首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The effects of marine fronts on the local atmospheric surface layer and air‐sea interaction were studied. Several mesoscale fronts were crossed by a research vessel in the Greenland Sea. Air temperature, humidity and stability conditions, and the fluxes of momentum, as well as sensible and latent heat, were investigated. For relatively calm conditions, close air‐sea coupling was observed in the temperature whereas for stronger winds, the air temperature of the surface layer was not markedly modified by the front below. Changes in the moisture content in the frontal area were observed and, in one case, evaporation was observed on the warm water side and condensation on the cold water side of the front. Frontal differences in heating from the sea were assumed to affect the surface‐layer wind field.  相似文献   

2.
Abstract

The Climatological Dispersion Mode1 is used to estimate mean annual and mean monthly concentrations of sulphur dioxide in the Strait of Canso area of Noua Scotia. It is found that the wind distribution at the southern end of the Strait is more likely to produce a reliable estimate of the concentration of pollutants from the taller stacks, whereas the surface wind distribution from a central location in the Strait can be used, because of low‐level channelling, to estimate concentrations of pollutants from the lower sources. Data on winds aloft over the Strait, are utilized in support of this thesis. The procedure does not apply well to the summer months; otherwise the resulting patterns of predicted concentrations of sulphur dioxide are generally consistent with observed values. More accurate and sensitive instruments are needed in future studies of long‐term average conditions.  相似文献   

3.
Abstract

Cloud‐motion winds measured from organized and disorganized cumulus cloud fields are compared with winds measured at collocated buoys in the northeast Pacific Ocean. Findings suggest that an automated tracking algorithm using GOES satellite imagery can measure cloud‐level winds at these latitudes. Comparisons with buoy wind measurements show that the influence of boundary‐layer stability should be included in estimates of surface winds from cloud‐motion data.  相似文献   

4.
Abstract

Anemometer‐measured winds for the period 5–13 March 1994 were used to study the coherence of observed and forecast coastal winds along the mid‐Labrador shelf. The reliability of these variables in predicting the response of the ocean and ice to wind forcing is an important issue for ice forecasting in this area. Two anemometer‐equipped 2‐m ice beacons were deployed on pack ice north of Wolf Island and a third beacon was deployed on Grady Island. The results indicate that due to the influence of local topography, 10‐m winds observed at the meteorological station in Cartwright, Labrador provide a poor estimate (r2 = 0.2) of wind conditions over the offshore sea‐ice. In contrast, the σ = 1 level (~10 m) winds from the Canadian Meteorological Centre's Regional Finite Element (RFE) model provided a better correlation with anemometer beacon winds (0.90 for the 6‐hour forecast down to 0.45 at 36 hours). However, the RFE model overestimates the magnitude of the winds by 10–40%.

The response of the ocean and ice cover to wind forcing was measured by an ocean bottom‐mounted acoustic Doppler current proþler (ADCP). Relative to the 2‐m beacon winds, the ice moved at 2.5% of wind magnitude and turned 0.6° to the left of the wind. The ocean response decreased with depth until it reached a constant value of 0.9% of the wind speed. The turning angle increased from 0.3° to the right of the wind at 3.5 m to 50° at the lowest level measured by the ADCP (73 m depth). Approximately 57% of the variance in the ocean currents at 3 m below the surface can be attributed to the 2‐m winds; at 73 m the explained variance decreases to 27%.  相似文献   

5.
Abstract

Observations of the motion of ocean surface drifters are used to evaluate numerical simulations of surface currents in the region of Queen Charlotte Sound on the West Coast of Canada. More than 30 surface Argos drifters were deployed in the spring and summer of 1995, revealing daily average currents of 10 to 40 cm s–1 near the coast of Vancouver Island in summer, and less than 10 cm s–1 in mid‐sound. Wind observations in this region are provided by a network of weather buoys. Comparison of daily average drifter velocities and winds shows that the drifters moved at 2 to 3% of the wind speed, and at about 30 degrees to the right of the wind.

A complex transfer function is computed between daily wind and drifter vectors using least squares techniques. The ratio of variance in the least squares residual currents to the variance of observed drifter currents is denoted γ2. A percent goodness‐of‐fit is defined as g(γ2) = 100(1 – γ2), and is 42% for the case of daily winds and drifter currents. Drifter‐measured currents are compared with two numerical simulations of surface currents: Fundy5, a steadystate baroclinic model based on historical water property measurements in summer, and the Princeton Ocean Model (POM), a prognostic, baroclinic model forced by the measured winds. Fundy5 by itself provides a goodness‐of‐fit of only 3%, whereas POM has g(γ2) = 42%. The combination of Fundy5 plus daily wind gives g(γ2) = 43%. Although the prognostic model performs only as well as the winds by themselves, it simulates the near shore currents more accurately and reproduces the speeds and veering in the surface Ekman layer on average without bias. Residual currents unexplained by POM are likely due to advection of water masses into this region and horizontal inhomogeneities in the density field that are not input to the model, as well as to Stokes drift of wind waves and to net Lagrangian tidal motion not represented by the model.  相似文献   

6.
Abstract

The spatial characteristics of the wind speeds from ships, drilling platforms, and satellites (SASS and SMMR) were investigated through autocorrelation analysis. Values of the spatial correlation coefficient in minimum separation classes revealed that SASS winds contained the least noise, followed by drilling‐platform and SMMR winds, measured ship winds and estimated ship winds. The variances explained by wind‐speed observations within a 100‐km radius of each other were found to be 86, 72, 62, 48 and 41%, respectively. Ship wind‐speed estimates made during hours of darkness showed significantly higher noise than daytime reports.  相似文献   

7.
Abstract

Data assimilation in numerical weather forecasting corrects current forecast values by subtracting a portion of interpolated forecast‐minus‐observation differences at the points of a three‐dimensional grid. Deviations used in updating a forecast data field are forecast errors obtained or derived from observations available at update time. When observations are missing at mandatory levels, construction of full vertical soundings by interpolation introduces extraneous errors. The present paper is concerned with determination of the error in vertical extrapolations of surface winds, and of aircraft and satellite cloud‐tracked winds. In addition it examines the effect on accuracy of using location‐specific statistics compared to averaged statistics as the basis for the interpolation weighting scheme and compares errors of one‐ and two‐variable interpolations.

Interpolation accuracy tests demonstrate the influence of the interpolation scheme on the quality of interpolated information used in forecast updating. The results show that the level of accuracy exceeds the benchmark provided by monthly mean forecast error values only with bivariate interpolation of wind components from off‐level data sources.  相似文献   

8.
Abstract

The wind generation of transverse thermocline motions in an infinitely long two‐layer channel is studied theoretically. Winds both along and across the channel are considered. Horizontal momentum transfer is parameterized by a constant coefficient of eddy viscosity. For a channel narrow compared with its internal Rossby radius of deformation, the transverse motions are uni‐modal and generated most efficiently by long‐shore winds. Theoretical results in this narrow channel limit agree well with observations made at Babine Lake, British Columbia. For a channel wide compared with its Rossby radius, the response is multi‐modal, especially for cross‐channel winds. For a model Lake Michigan, computed interfacial displacements due to a steady wind either across or along the channel are small compared with the observed displacements. However, a semi‐diurnal wind (in either direction) is in near resonance with the seventh transverse mode. Thus multi‐modal displacements as large as those observed could possibly be generated by semi‐diurnal winds across or along the channel.  相似文献   

9.
《大气与海洋》2013,51(3):361-376
Abstract

The goal of this study is to evaluate the impact of incorporating the marine surface winds retrieved from the ERS‐2 scatterometer in the Canadian three‐dimensional variational analysis system, (3D‐var). The aspects of the 3D‐var most relevant to the assimilation of surface ‐wind observations and a general method for resolving the directional ambiguity of the retrieved scatterometer ‐winds are first described. A comparison ‐with 6‐h forecasted winds is then made to demonstrate that these data are of high quality, but exhibit a speed bias that can be removed by increasing their amplitudes by about 5%. The analysis increment from a single scatterometer wind observation is calculated to illustrate the response of the 3D‐var to surface wind observations. As a consequence of the forecast error covariance model, the assimilation of surface wind observations produces meteorologically consistent increments for both the rotational and divergent wind components and the mass field. The results from a series of cross‐validation experiments using ship‐based wind data demonstrate a positive impact of assimilating scatterometer winds and the effectiveness of a simple method for estimating and removing the speed bias. The impact of assimilating scatterometer data within a short assimilation cycle is also evaluated. Overall, the results show that including scatterometer data in the analysis decreases the 6‐h forecast error of surface wind by 13%. Over the northern extra‐tropics the improvement is only 4% and for the southern extra‐tropics it is 16%. Results from a series of two‐day forecasts produced using the analyses from the assimilation cycles with and without retrieved scatterometer winds included are also presented. Using radiosonde observations at 850 hPa, 500 hPa, 250 hPa and 100 hPafor verification, the impact on the forecasts is nearly neutral in the northern hemisphere and the tropics. Conversely, a significant positive impact is found on both wind and mass fields in the southern hemisphere over the entire two‐day forecast.  相似文献   

10.
Abstract

A simple perturbation procedure is developed for incorporating the effects of mean zonal winds in atmospheric tidal calculations. This method is used to determine the variation of the solar semidiurnal surface pressure oscillation, S2(p), that is expected to result from the mean wind changes during the course of the quasi‐biennial oscillation of the tropical stratosphere. The results are consistent with earlier observations of a quasi‐biennial variation in S2(p). Some new observations of biennial variability in S2(p) at four tropical stations are also discussed.  相似文献   

11.
A mechanism for the generation of intrathermocline eddies (ITEs) at wind-forced fronts is examined using a high resolution numerical simulation. Favorable conditions for ITE formation result at fronts forced by “down-front” winds, i.e. winds blowing in the direction of the frontal jet. Down-front winds exert frictional forces that reduce the potential vorticity (PV) within the surface boundary in the frontal outcrop, providing a source for the low-PV water that is the materia prima of ITEs. Meandering of the front drives vertical motions that subduct the low-PV water into the pycnocline, pooling it into the coherent anticyclonic vortex of a submesoscale ITE. As the fluid is subducted along the outcropping frontal isopycnal, the low-PV water, which at the surface is associated with strongly baroclinic flow, re-expresses itself as water with nearly zero absolute vorticity. This generation of strong anticyclonic vorticity results from the tilting of the horizontal vorticity of the frontal jet, not from vortex squashing. During the formation of the ITE, high-PV water from the pycnocline is upwelled alongside the subducting low-PV surface water. The positive correlation between the ITE’s velocity and PV fields results in an upward, along-isopycnal eddy PV flux that scales with the surface frictional PV flux driven by the wind. The relationship between the eddy and wind-induced frictional PV flux is nonlocal in time, as the eddy PV flux persists long after the wind forcing is shut off. The ITE’s PV flux affects the large-scale flow by driving an eddy-induced transport or bolus velocity down the outcropping isopycnal layer with a magnitude that scales with the Ekman velocity.  相似文献   

12.
C.L. Tang  T. Yao 《大气与海洋》2013,51(2):270-296
Abstract

A coupled ice‐ocean dynamical model is applied to the simulation of sea‐ice motion and distribution off Newfoundland during the Labrador Ice Margin Experiment (LIMEX), March 1987. In the model, the ice is coupled to a barotropic ocean through an Ekman layer that deepens with increasing wind speed. A 6‐hourly gridded wind dataset was used as input to drive the ice and the ocean. The results show that ice velocities with ice‐ocean coupling are appreciably higher than those without coupling because of the generation of wind‐driven coastal currents. This suggests that coupled ice‐ocean dynamics should always be considered in short‐term sea‐ice models. The model gives reasonable agreement with the observed ice edge except in the southern boundary where ice‐melt has a strong influence on the ice‐edge position. Ocean currents, sea level and ice velocities computed from the model are in qualitative agreement with limited current‐meter, tide‐gauge, and ice drifter trajectory data.  相似文献   

13.
《大气与海洋》2013,51(4):251-265
Abstract

In this paper, 441 Conductivity Temperature Depth (CTD) casts from the North Water (NOW) Polynya study were used to calculate geostrophic currents between the 10 and 200 dbar surface during April, May and June 1998. Results for April and May indicated a surface intensified southward flow of 10 to 15 cm s–1 with a small return flow along the Greenland coast in agreement with inferred currents described by Melling et al. (2001) and surface ice drifts found by Wilson et al. (2001). Southward transports at this time were 0.4–0.55 Sv in April and May. In June, however, surface currents diminished markedly: southward transports declined to 0.1–0.35 Sv, coincident with a decrease in directly measured winds over the polynya and in the surface barometric pressure difference between Grise Fjord and the Carey Islands that was used as a surrogate for the local north wind speed. There was no evident decrease in air pressure difference between Resolute and Grise Fjord, indicative of the strength of the north wind over the eastern Arctic in general. The results are consistent with present thinking that the NOW Polynya is primarily a latent heat polynya, forced by dominant north winds. The idea, broached here, is that the polynya creates its own microclimate which sustains the polynya's ice‐free condition after its initial formation. The mechanism is identified by an anomalous low pressure region associated with surface buoyancy flux in the polynya and is pursued through the application of a simple geostrophic adjustment model that suggests two self‐sustaining mechanisms. Firstly, the frontal intrusion of the cold ambient terrestrial air mass drives a significant surface wind that transports frazil ice to the edge of the polynya before it can congeal. Secondly, rotation at these high latitudes restricts the penetration of the front into the polynya, essentially insulating the centre from freezing temperatures.  相似文献   

14.
Abstract

This study treats the energy balance during fast‐ice and floating‐ice conditions and examines overall seasonal patterns. The rate of ablation of the fast ice was controlled equally by net radiation and air temperature. The ratio of net/solar radiation increased 2.5 times during the ablation period owing to the decrease in ice albedo. Air temperature in the ablation zone was up to 8°C colder than that over the adjacent snow‐free terrestrial surface and remained near 0°Cfor the full ablation period. The sensible heat flux was small and downward (negative), whereas the evaporative heat flux was small and positive. Thus, the energy used in melting the ice was approximately equal to that provided by the net radiation. Above‐freezing air temperatures decreased the albedo through surface melting thus increasing net radiation. This combination of higher temperature and large net radiation was associated with offshore winds and resulted in large ablation relative to periods with colder onshore winds.

The floating‐ice period is one of great variability owing to changing ice conditions, variable current behaviour, tidal cycles and changing wind direction. The intertidal zone acts as a major heat sink, both early and late in the floating‐ice period. The turbulent heat fluxes were small and were either positive or negative. Nearly all of the energy from net radiation was used in melting ice and in warming tidal water during high tide and in warming the residual tidal ponds and in melting stranded ice rafts during low tide.

The overall study period, from May to September, included most of the season of positive radiation balance and above‐freezing temperatures. Winds were dominantly onshore in the first half of the period and equally onshore and offshore in the second half. Wind frequencies resembled longer term averages for other stations on James Bay and Hudson Bay. The ratio of net to solar radiation was at a maximum during the ice‐free period in August, whereas for adjacent terrestrial surfaces, it was largest at the summer solstice. Land‐sea breezes first developed in mid‐July and were influential in making offshore winds the dominant nocturnal regime. As a result, offshore winds were associated with small magnitudes of net radiation. Onshore winds were more than 5°C colder than those blowing offshore and their vapour pressure deficits were three times smaller. Convective heat fluxes were small for onshore winds and very small and usually negative for offshore winds. For all wind directions throughout the period, most of the available radiant energy was used to melt ice and to heat the sea water. This is a pattern similar to that of the ice‐covered or open sea and dissimilar to that of the adjacent terrestrial environment. It implies that the main energy‐balance transitions, during onshore airflow, occur at the high‐tide line.  相似文献   

15.
Abstract

Hourly observations of temperature difference between the 61 ‐ and 6.1‐m levels of the Montréal Botanical Gardens meteorological tower from December 1967 to November 1972 have been stratifïed according to wind direction and season, and have been analysed to find any variation of the urban stability with respect to wind direction. A maximum in stability was found to be associated with easterly and southeasterly winds, and a maximum in instability with westerly and northwesterly winds. The amplitude of this variation is such that the instability for the three hours around noon moves, according to Pasquill nomenclature, from class A (very unstable) to class D (neutral), thus generating notable differences between the coefficients of dispersion used in the Gaussian dispersion and hence between the pollutant concentrations calculated with these various coefficients.  相似文献   

16.
Abstract

An extensive set of measurements of currents, winds, subsurface pressures and water properties was undertaken in the summer of 1982 in Queen Charlotte Sound on the west coast of Canada. At most observation sites the summer‐averaged currents are found to be about 10 cm s?1, smaller than the tidal currents but comparable to the standard deviation of the non‐tidal currents. The strongest average flow was the outflow of surface water past Cape St James at the northwestern corner of the Sound. During strong winds from the north or northwest a strong outflow of near‐surface fresher water was also observed over Cook Bank in the south. Eddies dominate the motion in the interior of the Sound, as shown by the behaviour of a near‐surface drifter that remained in mid‐Sound for 40 days before a storm pushed it into Hecate Strait. The disorganized, weak currents in the central Sound will likely allow surface waters or floating material to remain there for periods of several weeks in summer.

Empirical orthogonal function analyses of fluctuating currents, subsurface pressures and winds reveal that a single mode explains most of the wind and pressure variance but not the current variance. The first two pressure modes represent two distinct physical processes. The first mode is a nearly uniform, up‐and‐down pumping of the surface, while the second mode tilts across the basin from east to west, likely due to geostrophic adjustment of wind‐driven currents. This mode also tilts from south to north, owing to along‐strait wind stress. Most contributions to the first mode currents come from meters near shore or the edge of a trough. Coherence is high between these second mode pressures and first mode currents and winds, and lower but still significant between first mode pressures and first mode currents and winds. It is therefore difficult to predict the behaviour of currents in Queen Charlotte Sound in summer from pressure measurements at a single site, but the difference in sea‐level across Hecate Strait is a more reliable indicator.  相似文献   

17.
《大气与海洋》2013,51(1):63-78
Abstract

Although the Mesoscale Community Compressible (MC2) model successfully reproduces the wind climate (for wind energy development purposes) of the Gaspé region, equivalent simulations for the steep mountainous southern Yukon have been unsatisfactory. An important part of the problem lies in the provision of suitable boundary conditions in the lower troposphere. This paper will describe an alternative provision of boundary conditions to the MC2 model based partly on standard National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis statistics, however, with modified lower tropospheric conditions based on local radiosonde measurements.

The MC2 model is part of the AnemoScope wind energy simulation toolkit which applies statistical‐dynamical downscaling of basic large‐scale weather situations (i.e., the NCEP/NCAR Reanalysis) to simulate the steadystate wind climate of a complex region. A case study summarized here imposes a typical mean winter temperature inversion on the boundary conditions to reduce downward momentum transfer in the MC2 model over the Whitehorse region. In conjunction with this step, the geostrophic wind at the boundaries is held constant (with height) in speed and direction, based on the (observed) dominant southwesterly winds above the mountaintops. The resulting simulation produces wind directions within the modelled domain that are in much better agreement with the available measurements. However, despite the imposed atmospheric stability, downward transfer of horizontal momentum from aloft still appears to exceed that occurring in nature.

It is recommended that (in future studies of this type regarding mountain wind climate) the input statistics processed from the NCEP/NCAR Reanalysis be modified by referencing the geostrophic winds to a level above the mountaintops. It is also suggested that converting to a height (z) coordinate system may reduce the erroneous downward momentum transfer found in the present terrain‐following grid.  相似文献   

18.
Abstract

Three sites were instrumented to measure all components of the energy balance. The sites were located in the Churchill, Manitoba region and comprised a Sea Site on a sand spit 1 km seaward from the mainland, a Nearcoast Site 2 km inland from the coast and an Inland Site 65 km inland. Measurements were made continuously over a 90‐day period from 19 May to 16 August 1984. This period encompassed the bulk of the growing season.

The measurements were stratified into onshore and offshore wind directions and were compared for 10‐day periods. The comparisons show very significant differences attributable to the cold summer conditions promoted by the sea ice in Hudson Bay. The ground heat flux and latent heat flux were much greater during offshore winds but the sensible heat flux was greatest for onshore winds. Air temperatures averaged 7°C warmer for offshore than for onshore winds. The reasons for these differences are detailed and the climatic modifications that would probably result from earlier sea‐ice melt are discussed. Some implications of climatic modification are also noted.  相似文献   

19.
Abstract

The passage of a winter storm is accompanied by changes in many surface and near‐surface parameters including temperature, humidity, wind, pressure, precipitation rate and type, cloud base height, visibility and accretion. These parameters were measured in association with the passage of precipitation‐type transitions over Newfoundland during the Canadian Atlantic Storms Program II field experiment. Three simple summaries of the observed weather events were developed. These summaries depend on the observed large‐scale synoptic conditions, which include warm fronts, a cold front and a trough.  相似文献   

20.
An investigation has been made of the structure of sea-breeze fronts observed at Thumba mostly during the months of December to April using data from a Doppler SODAR and in situ measurements of wind components, humidity and temperature. The study shows that the vertical wind structure observed in the SODAR height range provides a distinct signature of the passage of a front and that the intensity of the front is decided by the intensity and direction of the prevailing winds as well as the amount of rotation of the wind vector during the onset of the sea-breeze. Spectral analyses of vertical winds during the passage of the front reveal a dominant periodicity of about 6 min for strong sea-breeze fronts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号