首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Measurements of dry, deposition velocities (V d ) of O3 (using the eddy correlation technique) made over a cotton field and senescent grass near Fresno California during July and August 1991 were used to test some dry deposition velocity models. Over the cotton field, the observed maximum daytimeV d was about 0.8 cm s–1 and the average nighttime value was about 0.2 cm s–1. Over the grass, daytime values averaged about 0.2 cm s–1 and nighttime values about 0.05 cm s–1. Application of a site-specific model known as ADOM (Acid Deposition and Oxidant Model) over the cotton field generally overestimated the observations except for a few hours in the afternoon when the observations were underestimated The overestimation was attributed to inadequacies in the surface resistance formulation and the underestimation to uncertainties in the aerodynamic formulation. Unlike previous studies which focused on the role of surface resistance, we perform additional tests using a large variety of aerodynamic resistance formulae, in addition to those in ADOM, to determine their influence on the modelledV d of O3 over, cotton. Over grass, ADOM considerably overestimated the observations but showed improvement when other surface resistance formulations were applied.  相似文献   

2.
Eddy-correlation measurements of the vertical fluxes of ozone, carbon dioxide, fine particles with diameter near 0.1 m, and particulate sulfur, as well as of momentum, heat and water vapor, have been taken above a tall leafless deciduous forest in wintertime. During the experimental period of one week, ozone deposition velocities varied from about 0.1 cm s–1 at night to more than 0.4 cm s-1 during the daytime, with the largest variations associated primarily with changes in solar irradiation. Most of the ozone removal took place in the upper canopy. Carbon dioxide fluxes were directed upward due to respiration and exhibited a strong dependence on air temperature and solar heating. The fluxes were approximately zero at air temperatures less than 5 °C and approached 0.8 mg m–2 s–1 when temperatures exceeded 15 °C during the daytime. Fine-particle deposition rates were large at times, with deposition velocities near 0.8 cm s–1 when turbulence levels were high, but fluxes directed upward were found above the canopy when the surface beneath was covered with snow. Diffusional processes seemed to dominate fine-particle transfer across quasilaminar layers and subsequent deposition to the upper canopy. Deposition velocities for particulate sulfur were highly variable and averaged to a value small in magnitude as compared to similar measurements taken previously over a pine forest in summer.  相似文献   

3.
Eddy-correlation measurements over snow, wet bare soil, and lake water indicate very small vertical ozone fluxes. Adjustments to the small vertical fluxes are needed to take into account the effect of mean Stefan flow associated with evaporation at the surface and the effects of correlation between density variations and vertical wind fluctuations. For snow, the residual resistance calculated for the surface is about 34 s cm-1, indicating that the maximum deposition velocity is abut 0.03 cm s-1. For cold bare soil well saturated with water, the surface resistance is about 10 s cm-1 (maximum deposition velocity of about 0.1 cm s-1). The highest resistances obtained are for transfer to the surface of Lake Michigan, yielding values near 90 s cm-1 for resistance (0.01 cm s-1 for deposition velocity).Work supported by the U.S. Dept. of Energy and the U.S. Environmental Protection Agency.  相似文献   

4.
An hourly quantification of inorganic water-soluble PM10 ions and corresponding trace gases was performed using the Monitor for AeRosols and Gases in ambient Air (MARGA) at the TROPOS research site in Melpitz, Germany. The data availability amounts to over 80% for the five-year measurement period from 2010 to 2014. Comparisons were performed for the evaluation of the MARGA, resulting in coefficients of determinations (slopes) of 0.91 (0.90) for the measurements against the SO2 gas monitor, 0.84 (0.88), 0.79 (1.39), 0.85 (1.20) for the ACSM NO3 ?, SO4 2? and NH4 + measurements, respectively, and 0.85 (0.65), 0.88 (0.68), 0.91 (0.83), 0.86 (0.82) for the filter measurements of Cl?, NO3 ?, SO4 2? and NH4 +, respectively. A HONO comparison with a batch denuder shows large scatter (R2 = 0.41). The MARGA HNO3 is underestimated compared to a batch and coated denuder with shorter inlets (slopes of 0.16 and 0.08, respectively). Less NH3 was observed in coated denuders for high ambient concentrations. Long-time measurements show clear daily and seasonal variabilities. Potential Source Contribution Function (PSCF) analysis indicates the emission area of particulate ions Cl?, NO3 ?, SO4 2?, NH4 +, K+ and gaseous SO2 to lie in eastern European countries, predominantly in wintertime. Coarse mode sea salt particles are transported from the North Sea to Melpitz. The particles at Melpitz are nearly neutralised with a mean molar ratio of 0.90 for the five-year study. A slight increase of the neutralization ratio over the last three years indicates a stronger decrease of the anthropogenically emitted NO3 ? and SO4 2? compared to NH4 +.  相似文献   

5.
Aerosol (PM10) samples were collected and its precursor gases, i.e., NH3, NO, NO2, and SO2 measured over Bay of Bengal (BoB) during winter months of December 2008 to January 2009 to understand the relationship between particular matter (PM) and precursor gases. The observations were done under the winter phase of Integrated Campaign on Aerosols, gases and Radiation Budget (W_ICARB). The distribution of water-soluble inorganic ionic composition (WSIC) and its interaction with precursor gases over BoB are reported in present case. Average atmospheric concentration of NH3, NO, NO2, and SO2 were recorded as 4.78?±?1.68, 1.89?±?1.26, 0.31?±?0.14, and 0.80?±?0.30?μg?m?3, whereas WSIC component of PM10, i.e., NH4 +, SO4 2?, NO3 ?, and Cl? were recorded as 1.96?±?1.66, 8.68?±?3.75, 1.92?±?1.75, and 2.48?±?0.78?μg?m?3, respectively. In the present case, abundance of nss-SO4 2? in the particulate matter is recorded as 18?%. It suggests the possibility of long-range transport as well as marine biogenic origin. Higher SO4 2?/(SO2?+?SO4 2?) equivalent molar ratio during the campaign indicates the gas-to-particle conversion with great efficiency over the study region.  相似文献   

6.
Data obtained in an intensive field study of the dry deposition of sulfur dioxide, ozone, and nitrogen dioxide, conducted in 1985 in central Pennsylvania, are used to illustrate the factors that must be considered to assure that high quality results are derived. In particular, the quality of the site must be such that flux measurements made above the surface are representative of surface values. For this purpose, tests involving momentum transfer and the surface energy budget are especially useful. In addition, conditions must not be changing rapidly, and the statistical uncertainty associated with flux measurement must be low. For the set of data presented here, conservative quality-assurance guidelines are used to reject potentially erroneous flux data. For ozone, most of the measured fluxes are of use in deriving surface resistances. For SO2, far fewer data points are available. For NO2, fluxes appear to lack the order of the O3 and SO2 fluxes, and do not enable surface resistances to be computed. The highest-quality SO2 and O3 data yield surface resistances in fair average agreement with model predictions for SO2, but substantially higher than predictions for O3.  相似文献   

7.
Summary Vertical profiles of H2O, CO2, O3, NO and NO2 were measured during the Hartheim Experiment (HartX) to develop and calibrate a multi-layer resistance model to estimate deposition and emission of the cited gaseous species. The meteorological and gas concentration data were obtained with a 30 m high telescopic mast with 7 gas inlets located at 5 m intervals and meteorological sensors at 5, 15 and 30 m above ground; a complete gas profile was obtained every 9 min 20 s. Measured profiles were influenced by several exchange processes, namely evapotranspiration, dewfall, assimilation of CO2 in the tree crowns, soil respiration, deposition of NO2 and O3 to the soil and advection of NOx from the nearby highway. Surprisingly, no decrease in O3 concentration was observed in the crown layer during daytime, probably due to the relatively low density of foliage elements and strong turbulent mixing.The advantage of measuring in-canopy profiles is that turbulent exchange coefficients need not be estimated as a prerequisite to obtaining vertical flux estimates. In recent years, flux-gradient relationships in canopies have been subject to many criticisms. If fluxes are calculated at several heights considering only the transfers between the turbulent air and the interacting surfaces at a certain height, and those fluxes are then integrated vertically in a subsequent step, then exchange estimates (deposition or emission) can be obtained independent of turbulent exchange conditions.Typical estimated deposition velocities calculated for a 3-day period are between 4 and 10 mm/s for NO2 and about 4–9 mm/s for O3 (day and night values respectively). This leads to deposition rates of about 20–40 ng N/m2s for NO2 and about 30–40 mg O3/m2 deposited daily under the conditions encountered during HartX. Sensitivity tests done with the best available and most realistic values for model parametrization have shown that sensitivity is large with respect to the soil and cuticula resistances as well as for gas-phase ozone destruction and that more research is required to describe the effectiveness of cuticula and soil in modifying sink characteristics for NO2 and O3.With 12 Figures  相似文献   

8.
Beijing is one of the largest and most densely populated cities in China. PM2.5 (fine particulates with aerodynamic diameters less than 2.5 μm) pollution has been a serious problem in Beijing in recent years. To study the temporal and spatial variations in the chemical components of PM2.5 and to discuss the formation mechanisms of secondary particles, SO2, NO2, PM2.5, and chemical components of PM2.5 were measured at four sites in Beijing, Dingling (DL), Chegongzhuang (CG), Fangshan (FS), and Yufa (YF), over four seasons from 2012 to 2013. Fifteen chemical components, including organic carbon (OC), elemental carbon (EC), K+, NH4 +, NO3 ?, SO4 2?, Cl?, Al, Ca, Fe, Mg, Na, Pb, Si, and Zn, were selected for analysis. Overall, OC, SO4 2?, NO3 ?, and NH4 + were dominant among 15 components, the annual average concentrations of which were 22.62 ± 21.86, 19.39 ± 21.06, 18.89 ± 19.82, and 13.20 ± 12.80 μg·m?3, respectively. Compared with previous studies, the concentrations of NH4 + were significantly higher in this study. In winter, the average concentrations of OC and EC were, respectively, 3 and 2.5 times higher than in summer, a result of coal combustion during winter. The average OC/EC ratios over the four sites were 4.9, 7.0, 8.1, and 8.4 in spring, summer, autumn, and winter, respectively. The annual average [NO3 ?]/[SO4 2?] ratios in DL, CG, FS, and YF were 1.01, 1.25, 1.08, and 1.12, respectively, which were significantly higher than previous studies in Beijing, indicating that the contribution ratio of mobile source increased in recent years in Beijing. Analysis of correlations between temperature and relative humidity and between SOR ([SO4 2?]/([SO4 2?] + [SO2])) and NOR ([NO3 ?]/([NO3 ?] + [NO2])) indicated that gas-phase oxidation reactions were the major formation mechanism of SO4 2? in spring and summer in urban Beijing, whereas slow gas-phase oxidation reactions and heterogeneous reactions both occurred in autumn and winter. NO3 ? was mainly formed through year-round heterogeneous reactions in urban Beijing.  相似文献   

9.
This study reports comparisonsbetween model simulations, based on current sulfurmechanisms, with the DMS, SO2 and DMSOobservational data reported by Bandy et al.(1996) in their 1994 Christmas Island field study. For both DMS and SO2, the model results werefound to be in excellent agreement with theobservations when the observations were filtered so asto establish a common meteorological environment. Thisfiltered DMS and SO2 data encompassedapproximately half of the total sampled days. Basedon these composite profiles, it was shown thatoxidation of DMS via OH was the dominant pathway withno more than 5 to 15% proceeding through Cl atoms andless than 3% through NO3. This analysis wasbased on an estimated DMS sea-to-air flux of 3.4 ×109 molecs cm-2 s-1. The dominant sourceof BL SO2 was oxidation of DMS, the overallconversion efficiency being evaluated at 0.65 ± 0.15. The major loss of SO2 was deposition to theocean's surface and scavenging by aerosol. Theresulting combined first order k value was estimated at 1.6 × 10-5 s-1. In contrast to the DMSand SO2 simulations, the model under-predictedthe observed DMSO levels by nearly a factor of 50. Although DMSO instrument measurement problems can notbe totally ruled out, the possibility of DMSO sourcesother than gas phase oxidation of DMS must beseriously considered and should be explored in futurestudies.  相似文献   

10.
We assessed the rainwater chemistry, the potential sources of its main inorganic components and bulk atmospheric deposition in a rural tropical semiarid region in the Brazilian Caatinga. Rainfall samples were collected during two wet seasons, one during an extremely dry year (2012) and one during a year with normal rainfall (2013). According to measurements of the main inorganic ions in the rainwater (H+, Na+, NH4 +, K+, Ca2+, Mg2+, Cl?, NO3 ?, and SO4 2?), no differences were observed in the total ionic charge between the two investigated wet seasons. However, Ca2+, K+, NH4 + and NO3 ? were significant higher in the wetter year (p < 0.05) which was attributed to anthropogenic activities, such as organic fertilizer applications. The total ionic contents of the rainwater suggested a dominant marine contribution, accounting for 76 % and 58 % of the rainwater in 2012 and 2013, respectively. The sum of the non-sea-salt fractions of Cl?, SO4 2?, Mg2+, Ca2+ and K+ were 19 % and 33 % in 2012 and 2013, and the nitrogenous compounds accounted for 2.8 % and 6.0 % of the total ionic contents in 2012 and 2013, respectively. The ionic ratios suggested that Mg2+ was probably the main neutralizing constituent of rainwater acidity, followed by Ca2+. We observed a low bulk atmospheric deposition of all major rainwater ions during both wet seasons. Regarding nitrogen deposition, we estimated slightly lower annual inputs than previous global estimates. Our findings contribute to the understanding of rainfall chemistry in northeastern Brazil by providing baseline information for a previously unstudied tropical semiarid ecosystem.  相似文献   

11.

Size-segregated aerosol particles were collected using a high volume MOUDI sampler at a coastal urban site in Xiamen Bay, China, from March 2018 to June 2020 to examine the seasonal characteristics of aerosol and water-soluble inorganic ions (WSIIs) and the dry deposition of nitrogen species. During the study period, the annual average concentrations of PM1, PM2.5, PM10, and TSP were 14.8?±?5.6, 21.1?±?9.0, 35.4?±?14.2 μg m?3, and 45.2?±?21.3 μg m?3, respectively. The seasonal variations of aerosol concentrations were impacted by the monsoon with the lowest value in summer and the higher values in other seasons. For WSIIs, the annual average concentrations were 6.3?±?3.3, 2.1?±?1.2, 3.3?±?1.5, and 1.6?±?0.8 μg m?3 in PM1, PM1-2.5, PM2.5–10, and PM>10, respectively. In addition, pronounced seasonal variations of WSIIs in PM1 and PM1-2.5 were observed, with the highest concentration in spring-winter and the lowest in summer. The size distribution showed that SO42?, NH4+ and K+ were consistently present in the submicron particles while Ca2+, Mg2+, Na+ and Cl? mainly accumulated in the size range of 2.5–10 μm, reflecting their different dominant sources. In spring, fall and winter, a bimodal distribution of NO3? was observed with one peak at 2.5–10 μm and another peak at 0.44–1 μm. In summer, however, the fine mode peak disappeared, likely due to the unfavorable conditions for the formation of NH4NO3. For NH4+ and SO42?, their dominant peak at 0.25–0.44 μm in summer and fall shifted to 0.44–1 μm in spring and winter. Although the concentration of NO3–N was lower than NH4–N, the dry deposition flux of NO3–N (35.77?±?24.49 μmol N m?2 d?1) was much higher than that of NH4–N (10.95?±?11.89 μmol N m?2 d?1), mainly due to the larger deposition velocities of NO3–N. The contribution of sea-salt particles to the total particulate inorganic N deposition was estimated to be 23.9—52.8%. Dry deposition of particulate inorganic N accounted for 0.95% of other terrestrial N influxes. The annual total N deposition can create a new productivity of 3.55 mgC m?2 d?1, accounting for 1.3–4.7% of the primary productivity in Xiamen Bay. In light of these results, atmospheric N deposition could have a significant influence on biogeochemistry cycle of nutrients with respect to projected increase of anthropogenic emissions from mobile sources in coastal region.

  相似文献   

12.
In the present study, the wet and dry depositions of particulate NO3, SO42−, Cl and NH4+ were measured using a wet/dry sampler as a surrogate surface. Gas phase compounds of nitrogen, sulfur and chloride (HNO3, NH3, SO2 and HCl) were measured by an annular denuder system (ADS) equipped with a back up filter for the collection of particles with diameter ≤ 5 μm. Ambient concentrations of NO, NO2 and SO2 were also taken into consideration. Sampling was conducted at an urban site in the center of the city of Thessaloniki, northern Greece. The presence of the aerosol species was examined by cold/warm period and the possible compounds in dry deposits were also considered. Dry deposition fluxes were found to be well correlated with ambient particle concentrations in order to be used for the calculation of particle deposition velocity. Average particulate deposition velocities calculated were 0.36, 0.20, 0.20 and 0.10 cm s− 1 for Cl, NO3, SO42− and NH4+, respectively. Total dry deposition fluxes (gas and particles) were estimated at 3.24 kg ha− 1 year− 1 for chloride (HCl + p-Cl), 9.97 kg ha− 1 year− 1 for nitrogen oxidized (NO + NO2 + HNO3 + p-NO3), 5.32 kg ha− 1 year− 1 for nitrogen reduced (NH3 + p-NH4) and 15.77 kg ha− 1 year− 1 for sulfur (SO2 + p-SO4). 70–90% total dry deposition was due to gaseous species deposition. The contribution of dry deposition to the total (wet + dry) was at the level of 60–70% for sulfur and nitrogen (oxidized and reduced), whereas dry chloride deposition contributed 35% to the total. The dry-to-wet deposition ratio of all the studied species was found to be significantly associated with the precipitation amount, with nitrogen species being better and higher correlated. Wet, dry and total depositions measured in Thessaloniki, were compared with other countries of Europe, US and Asia.  相似文献   

13.
14.
Temporal trends in wet deposition of major ions were explored at nationwide remote sites in Japan from April 1991 to March 2009 by using the seasonal Kendall slope estimator and the nonparametric seasonal Kendall test. For the trend analysis, datasets from eight remote sites (Rishiri, Echizenmisaki, Oki, Ogasawara, Shionomisaki, Goto, Yakushima, and Amami) were selected from the Japanese Acid Deposition Survey (JADS) conducted by the Ministry of the Environment. Deposition of H+ has been increasing at remote sites in Japan on a national scale. Significant (p????0.05) increases in H+ deposition were detected with changes of +3?C+9?%?year?1 at seven sites, while insignificant increases were observed at one site. Depositions of non-sea salt (nss)-SO 4 2? and NO 3 ? significantly increased at four and six sites, respectively, with changes of +1?C+3?%?year?1. Significant increases in precipitation at four sites would have contributed to the increase in depositions of H+, nss-SO 4 2? , and NO 3 ? . The emission trends of SO2 and NOx did not corresponded to the deposition trends of nss-SO 4 2? and NO 3 ? . The different trends indicated that temporal variation of precipitation amount trend dominated the deposition trends.  相似文献   

15.
A comprehensive study on the chemical compositions of rainwater was carried out from Jan. to Dec. in 2008 in Chengdu, a city located on the acid rain control zone of southwest China. All samples were analyzed for pH and major ions (F, Cl?, NO3?, SO42?, K+, Na+, Ca2+, Mg2+, and NH4+). The pH increased due to the result of neutralization caused by the base ions. It was observed that Ca2+ was the most abundant cation with a VWM value of 196.6 μeq/L (17.3–1568.7 μeq/L), accounting for 49.7% (9.4%–79.2%) of the total cations. SO42? was the most abundant anion with VWM value of 212.8 μeq/L (41.8–1227.6 μeq/L). SO42? and NO3? were dominant among the anions, accounting for 90.4%–99.1% of the total measured anions.The concentrations of NO3? were higher than the most polluted cities abroad, which indicated Chengdu has been a severe polluted city over the world. The high fuel consumption from urbanization and the rapid increase of vehicles resulted in the high emission of SO2 and NOx, which were the precursor of the high concentration of acidic ions NO3? and SO42?. It was the main reason of the severe acid rain in Chengdu.The high concentrations of alkaline ions (mainly Ca2+, NH4+) in Chengdu city atmosphere have played an important role to neutralize the acidity of rainwater and the pH value has increased by 0.7 units since 1989. It is worth noting that the emission of NOx from the automobile exhaust is increased and is becoming the important precursor of acid rain now.  相似文献   

16.
Aerosols consist of organic and inorganic species, and the composition and concentration of these species depends on their sources, chemical transformation and sinks. In this study an assessment of major inorganic ions determined in three aerosol particle size ranges collected for 1 year at Welgegund in South Africa was conducted. SO42? and ammonium (NH4+) dominated the PM1 size fraction, while SO42? and nitrate (NO3) dominated the PM1–2.5 and PM2.5–10 size fractions. SO42? had the highest contribution in the two smaller size fractions, while NO3? had the highest contribution in the PM2.5–10 size fraction. SO42? and NO3? levels were attributed to the impacts of aged air masses passing over major anthropogenic source regions. Comparison of inorganic ion concentrations to levels thereof within a source region influencing Welgegund, indicated higher levels of most species within the source region. However, the comparative ratio of SO42? was significantly lower due to SO42? being formed distant from SO2 emissions and submicron SO42? having longer atmospheric residencies. The PM at Welgegund was determined to be acidic, mainly due to high concentrations of SO42?. PM1 and PM1–2.5 fractions revealed a seasonal pattern, with higher inorganic ion concentrations measured from May to September. Higher concentrations were attributed to decreased wet removal, more pronounced inversion layers trapping pollutants, and increases in household combustion and wild fires during winter. Back trajectory analysis also revealed higher concentrations of inorganic ionic species corresponding to air mass movements over anthropogenic source regions.  相似文献   

17.
Eddy fluxes of CO2, water vapor,and sensible heat over a deciduous forest   总被引:12,自引:0,他引:12  
Fluxes of CO2, latent heat and sensible heat were measured above a fully-leafed deciduous forest in eastern Tennessee with the eddy correlation technique. These are among the first reported observations over such a surface. The influences of solar radiation, vapor pressure deficit and the aerodynamic and canopy resistances on these mass and energy exchanges are examined. Following a concept introduced by McNaughton and Jarvis (1983), examination of our data suggest that the water vapor exchange of a deciduous forest is not as strongly coupled with net radiation as is that of agricultural crops. The degree of decoupling is smaller than in the case of a coniferous forest. This difference may be attributable in part to the greater aerodynamic resistance to water vapor transfer in a deciduous forest. It appears that the concept of decoupling may be extended to the CO2 exchange of a deciduous forest as well.Published as Paper No. 7832, Journal Series, Nebraska Agricultural Research Division. ATDD Contribution No. 85-17.  相似文献   

18.
The deposition velocity (V d) of nitric acid vapor over a fully leafed deciduous forest was estimated using flux/gradient theory. HNO3 deposition velocities ranged from 2.2 to 6.0cm/s with a mean V don the order of 4.0cms-1. Estimates of V dfrom a detailed canopy turbulence model gave deposition velocities of similar magnitude. The model was used to investigate the sensitivity of V dto the leaf boundary-layer resistance and leaf area index (LAI). Although modeled deposition velocities were found to be sensitive to the parameterization of the leaf boundary-layer resistance, they were less sensitive to the LAI. Modeled V d's were found to peak at LAI = 7.  相似文献   

19.
From the IGAC-DEBITS Africa network (IDAF), data sets on precipitation chemistry collected from the ‘wet savanna ecosystem’ site of Lamto (Côte d'Ivoire), are analyzed (1995–2002). Inorganic (Ca2 +, Mg2 +, Na+, K+, NH4 +, Cl?, SO4 2 ?, NO3 ?) and organic (HCOO?, CH3COO?) ions content were determined using Ion Chromatography. The analyzed 631 rainfall events represent 8420.9 mm of rainfall from a 9631.1 mm total. The precipitation chemistry at Lamto is influenced by four main sources: natural biogenic emissions from savanna soils (NO x and NH3), biomass burning (savanna and domestic fires), terrigeneous particles emissions from dry savanna soils, and marine compounds embedded in the summer monsoon. The inter-annual variability of the weighted volume mean concentration of chemical species linked with wet deposition fluctuates by ~ 20% over the period. Ammonium concentration is found to be the highest (17.6 μ eq.l? 1) from all IDAF sites belonging to the West Africa ecosystems. Ammonia sources are from domestic animals, fertilizers and biomass burning. In spite of the high potential acidity of 30.5 μ eq.l? 1 from NO3 ?, SO4 2 ?, HCOO? and CH3COO?, a relatively weak acidity is measured: 6.9 μ eq.l? 1. The 40% acid neutralization is explained by the acid gas – alkaline soil particles interaction. The remaining neutralization is from inclusion of gaseous ammonia. When results from Lamto, are compared with those from Banizoumbou (dry savanna) and Zoetele (equatorial forest), a regional view for wet tropospheric chemistry processes is obtained. The high concentration of the particulate phase in precipitation emphasizes the importance of multiphases processes between gases and particles in the atmospheric chemistry of the West Africa ecosystems. For example, the nss Ca2 + precipitation content, main indicator of terrigeneous particles, goes from 30.8 μ eq.l? 1 in dry savanna to 9.2 μ eq.l? 1 at Lamto and 8.9 μ eq.l? 1 in the Cameroon forest. A similar gradient is obtained for rainfall mineral particles precipitation content with contribution of 80% in dry savanna, 40% in wet savanna, and 20% in the equatorial forest.  相似文献   

20.
Spatial variation of long term annual precipitation volume weighted concentrations of major chemical constituents (SO4 ?2, NO3 ?, Cl?, NH4 +, Ca+2, Mg+2, Na+ and K+ ) at all the ten Global Atmospheric Watch (GAW) stations in India for the period from 1981 to 2012 is studied in this paper. Ionic abundance and balance is studied as well. The range of long term annual mean pH at ten stations was 5.25?±?0.82 to 6.91?±?0.76, lowest at Mohanbari and highest at Jodhpur. The long term annual mean pH for the period 1981–2012 showed decreasing trend at all the stations (significant at 5 % level). Decadal mean pH among ten stations for 1981–1990, 1991–2000 and 2001–2012 ranged between 7.31 to 5.76, 7.45 to 4.92 and 6.16 to 4.77 respectively and showed decreasing trend at all the stations during 1981–1990 to 2001–12. The percentage occurrence of acidic pH (<5.65) at ten stations ranged from 3 to 72 %, lowest at Jodhpur and highest at Mohanbari and it increased from 1981–1990 to 2001–2012 almost at all the stations. Temporal variation of annual mean values of nssSO4 ?2, NO3 ?, Ca+2 and pH for the study period were attempted. Variation of nss K (non sea salt Potassium) at all the stations was studied to assess the biomass burning contribution in different regions. Non-marine (terrestrial) contribution dominated for majority of ionic constituents at most of the stations. However marine contribution was found to be dominant for Mg at Port Blair and Minicoy. Also sea salt fraction of SO4 was higher than terrestrial at Minicoy. Sources of measured ionic constituents in rain water are assessed through correlation analysis. The concentrations of all the ionic species were lowest at Kodaikanal, a high altitude hill top station and the total ionic mass was 136.0 μeq/l. Jodhpur, an arid station not only had highest concentrations of Ca+2, SO4 ?2 and K+ but also had highest total ionic content (1051.8 μeq/l) among all the stations. At Srinagar, Jodhpur, Allahabad, Nagpur and Pune stations Ca+2 was the dominant cation while dominant anion was NO3 ? for Srinagar, Allahabad, and Nagpur and Cl? for Jodhpur and Pune; at Mohanbari NO3 ? and Ca+2; at Visakhapatnam, Port Blair and Minicoy Na+ and Cl? were abundant. Temporal variation had shown an increasing trend for nssSO4 ?2 and NO3 ? and obviously decreasing trend for pH at all the stations. However, Ca+2 showed a decreasing trend at all the stations except at Port Blair. With the exception of Pune and Jodhpur stations, nssK showed a decreasing trend at all the stations revealing decreasing influence of soil/biomass burning over Indian GAW stations. Negative correlation of pH with SO4 ?2 was found to be weak compared to NO3 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号