法,研究了热带不同地区准二年周期振荡的海表温度与冬季500hPa高度场之间的时滞相关。结果表明,不同热带太平洋地区(西、中、东太平洋)海温对中高纬度大气环流的影响,或严格地说,它们之间的相互影响是不同的。在不同纬圈上,相关系数可以有规则的向东或向西传播。同时在不同径圈上也可以向极地或赤道传播。传播的方向和位置依赖于热带海表温度所在的经度。由于传播的速度十分缓慢,平均约2年80—210个经度,或2年约60个纬度。因此可以认为不属于经典的Rossby波,而是一种新的海气相互作用波。  相似文献   

13.
宋燕  李智才  朱临洪  张世英 《气象》2008,34(2):61-68
采用EOF分解和合成分析方法研究了1960-2003年山西夏季降水异常之北少(多)南多(少)型(第二类雨型)和山西省气温的变化异常.结果表明,两者具有较好的对应关系.分析了第二类异常雨型的时空分布,并给出相应的典型年份.EOF时间系数变化特征揭示了山西夏季降水第二类雨型有显著的年际振荡.利用合成分析,从500hPa位势高度场、纬向风、850hPa风场、700hPa水汽场和水汽输送场等物理量场研究了山西夏季第二类雨型的环流异常特征.结果表明,第二类雨型与弱的东亚夏季风相关联,北多南少和北少南多是弱夏季风的不同表现.山西省夏季降水北多南少年副高呈带状分布,位置偏北,强度较强;中高纬度地区异常波列呈大圆路径分布,在高纬度地区存在纬向排列的- -波列,同时在东亚大陆沿岸存在经向排列的- -波列.并且华北北部有西风异常,北支锋区偏北,由西南向东北水汽输送较强.北少南多年与之相反.海温场分析表明,第二类雨型与中北太平洋海温异常紧密相关.  相似文献   

14.
The mechanisms controlling the decadal to multidecadal variability of the Atlantic Meridional Overturning Circulation (MOC) and its influence on the atmosphere are investigated using a control simulation with the IPSL-CM4 climate model. The multidecadal fluctuations of the MOC are mostly driven by deep convection in the subpolar gyre, which occurs south of Iceland in the model. The latter is primarily influenced by the anomalous advection of salinity due to changes in the East Atlantic Pattern (EAP), which is the second mode of atmospheric variability in the North Atlantic region. The North Atlantic Oscillation is the dominant mode, but it plays a secondary role in the MOC fluctuations. During summer, the MOC variability is shown to have a significant impact on the atmosphere in the North Atlantic–European sector. The MOC influence is due to an interhemispheric sea surface temperature (SST) anomaly with opposite signs in the two hemispheres but largest amplitude in the northern one. The SST pattern driven by the MOC mostly resembles the model Atlantic Multidecadal Oscillation (AMO) and bears some similarity with the observed one. It is shown that the AMO reflects both the MOC influence and the local atmospheric forcing. Hence, the MOC influence on climate is best detected using lagged relations between climatic fields. The atmospheric response resembles the EAP, in a phase that might induce a weak positive feedback on the MOC.  相似文献   

15.
Abstract

Changes to the Beaufort Sea shoreline occur due to the impact of storms and rising relative sea level. During the open‐water season (June to October), storm winds predominantly from the north‐west generate waves and storm surges which are effective in eroding thawing ice‐rich cliffs and causing overwash of gravel beaches. Climate change is expected to be enhanced in Arctic regions relative to the global mean and include accelerated sea‐level rise, more frequent extreme storm winds, more frequent and extreme storm surge flooding, decreased sea‐ice extent, more frequent and higher waves, and increased temperatures. We investigate historical records of wind speeds and directions, water levels, sea‐ice extent and temperature to identify variability in past forcing and use the Canadian Global Coupled Model ensembles 1 and 2 (CGCM1 and CGCM2) climate modelling results to develop a scenario forcing future change of Beaufort Sea shorelines. This scenario and future return periods of peak storm wind speeds and water levels likely indicate increased forcing of coastal change during the next century resulting in increased rates of cliff erosion and beach migration, and more extreme flooding.  相似文献   

16.
2020年梅汛期长江流域强降雨范围超越1998年,且雨量中心偏北,这与两年的异常大气环流和海表温度强迫差异有密切联系。与1998年相比,2020年西北太平洋异常反气旋(WNPAC)偏北偏强,中心偏东,东亚双阻形势偏弱,使得副高北抬加强,北侧的西南气流亦偏北偏强,中高纬反气旋和气旋对的存在使得30°N以北为异常东北风控制,冷空气偏强,长江流域上空的水汽含量亦偏多,这些环流差异直接导致2020年降水较1998年偏多且中心偏北。这两年在对流层中层都存在大西洋—西太平洋的波列,但2020年波列偏南,有利于东亚反气旋和气旋对的维持以及WNPAC和副高的北抬加强,而1998年波列偏北且偏强,有利于双阻形势的稳定。2019/2020年(1997/1998年)冬季发生中部型(东部型)El Ni?o事件,前者强迫的6—7月WNPAC北界位置较后者偏北;同时2019/2020年印度洋—太平洋中部一致增暖,使得WNPAC加强,中心东移。2020年(1998年)同期处在北大西洋强(弱)负三极子模态,可能是两年中高纬度环流形势差异的主要原因之一。2020年(1998年)南太平洋中部暖海温异常(冷异常)能加强(减弱)越赤道气流,有利于WNPAC偏东偏北(偏西偏南)和水汽输送加强(减弱)。综上,2020年与1998年梅汛期降水差异可能由多洋盆海温强迫协同作用所致。  相似文献   

17.
By applying a global high-resolution (0.1°) OGCM, the influence of the island chains in the Luzon Strait (LS) on the Kuroshio intrusion is studied systematically. The island chains in the LS are separated into three parts: the south island chain, the middle and north island chain, and Babuyan Island. One control and three sensitivity experiments are conducted by adding these three parts of the topography gradually. From comparisons of the circulation, temperature, and salinity structures, it is found that the south island chain decreases the westward bending of the main Kuroshio path, the middle and north island chain increases the westward bending, and Babuyan Island also increases the westward bending. These results are extremely clear in winter. Dynamic diagnoses suggest that the westward bending increases with an increase in the incidence angle of the Kuroshio and an increase in the Kuroshio east branch transport. Moreover, the middle and north island chain can split the Kuroshio into two parts, the Kuroshio west and east branches, which can be seen clearly in the satellite altimeter maps.  相似文献   

18.
利用NCEP/NCAR全球再分析资料、地面观测资料和自动站降水资料,分析了2018/2019年冬季浙江罕见连续阴雨寡照天气过程中冬季风环流和南支槽等环流异常,并从西风带波动、海温强迫等方面研究了局地环流异常的成因。结果表明:2018/2019年冬季连阴雨事件中雨日、日照破历史记录,雨量较常年同期明显偏多。主要的环流异常为西北太平洋异常反气旋(WNPAC)明显偏北,同时阿留申低压和西伯利亚高压亦偏北,东亚地区40°N以南有强的偏南风异常,冬季风偏弱;南支槽较常年偏强,保证了浙江上空有持续的水汽和扰动输送。对流层中层存在沿欧洲向东亚—西太平洋传播的波动能量,波能在东亚地区一直向南传播至20°N以南,可能导致WNPAC明显北抬和南支槽加强。ENSO是WNPAC的重要强迫源,ENSO暖位相使得海洋性大陆出现异常对流冷却,而浙江上空对流加强,ENSO对南支槽活动强度亦有明显的制约作用。中国近海海温偏高是WNPAC和阿留申低压明显偏北的重要影响因素。2018/2019年冬季局地环流异常可能由ENSO和中国近海海温协同强迫所致。  相似文献   

19.
In this paper,a simulation study is made on the sea breeze process over southwestern Bohai Gulf byuse of the Pielke mesoscale meteorological model.The simulated results show that when a south wind of 8m/s blows over the top of the model,a strong wind zone of 15—25 km wide with a maximum speed more than14 m/s,which is close and nearly parallel to the south shore,will appear at 160 m above the sea surface.When a strong sea breeze penetrates inland,there often appears a thermal internal boundary layer(TIBL)near shore.The inversion above the TIBL can damp the vertical dispersion of atmospheric pollution.Besides,it is also found that,for a three-dimensional sea/land breeze circulation,if the divergence centre inthe return flow departs vertically far from the correspondent convergence centre in the sea breeze,a centre ofstrong descending movement will be formed at the middle and upper levels of the return flow.The resultsin this paper is also applicable to the Laizhou Bay.  相似文献   

20.
《大气与海洋》2013,51(4):227-250
Abstract

The mid‐latitude ocean's response to time‐dependent zonal wind‐stress forcing is studied using a reduced‐gravity, 1.5‐layer, shallow‐water model in two rectangular ocean basins of different sizes. The small basin is 1000 km × 2000 km and the larger one is 3000 km × 2010 km; the aspect ratio of the larger basin is quite similar to that of the North Atlantic between 20°N and 60°N. The parameter dependence of the model solutions and their spatio‐temporal variability subject to time‐independent wind stress forcing serve as the reference against which the results for time‐dependent forcing are compared.

For the time‐dependent forcing case, three zonal‐wind profiles that mimic the seasonal cycle are considered in this study: (1) a fixed‐profile wind‐stress forcing with periodically varying intensity; (2) a wind‐stress profile with fixed intensity, but north–south migration of the mid‐latitude westerly wind maximum; and (3) a north–south migrating profile with periodically varying intensity. Results of the small‐basin simulations show the intrinsic variability found for time‐independent forcing to persist when the intensity of the wind forcing varies periodically. It thus appears that the physics behind the upper ocean's variability is mainly controlled by internal dynamics, although the solutions’ spatial patterns are now more complex, due to the interaction between the external and internal modes of variability. The north–south migration of wind forcing, however, does inhibit the inertial recirculation; its suppression increases with the amplitude of north–south migration in the wind‐stress forcing.

Model solutions in the larger rectangular basin and at smaller viscosity exhibit more realistic recirculation gyres, with a small meridional‐to‐zonal aspect ratio, and an elongated eastward jet; the low‐frequency variability of these solutions is dominated by periodicities of 14 and 6–7 years. Simulations performed in this setting with a wind‐stress profile that involves seasonal variations of realistic amplitude in both the intensity and the position of the atmospheric jet show the seven‐year periodicity in the oceanic circulation to be robust. The intrinsic variability is reinforced by the periodic variations in the jet's intensity and weakened by periodic variations in the meridional position; the two effects cancel, roughly speaking, thus preserving the overall characteristics of the seven‐year mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号