首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Anemometer‐measured winds for the period 5–13 March 1994 were used to study the coherence of observed and forecast coastal winds along the mid‐Labrador shelf. The reliability of these variables in predicting the response of the ocean and ice to wind forcing is an important issue for ice forecasting in this area. Two anemometer‐equipped 2‐m ice beacons were deployed on pack ice north of Wolf Island and a third beacon was deployed on Grady Island. The results indicate that due to the influence of local topography, 10‐m winds observed at the meteorological station in Cartwright, Labrador provide a poor estimate (r2 = 0.2) of wind conditions over the offshore sea‐ice. In contrast, the σ = 1 level (~10 m) winds from the Canadian Meteorological Centre's Regional Finite Element (RFE) model provided a better correlation with anemometer beacon winds (0.90 for the 6‐hour forecast down to 0.45 at 36 hours). However, the RFE model overestimates the magnitude of the winds by 10–40%.

The response of the ocean and ice cover to wind forcing was measured by an ocean bottom‐mounted acoustic Doppler current proþler (ADCP). Relative to the 2‐m beacon winds, the ice moved at 2.5% of wind magnitude and turned 0.6° to the left of the wind. The ocean response decreased with depth until it reached a constant value of 0.9% of the wind speed. The turning angle increased from 0.3° to the right of the wind at 3.5 m to 50° at the lowest level measured by the ADCP (73 m depth). Approximately 57% of the variance in the ocean currents at 3 m below the surface can be attributed to the 2‐m winds; at 73 m the explained variance decreases to 27%.  相似文献   

2.
Abstract

Observations of the motion of ocean surface drifters are used to evaluate numerical simulations of surface currents in the region of Queen Charlotte Sound on the West Coast of Canada. More than 30 surface Argos drifters were deployed in the spring and summer of 1995, revealing daily average currents of 10 to 40 cm s–1 near the coast of Vancouver Island in summer, and less than 10 cm s–1 in mid‐sound. Wind observations in this region are provided by a network of weather buoys. Comparison of daily average drifter velocities and winds shows that the drifters moved at 2 to 3% of the wind speed, and at about 30 degrees to the right of the wind.

A complex transfer function is computed between daily wind and drifter vectors using least squares techniques. The ratio of variance in the least squares residual currents to the variance of observed drifter currents is denoted γ2. A percent goodness‐of‐fit is defined as g(γ2) = 100(1 – γ2), and is 42% for the case of daily winds and drifter currents. Drifter‐measured currents are compared with two numerical simulations of surface currents: Fundy5, a steadystate baroclinic model based on historical water property measurements in summer, and the Princeton Ocean Model (POM), a prognostic, baroclinic model forced by the measured winds. Fundy5 by itself provides a goodness‐of‐fit of only 3%, whereas POM has g(γ2) = 42%. The combination of Fundy5 plus daily wind gives g(γ2) = 43%. Although the prognostic model performs only as well as the winds by themselves, it simulates the near shore currents more accurately and reproduces the speeds and veering in the surface Ekman layer on average without bias. Residual currents unexplained by POM are likely due to advection of water masses into this region and horizontal inhomogeneities in the density field that are not input to the model, as well as to Stokes drift of wind waves and to net Lagrangian tidal motion not represented by the model.  相似文献   

3.
Abstract

A powerful storm passed over the coastal waters of eastern Canada on the 21 and 22 January 2000 causing significant damage to coastal infrastructure. The storm generated a large (>1.4 m) storm surge in the southern Gulf of St. Lawrence that unfortunately coincided with a high spring tide. This resulted in record high water levels in the southern Gulf of St. Lawrence (e.g., the highest level at Charlottetown since records began in 1911) and severe flooding around Prince Edward Island and along the eastern shore of New Brunswick.

During January 2000, a recently developed storm surge forecast system was running in pre‐operational mode at Dalhousie University. The core of the forecast system is a depth‐averaged, non‐linear, barotropic ocean model driven by forecast winds and air pressures produced by the Canadian Meteorological Centre's regional atmospheric forecast model. In this study we assess the forecast skill of the surge model for the 21 January storm by comparing its 24‐hour forecasts with two independent hourly dataseis: (i) sea levels recorded by 12 tide gauges located in eastern Canada and the north‐eastern United States, and (ii) depth‐mean currents recorded by an acoustic Doppler current profiler deployed on the outer Scotian Shelf. Overall, the forecasts of coastal sea level and depth‐mean currents are reasonable and have forecast errors below about 0.1 m and 0.1 m s?1 respectively.  相似文献   

4.
Abstract

Data assimilation in numerical weather forecasting corrects current forecast values by subtracting a portion of interpolated forecast‐minus‐observation differences at the points of a three‐dimensional grid. Deviations used in updating a forecast data field are forecast errors obtained or derived from observations available at update time. When observations are missing at mandatory levels, construction of full vertical soundings by interpolation introduces extraneous errors. The present paper is concerned with determination of the error in vertical extrapolations of surface winds, and of aircraft and satellite cloud‐tracked winds. In addition it examines the effect on accuracy of using location‐specific statistics compared to averaged statistics as the basis for the interpolation weighting scheme and compares errors of one‐ and two‐variable interpolations.

Interpolation accuracy tests demonstrate the influence of the interpolation scheme on the quality of interpolated information used in forecast updating. The results show that the level of accuracy exceeds the benchmark provided by monthly mean forecast error values only with bivariate interpolation of wind components from off‐level data sources.  相似文献   

5.
《大气与海洋》2013,51(3):361-376
Abstract

The goal of this study is to evaluate the impact of incorporating the marine surface winds retrieved from the ERS‐2 scatterometer in the Canadian three‐dimensional variational analysis system, (3D‐var). The aspects of the 3D‐var most relevant to the assimilation of surface ‐wind observations and a general method for resolving the directional ambiguity of the retrieved scatterometer ‐winds are first described. A comparison ‐with 6‐h forecasted winds is then made to demonstrate that these data are of high quality, but exhibit a speed bias that can be removed by increasing their amplitudes by about 5%. The analysis increment from a single scatterometer wind observation is calculated to illustrate the response of the 3D‐var to surface wind observations. As a consequence of the forecast error covariance model, the assimilation of surface wind observations produces meteorologically consistent increments for both the rotational and divergent wind components and the mass field. The results from a series of cross‐validation experiments using ship‐based wind data demonstrate a positive impact of assimilating scatterometer winds and the effectiveness of a simple method for estimating and removing the speed bias. The impact of assimilating scatterometer data within a short assimilation cycle is also evaluated. Overall, the results show that including scatterometer data in the analysis decreases the 6‐h forecast error of surface wind by 13%. Over the northern extra‐tropics the improvement is only 4% and for the southern extra‐tropics it is 16%. Results from a series of two‐day forecasts produced using the analyses from the assimilation cycles with and without retrieved scatterometer winds included are also presented. Using radiosonde observations at 850 hPa, 500 hPa, 250 hPa and 100 hPafor verification, the impact on the forecasts is nearly neutral in the northern hemisphere and the tropics. Conversely, a significant positive impact is found on both wind and mass fields in the southern hemisphere over the entire two‐day forecast.  相似文献   

6.
Abstract

We compare the water‐parcel‐following and position‐reporting performance of two recent drifter designs. One (Tristar‐II ) uses the ARGOS satellite navigation system, has a very large drogue: float frontal area ratio and a small velocity error resulting from wind drag and surface wave forces. The second design uses an internal Loran receiver and transmits its position every half hour by radio. Its drogue: float frontal area ratio is much smaller than the TRISTAR's; we wished to know if this difference caused a significant change in drifter trajectory. Over a 78‐h joint deployment, the two designs had nearly identical trajectories. Measured drift speeds ranged from 10 to 30 cms?1. Wind speeds (an important potential biasing factor) ranged up to 15 ms?l. Net velocity difference over the full deployment was only 0.1 cms?1. Frontal trapping of both drifters during the latter part of the comparison period may have helped to minimize this difference. But we also observed little or no downwind slippage (the net velocity difference was less than 2 cm s?1 and was nearly normal to the wind and wave directions) during the first third of the deployment, when winds were strongest and the constancy of the water properties measured at drogue depth indicated no frontal trapping. Because the trajectories of the drifters were so similar, the most important differences in their performance were due to their position‐reporting and deployment characteristics. Initial deployment of the tristar was easier, and its positioning method and lower power requirement allow much longer untended deployments. The Loran design gave more frequent and precise positioning information and, therefore, better resolution of short‐time‐scale velocity fluctuations. It was also easier to find at sea, and to recover and redeploy.  相似文献   

7.
Abstract

A major surface feature of the Greenland Sea during winter is the frequent eastward extension of sea ice south of 75°N and an associated embayment to the north. These features are nominally connected with the East Greenland Current, and both the promontory and the embayment are readily apparent on climatic ice charts. However, there are significant changes in these features on time‐scales as short as a few days. Using a combination of satellite microwave images (SSM/I) of ice cover, meteorological data and in situ velocity, temperature and salinity records, we relate the ice distribution and its changes to the developing structure and circulation of the upper ocean during winter 1988–1989. Our measurements illustrate the preconditioning that leads to convective overturn, which in turn brings warmer water to the surface and results in the rapid disappearance of ice. In particular, the surface was cooled to the freezing point by early December and the salinity then increased through ice formation (about 0.016 m d‐1) and brine rejection. Once the vertical density gradient was sufficiently eroded, a period of high heat flux (>300 W m‐2) in late January provided enough buoyancy loss to convectively mix the upper water column to at least 200 m. We estimate vertical velocities at about 3 cm s‐1 downward during the initial sinking. The deepening of the thermocline raised surface temperatures by over 1°C resulting in nearly 1.5 × 105 km2 of ice‐melt within two days. Average rates of ice retreat are about 11 km d‐1 southwestward, generally consistent with a wind‐driven flow. Comparison of hydrographic surveys from before and after the overturning indicate the fresh water was advected out of the area, possibly to the south and east of our moorings.  相似文献   

8.
Abstract

During November 1976 to February 1977 near‐surface wind, current and temperature measurements were made at three sites along the Strait of Juan de Fuca. Strong tidal currents and major intrusions of warmer, fresher offshore coastal water were superimposed upon the estuarine circulation of near‐surface seaward flow. The r.m.s. amplitudes of the diurnal and semidiurnal tidal currents were ~30 cms‐1 and 30–47 cm s‐1, respectively. The vector‐mean flow at 4 m‐depth was seaward and decreased in speed from 28 cm s‐1 at 74 km from the entrance to 9 cm s‐1 at 11 km from the entrance. On five occasions intrusions of 1–3 C warmer northeast Pacific coastal water occurred for durations of 1–10 days. The 25 cm s‐1 up‐strait speed of the intrusive lens agreed to within 20% of the gravity current speed computed from Benjamin's (1968) hydraulic model. The near‐surface currents associated with the intrusions and the southerly coastal winds were significantly correlated, indicating that the intrusions were initiated when shoreward Ekman currents advected Pacific coastal water into the Strait. The reversals were not significantly coherent with the along‐strait sea surface slope measured along the north side of the Strait nor were they strongly related to local wind forcing.  相似文献   

9.
Abstract

Using satellite pictures of Baffin Bay and Davis Strait, ice‐floes were tracked in order to give weekly surface velocities for 1978–1979. The approximate location of the edge of the ice sheet was also determined.

In winter the direction of travel was mainly southward in Davis Strait then, as the summer approached, the edge of the ice sheet retreated northward and floe motion became less clearly defined — even going north on occasion in Baffin Bay.

Near shore speeds along Baffin Island exceeded 50 cm s‐1 in Davis Strait during November and February. Typical values in the winter/spring period were 10–15 cm s‐1 between Davis Strait and Hudson Strait. Wind records at nearby shore stations showed directions to be mainly from the northwest, roughly parallel to the Baffin Island coastline.

The study confirms the usefulness of satellite pictures as a data source for modelling surface ice movement and for selecting navigation routes in these northern waters.  相似文献   

10.
Abstract

Changes to the Beaufort Sea shoreline occur due to the impact of storms and rising relative sea level. During the open‐water season (June to October), storm winds predominantly from the north‐west generate waves and storm surges which are effective in eroding thawing ice‐rich cliffs and causing overwash of gravel beaches. Climate change is expected to be enhanced in Arctic regions relative to the global mean and include accelerated sea‐level rise, more frequent extreme storm winds, more frequent and extreme storm surge flooding, decreased sea‐ice extent, more frequent and higher waves, and increased temperatures. We investigate historical records of wind speeds and directions, water levels, sea‐ice extent and temperature to identify variability in past forcing and use the Canadian Global Coupled Model ensembles 1 and 2 (CGCM1 and CGCM2) climate modelling results to develop a scenario forcing future change of Beaufort Sea shorelines. This scenario and future return periods of peak storm wind speeds and water levels likely indicate increased forcing of coastal change during the next century resulting in increased rates of cliff erosion and beach migration, and more extreme flooding.  相似文献   

11.
Abstract

Two sets of Synthetic Aperture Radar (SAR) images were collected, as part of the Labrador Ice Margin Experiment (LIMEX), over the Newfoundland Shelf on consecutive days in April 1990. Ice movement is detected from the displacement of ice floes between the two images sets and compared with ice drift data from six satellite‐tracked beacons and in situ CTD data. The ice velocity data derived from the SAR images and the beacons are used to generate a map of ice velocity vectors. A streamfunction map of ocean currents is produced by removing the direct wind‐driven component in the ice movement data, and by using an objective analysis method. The resulting flow pattern contains the offshore branch of the Labrador Current with a speed of 30 to 50 cm s?1. The current closely follows the shelf break topography from north to south through the study area (47–50.5°N) as a continuous flow. In comparison, if the wind effect was not removed from the ice velocity data, the calculated Labrador Current north of 50°N would stray from the shelf break. The position of the current axis and the current speed derived from the ice movement data are in good agreement with the geostrophic current computed from the CTD data.  相似文献   

12.
Abstract

Ice floes along the Labrador Coast were tracked using visible NOAA satellite images on two consecutive days (26 and 27 April, 1984) when the ice‐pack extended beyond the Labrador Current, and winds were weak. The resulting “snapshot” of the velocity field reveals strong topographic steering of the Labrador Current, such that the current speed and width in different areas are dependent on the steepness of the continental slope, and the current deflects into and out of Hopedale Saddle. Between 55 and 58°N, the main core of the current is 60–90 km wide, with speeds of 30–55 cm s?1. The overall circulation pattern is in good agreement with historical water mass analyses over the shelf and slope, and with estimates of the speed of the Labrador Current obtained by other methods.  相似文献   

13.
Abstract

Snow‐plus‐ice thickness and surface‐ice roughness data collected by a helicopter‐towed sensor package was used to identify surface‐ice properties in March 1992 AVHRR and SAR images for the land‐fast and mobile pack ice off the northern coast of Newfoundland. The sensor package consisted of an electromagnetic induction sensor and laser profilometer. Observed snow depths and ice thicknesses verified that snow‐plus‐ice thickness over undeformed ice can be obtained to an accuracy of ±10 cm. Snow‐plus‐ice thickness and surface roughness data for flight sections covering several hundred kilometres indicated the change in pack ice properties seen in images from thin, smooth coastal ice and open water conditions to thick, rough consolidated offshore pack ice. Ice charts covering the same area showed similar variations in ice conditions based on AVHRR and fixed‐wing reconnaissance data. In the ERS‐1 SAR image, low backscattering coefficients were associated with large, smooth coastal floes interspersed with areas of high backscatter indicating the presence of waves in open water areas. Backscattering coefficients were higher in the rubble areas near the inshore edge of the pack ice than in the interior of the pack ice itself. Distinguishing ice types on the basis of tone alone in SAR imagery was found to be problematic; however in combination with other remotely sensed data such as AVHRR data, SAR data will become more useful in distinguishing ice types.  相似文献   

14.
《大气与海洋》2013,51(3):203-215
Abstract

The forecast skill of the Canadian Meteorological Centre (CMC) operational global forecast/analysis system is assessed as a function of scale for the traditional forecast variable of 500‐hPa geopotential height using results from January 2002. These results are compared to an earlier analysis of forecasts from the European Centre for Medium‐range Weather Forecasts (ECMWF) which indicated unexpectedly enhanced skill at high wavenumbers (small scales) especially in the mean forecast component identified with local topographical structures. The global rms error for the CMC forecasts is dominated by the transient component compared to the mean and continues to grow with time during the six days of the forecast. Geographically the transient error grows most rapidly in middle and high latitude regions of large natural variability. The relative error behaves differently and grows most rapidly initially in tropical regions and is inferred to exhibit both climatological and flow‐dependent error growth.

In terms of spherical harmonic two‐dimensional wavenumber n, low wavenumber (large scale) 500‐hPa geopotential height structures are dominated by the mean component but beyond wavenumber 10 to 15 the transient component dominates and exhibits an approximately n–5 spectral slope consistent with a quasi‐two dimensional turbulence enstrophy cascading subrange. Error grows slowly for the large scales dominated by mean climatological structures but these are not of interest for daily weather forecasting. Transient error grows rapidly at small scales and penetrates toward larger scales with time in keeping with the expected predictability behaviour. An expression of the form f(n, τ) = 1 – e–τ/τp(n) is fitted to the growth of relative error as a function of wavenumber and forecast range and gives a scale dependent predictability timescale for the transient component that varies as τp ? n?3/2, although the generality of the relationship is not known.

The mean component at intermediate/high wavenumbers exhibits an apparent region of enhanced skill in the CMC system apparently connected to the topography. The result supports the possibility that some small‐scale mean flow structures, although containing only a minor amount of variance, are maintained in the face of errors in other scales. The results do not support the level of enhanced skill found in an earlier analysis of ECMWF results suggesting them to be an artefact of the analysis/forecast system in use at the time.  相似文献   

15.
Abstract

Surface mesonet winds recorded at 10‐min intervals are used to estimate the propagation velocities of atmospheric fronts in East Coast winter storms during the Canadian Atlantic Storms Program (CASP). The frontal motion is modelled locally as the translation of a line across which there is an abrupt shift in wind direction. The mesonet is used to detect the propagation velocity of the windshift line.

Frontal velocities estimated using mesonet winds for all cases in which fronts passed through the mesonet (two cold fronts and three warm fronts) are in close agreement with those deduced from synoptic charts. Recommendations are given for using the method as a research tool to estimate frontal motions in oceanographic studies of wind‐driven circulation.  相似文献   

16.
17.
Abstract

A coupled ice, ocean model for forecasting ice conditions on the Newfoundland shelf region is assessed by comparing hindcasts with satellite‐tracked ice beacon displacements and with changes in offshore ice edge location, ice thickness and southern ice extent derived from ice charts. The beacon velocity fields contain short timescale fluctuations which are not resolved by the model. The ratio of rms displacement error divided by the rms beacon displacement is 0.48 after 1 day and 0.23 after 8 days. The decrease in the scaled displacement error with increasing time is related to the short timescale motions. The skill in modelling displacement of the offshore ice edge is lower than in modelling ice displacement. Between mid‐February and mid‐April 1997, the effect of ice melt on the ice edge was a mean onshore displacement of 35 km overcoming an offshore advection of 24 km in 5 days.  相似文献   

18.
Abstract

High‐resolution versions of the Canadian operational regional finite‐element model (RFE) have been developed to assess their potential in simulating mesoscale, difficult‐to‐forecast and potentially dangerous weather systems commonly referred to as polar lows. The operational (1989) 100‐km version and a 50‐km version of the model have been run for two different polar low cases: one over Hudson Bay and one over Davis Strait. More integrations have also been performed on the Hudson Bay event both at 50 and 25 km to assess the model sensitivity to ice cover. As expected, the reduction in spatial truncation errors provided by the increase in resolution results in a better simulation of the systems. Moreover, when run at higher resolutions the model shows a significant sensitivity to ice cover. The results of the ice‐cover experiments also put into perspective the interaction between the heat and moisture fluxes at the surface, the low‐level wind structure, and the relation of these to the development of the polar low. This study suggests that the improved forecast accuracy obtained from increased resolution is limited by the correctness of the analysis of the ice cover, which acts as a stationary forcing for the entire forecast period.  相似文献   

19.
《大气与海洋》2013,51(4):251-265
Abstract

In this paper, 441 Conductivity Temperature Depth (CTD) casts from the North Water (NOW) Polynya study were used to calculate geostrophic currents between the 10 and 200 dbar surface during April, May and June 1998. Results for April and May indicated a surface intensified southward flow of 10 to 15 cm s–1 with a small return flow along the Greenland coast in agreement with inferred currents described by Melling et al. (2001) and surface ice drifts found by Wilson et al. (2001). Southward transports at this time were 0.4–0.55 Sv in April and May. In June, however, surface currents diminished markedly: southward transports declined to 0.1–0.35 Sv, coincident with a decrease in directly measured winds over the polynya and in the surface barometric pressure difference between Grise Fjord and the Carey Islands that was used as a surrogate for the local north wind speed. There was no evident decrease in air pressure difference between Resolute and Grise Fjord, indicative of the strength of the north wind over the eastern Arctic in general. The results are consistent with present thinking that the NOW Polynya is primarily a latent heat polynya, forced by dominant north winds. The idea, broached here, is that the polynya creates its own microclimate which sustains the polynya's ice‐free condition after its initial formation. The mechanism is identified by an anomalous low pressure region associated with surface buoyancy flux in the polynya and is pursued through the application of a simple geostrophic adjustment model that suggests two self‐sustaining mechanisms. Firstly, the frontal intrusion of the cold ambient terrestrial air mass drives a significant surface wind that transports frazil ice to the edge of the polynya before it can congeal. Secondly, rotation at these high latitudes restricts the penetration of the front into the polynya, essentially insulating the centre from freezing temperatures.  相似文献   

20.
Abstract

An ice core sampling program was conducted during the North Water (NOW) Polynya Project 1998 Experiment in northern Baffin Bay during April‐May 1998. The physical properties of snow and sea ice as well as the microstructure and stable isotopic composition of first‐year landfast sea ice near the polynya were investigated. The thickness of sea ice at the sampling sites ranged between 147 and 194 cm with thinner snow cover during the period between mid‐April and late May. The ice was characterized as typical first‐year landfast sea ice, being composed of a thin granular ice layer at the top and an underlying columnar ice layer towards the bottom of the ice. The samples obtained at a site closer to the ice edge of the polynya contained a thin granular ice layer originating from frazil ice near the ice bottom. Formation of frazil ice was considered to be caused by turbulent processes induced by winds, waves and currents forced from the polynya and also mixing with water masses produced at the polynya.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号