首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

A reflectivity‐rainfall rate (Z‐R) relationship is derived from Carvel radar and Edmonton rain gauge measurements. Our analysis indicates that the traditional point‐by‐point comparison method is not accurate for Alberta summertime precipitation due to timing errors in fast moving convective storms. The Window Probability Matching Method (WPMM) was superior and provided a robust Z‐R relationship in the form of Z = 32.5 R1.65.  相似文献   

2.
Abstract

Radar reflectivity measurements and sounding data were analyzed to investigate snowfall production in a long‐lasting snowband that formed in advance of a warm surface front moving across Alberta. The sounding data indicated that the band could have been forced by slantwise overturning during the release of moist symmetric instability combined with frontogenesis. The stability analysis presented here is novel in that it includes ice phase thermodynamics, neglected in previous studies of slantwise convection.

Radar reflectivity fields were analyzed to determine the total snow content and the mass outflow rate as factors of time. The peak value of total snow content was 17 kilotons per km of snowband, and the peak mass outflow rate was 10 tons s‐1 km‐1. The snowfall rate averaged across the cloud base was about 0.8 cm h‐1, and the average snow content remained close to 0.2 g m‐1. The characteristic time (defined as the ratio of total snow content over mass outflow rate) was about 30 minutes, which is approximately the time needed for the growth of snowflakes by aggregation in the observed temperature range. The precipitation efficiency of the snowband, defined as the ratio of snow mass outflow to water vapour inflow was estimated to be 14%. The precipitation production values observed in the Alberta snowband are compared with previous estimates reported for frontal rainbands and Alberta thunderstorms.  相似文献   

3.
Abstract

A pilot project concerning the measurement of rainfall by polarization diversity radar, conducted jointly by the Alberta Research Council and the University of Essex in the summer of 1989, is described. The objective of the experiment was to test the theory that differential propagation phase shift can give a better estimate of rainfall with high rain rates (about 30 mm h?1 and greater) than reflectivity measurements.

The project comprised a field experiment that was conducted in central Alberta during the period 20 July to 2 August 1989. The field experiment involved observing storms within about a 70‐km radius from Red Deer with the ARC S‐band polarization diversity radar and measuring rainfall at the ground through a network of fixed, volunteer observers and a mobile storm‐chase operation.

Theory describing how differential propagation phase may be extracted from the data recorded by the radar system is given.

Data collected on three days during the experiment (27 July, 29 July and 2 August) have been analysed and the results are presented. A total of 31 samples of total rainfall amount were collected on these days. All but three of the 31 radar rainfall amount predictions obtained from the differential propagation phase are within a factor of 2 of the rainfall observed at the ground. In fact, the average ratio of the total rainfall amount predicted from the differential propagation phase to the total rainfall amount measured at the ground is 1.16 for the 31 samples. This suggests that, on average, the total rainfall amount predicted from the differential propagation phase is only 16% higher than that measured at the ground. Of the 31 events, over a third involved some contamination of the differential propagation phase measurement through hail. Furthermore, because the KDP technique does not rely on parameters dependent on precipitation characteristics or adjustment factors, the technique can be validated in a convenient location and then applied anywhere.

On the other hand, the radar rainfall amount estimates derived from Z‐R relations represent, in general, a large overestimation of the rainfall amount observed at the ground, especially when hail is present. No attempt was made to adjust or calibrate the radar rainfall estimates with raingauge data.  相似文献   

4.
The rainfall spatial organization in the metropolitan area of Barcelona (Spain) has been studied from records of an urban rain gauge network in the period 1994–2009. Using statistical and regional analysis techniques, correlation between data recorded by the different rain gauges has been calculated, and the effective number of independent stations (n eq) equivalent to the used network has been determined. It has been found out that for durations longer than 20 min, the areal rainfall return period observed for a storm registered by the network approximately decreases by a factor of 1/n eq in relation to the current point rainfall intensity–duration–frequency relationships for the metropolitan area of Barcelona. Using objective analysis techniques, continuous precipitation fields have been generated on a regular grid with a spatial resolution of 300?×?300 m for the storms registered by the rain gauges from 1994 to 2009, for durations from 10 min to 24 h. The precipitation fields obtained have been useful to estimate the characteristic areal reduction factors in the metropolitan area of Barcelona. A direct relationship has been found between the areal reduction factor for all the area corresponding to the urban rainfall network of Barcelona and the effective number of n eq for every duration considered.  相似文献   

5.
利用新一代天气雷达回波资料和一个雷暴单体识别、追踪和分析算法, 对2004年7月10日下午造成北京局地短时强降水的雷暴特征进行了初步分析。在偏南暖湿气流中生成的对流云团, 在北京上空迅速发展, 逐渐形成了一个覆盖城区的β-中尺度对流超级复合体, 导致了这次强降水过程。详细分析表明, 强对流主要是来自城区西南和东南两个方向生成和发展起来的雷暴。在北京西南部的雷暴逐渐向东北的城近郊区移动和发展, 并与新生成的雷暴合并加强, 造成了石景山、门头沟和海淀部分地区的大雨。在北京东南部逐渐形成的两个小雷暴单体迅速增长并向西北方的城区移动, 在到达城区时合并且迅速加强, 但移速缓慢, 在北京城区维持了两个多小时, 造成了城区的大暴雨过程, 降水量大但空间分布不均匀。雷暴顶高度和最大反射率因子的关系呈反位相变化, 雷暴最大反射率因子出现的高度均位于0 ℃等温线之下 (≥0 ℃) 或其附近, 雷暴的中心和反射率因子权重质心也基本位于0 ℃等温线之下, 均证实了这是一个典型的液态强降水对流系统。分析还表明, 20:00 (北京时) 左右的超强雷达回波是由大气异常传播造成的虚假超折射回波。  相似文献   

6.
We examine the sensitivities of heterogeneous sulfate chemistry in a mid-latitude and tropical storm using a cloud resolving model. Both thermodynamic environments show unstable conditions favorable for development of intensive convection, with more CAPE in tropical compared to mid-latitude storm. Compared with the observed severe storms, modeled results show a relatively good agreement with the radar and surface chemical observations. Microphysical evaluation indicates that the accretion and autoconversion appear to be most important processes in such considered clouds. This sensitivity simulation is an upper bound for conversion of S (IV) to sulfate. The tropical convective storm produces for about 2.5 times more sulfate compared to mid-latitude storm and converts more SO2 to sulfate, increasing wet deposition of sulfur. The results for a midlatitude run indicate that aerosol nucleation and impact scavenging account for between 18.9% and 28.9% of the in-cloud sulfate ultimately deposited. As a result of greater rainfall efficiency, tropical storm shows about two times higher sub-cloud scavenging rate than mid-latitude storm. The oxidation of S (IV) to SO4 ?2 in cloud droplets and in precipitation is found to be dominant in both convective storms accounting almost with the same percentage contribution of 45.4% and 46.3% to sulfur deposition, respectively. In-cloud oxidation contribute a larger fraction of the total amount of sulfur deposited in tropical case (29.2%) when compared to the mid-latitude case (11.8), respectively. Neglecting aqueous-phase chemistry in ice-phase hydrometeors in both convective clouds led to overpredict deposition of about 40% to 33% relative to the base runs.  相似文献   

7.
风暴相对螺旋度是一个衡量对流风暴发展强度的物理量,所以对强对流天气的预报具有实际意义。通过提取2008-2010年3年天津地区153个降雨过程的多普勒天气雷达风场数据来计算了风暴相对螺旋度,然后将风暴相对螺旋度与从雷达反射率因子图中提取的风暴信息相融合,得到基于风暴相对螺旋度的降雨预报模型。经过2014年4月到8月天津地区59个降雨过程对本文所提出的降雨预报模型进行验证,结果表明本文提出的降雨预报模型的准确率达到61%,其中提前2小时预测降雨占41%,在2小时间以内预测降雨占59%。上述结果说明,风暴相对螺旋度在结合其他降雨特征后对降雨具有良好的预报效果。  相似文献   

8.
“2011.7.14”沈阳短时强降水多普勒雷达回波特征   总被引:3,自引:0,他引:3       下载免费PDF全文
为了更好的预报、预警超级风暴单体引起的短时强降水,利用沈阳棋盘山多普勒雷达、营口多普勒雷达和自动站及地面、高空等气象资料,对2011年7月14日沈阳强降水超级单体风暴进行分析。结果表明:地面辐合线和切变线提前于降水2 h产生,而且地面辐合线和切变线的位置与风暴的生成位置重合。强对流风暴具有超级单体风暴特征,风暴出现弓形回波;速度图上存在“v”型入流缺口,相应速度场上出现中气旋,营口雷达基本反射率最大值达到61 dBz,反射率因子垂直剖面出现弱回波区和回波悬垂。当雷达回波发现中气旋,并预计此中气旋能维持1 h左右或者雷达回波发现弓形回波,沈阳棋盘山雷达基本反射率强度超过45 dBz时,可发布短时暴雨或雷雨大风等强对流气象灾害预警。  相似文献   

9.
Abstract

The morphology and time evolution of a winter storm is studied using radar data taken during the Canadian Atlantic Storms Program (CASP). The vertical motions that generate the snow are derived from reflectivity measurements. The study reveals a banded structure in the precipitation pattern with ascending and descending air associated with the bands. Vertical velocities averaged over the radar‐covered area reach values close to 1 m s‐1 . The region of large‐scale uplifting moves horizontally at about half the horizontal air velocity. A persistent precipitation pattern results from the continuously renewed air within the uplifting region.  相似文献   

10.
为全面和系统研究北京及周边地区阵风锋各方面特征,使用2006—2015年暖季(5—9月)北京多普勒雷达探测资料及北京、河北、天津自动气象站观测资料对北京及周边地区的阵风锋过程进行综合统计分析。结果表明,346次阵风锋过程有232次触发了对流,占总数的67%,表明阵风锋对雷暴具有较强的抬升触发能力。阵风锋在6—8月出现的日数占5—9月阵风锋总日数的85%;出现的时段主要是午后至傍晚(12—21时,北京时),维持时间0.5—3 h;阵风锋在北京东南方向生成的数量最多,且触发对流的次数也最多;其次为偏东和东北方向;偏南和西南方向生成阵风锋数量居中,而偏北、偏西和西北地区阵风锋个例相对较少,触发对流的比例也相对较低。产生阵风锋的母风暴中48%为孤立雷暴(包括孤立多单体和超级单体风暴),31%为雷暴群,21%为飑线;97%的母风暴最强回波在50 dBz以上,阵风锋的回波强度为10—25 dBz。91%的阵风锋移动速度集中在10—60 km/h,84%的阵风锋与母风暴的最大距离为1—60 km;在母风暴回波强度减弱到30 dBz以下时,80%的阵风锋能够继续维持的时间不超过2 h。阵风锋母风暴向东南方向移动的个例最多,从阵风锋和母风暴移动方向的关系来看,阵风锋与母风暴移向一致的情况占比最高,为32%,其次为母风暴无移动及阵风锋弧形扩散情况,各占17%;阵风锋与母风暴移向相反情况所占比例最低,只有3%。最后统计了阵风锋经过地面自动气象站时,自动观测量的变化情况。结果显示,阵风锋在经过地面自动气象站时会造成风速增大、温度降低、相对湿度增大、气压升高。   相似文献   

11.
华南前汛期暴雨气候特征的研究   总被引:23,自引:1,他引:23  
利用华南地区26站1958-2000年逐日降水资料,对华南前汛期暴雨降水的气候特征进行了统计研究。结果表明,华南前汛期暴雨降水量和频次的变化趋势都呈略减少的特征,都有明显的年际、年代际变化的长期演变特征;华南的暴雨近50%集中发生在前汛期,其中又以福建与广东的西北部为甚,华南的西南部较小;华南前汛期的降水有近40%为暴雨,多年平均暴雨百分率的大值中心在广东沿海地区,最大可达44%,有两个小值中心,它们分别位于广西广东西部和福建,最小只有26%。  相似文献   

12.
Summary A generalized method to estimate the probable maximum precipitation (PMP) has been developed for catchments in eastern India (80° E, 18° N) by pooling together all the major rainstorms that have occurred in this area. The areal raindepths of these storms are normalized for factors such as storm dew point temperature, distance of the storm from the coast, topographic effects and any intervening mountain barriers between the storm area and the moisture source. The normalized values are then applied, with appropriate adjustment factors in estimating PMP raindepths, to the Subarnarekha river catchment (upto the Chandil dam site) with an area of 5663 km2. The PMP rainfall for 1, 2 and 3 days were found to be roughly 53 cm, 78 cm and 98 cm, respectively. It is expected that the application of the generalized method proposed here will give more reliable estimates of PMP for different duration rainfall events.With 5 Figures  相似文献   

13.
雨滴谱的垂直变化特征对于认识降水过程、改进模式和雷达定量估计降水等具有重要意义。利用2016年6月1日-9月30日雨量筒、微雨雷达(micro rain radar,简称MRR)和PARSIVEL雨滴谱仪连续4个月的观测数据,在对比3种仪器观测结果的基础上,研究了层状云降水不同降水强度下微物理特征量和雨滴谱垂直演变特征。结果表明:MRR与PARSIVEL雨滴谱仪观测降水强度相关性较好,且两种仪器观测的雨滴谱在中等粒子段(0.5~2.5 mm)表现出较好的一致性,而对于小粒子段(雨滴直径小于0.5 mm)PARSIVEL雨滴谱仪观测的数浓度明显低于MRR。对于弱降水(降水强度R ≤ 0.2 mm·h-1),液水含量和降水强度随高度降低减小,雨滴在下落过程中蒸发明显。对于较强降水(R>2 mm·h-1),随高度降低,雷达反射率因子增大,小滴数浓度减小的同时大滴数浓度增加明显,雨滴下落过程碰并作用明显。所有高度直径不超过0.5 mm的小滴对数浓度贡献均为最大。高层雨滴直径不小于1 mm的小粒子对降水强度的贡献可达50%,小粒子对降水强度贡献随高度降低减小。  相似文献   

14.
《Atmospheric Research》2010,95(4):715-725
Flash floods are associated with highly localized convective storms producing heavy rainfall. Quantitative precipitation forecasting of such storms will potentially benefit from explicit representations of deep moist convection in numerical weather prediction models. However, explicit representation of moist convection is still not viable in operational mesoscale models, which rely on convective parameterizations for issuing short to medium-range forecasts. In this study we evaluate a technique that uses regional Cloud-to-Ground (CG) lightning observations to define areas of deep moist convection in thunderstorms and adjust the model-generated precipitation fields in those regions. The study focuses on a major flash flood inducing storm in central Europe (23 August 2005) that was simulated with the aid of an operational weather forecasting system (POSEIDON system based on Eta/NCEP model). The performance of the technique is assessed using as reference distributed rainfall estimates from a network of radar observations. The results indicate that CG lightning data can offer sufficient information to increase the mesoscale model skill in reproducing local convective precipitation that leads to flash floods. The model error correction is shown to be proportional to the density of lightning occurrence, making the technique potentially suitable for operational forecasting of flash flood inducing thunderstorms.  相似文献   

15.
This study investigates microphysical properties from wind profiler Doppler spectra observed within a precipitation system that produced high rainfall rates up to 40 mm hr?1 near the southern coast of the Korean Peninsula on 25~26 June 2010. A 1290-MHz wind profiler located in the National Center for Intensive Observation of Severe Weather at Boseong, Korea, observed a widespread stratiform region and short-lived convective cells from 1850 UTC 25 to 0200 UTC 26 June 2010. By using a spectral model applied to observed profiler spectra, rainfall parameters and raindrop size distributions were retrieved below a melting layer during this period. Three representative periods during precipitation were selected based on intensities of bright band and characteristics in vertical profiles of radar reflectivity and Doppler velocity. During a brief convective period (~30 min), radar reflectivity tended to be proportional to vertical air motion (positive upward), suggesting that updrafts up to ~3 m s?1 over a large vertical extent through the melting layer probably contributed to increasing rainfall rates at the surface. In reflectivityrainfall rate distributions, large drop spectra (high reflectivity) were analyzed within downdrafts and small drop spectra (low reflectivity) within updrafts, similar to the large and small drop spectra but found in stratiform and convective regions, respectively, in previous studies. This indicates that the degree of spread between reflectivity and rainfall rate may be strongly dependent on positive and negative magnitudes of vertical air motion. For three categories of vertical air motion (i.e., updrafts, neutral, and downdrafts), physical relations between the retrieved rainfall parameters were examined.  相似文献   

16.
The variation in the precipitation phase in polar regions represents an important indicator of climate change and variability.We studied the precipitation phase at the Great Wall Station and Antarctic Peninsula(AP)region,based on daily precipitation,synoptic records and ERA-Interim data during the austral summers of 1985?2014.Overall,there was no trend in the total precipitation amount or days,but the phase of summer precipitation(rainfall days versus snowfall days)showed opposite trends before and after 2001 at the AP.The total summer rain days/snow days increased/decreased during 1985?2001 and significantly decreased at a rate of?14.13 d(10 yr)?1/increased at a rate of 14.31 d(10 yr)?1 during 2001?2014,agreeing well with corresponding variations in the surface air temperature.Further,we found that the longitudinal location of the Amundsen Sea low(ASL)should account for the change in the precipitation phase since 2001,as it has shown a westward drift after 2001[?41.1°(10 yr)?1],leading to stronger cold southerly winds,colder water vapor flux,and more snow over the AP region during summertime.This study points out a supplementary factor for the climate variation on the AP.  相似文献   

17.
在充分考虑传统的最优化方法和概率配对法优缺点的基础上,使用一种改进的最佳窗概率配对法计算Z-I关系中的系数A和b,得到了雷达测得的基本反射率因子Z和雨量计实时测到的小时降水量I的动态关系.利用温州多普勒雷达体扫资料和浙江省自动雨量站资料,使用该方法对"海棠"(Haitang)和"麦莎"(Matsa)两个台风分别进行了动态计算,得到了不同系数的Z-I关系,进而对两个台风的小时降水量进行了定量估测.使用变分技术对估测的小时降水量进行了校准.结果表明,不同台风Z-I关系的系数差别较大,因而造成台风小时降水量的很大不同.使用雷达基本反射率来估测台风小时降水量,能够清楚表现出台风的螺旋雨带和其中的中小尺度雨团,估测的台风小时降水量与实况基本接近.经过变分校准的估测降水量可以较好地表现出台风雨带与地面中尺度流场动力结构的对应关系.误差统计分析表明,变分校准后的估测台风小时降水量要明显好于变分校准前的估测台风小时降水量.变分校准法既保留了雷达估测台风小时降水量的分布特征,又使估测的台风小时降水雨量与实况的误差明显减小.  相似文献   

18.
为综合评估卫星和天气雷达在2016年6月23日盐城龙卷风期间的强降水过程的降水估测精度,以国家级雨量站观测数据为基准,结合相关系数(CC)、相对误差(RB)、均方根误差(RMSE)以及分级评分指标,利用S波段的天气雷达定量降雨估测产品(RQPE)和全球降水观测计划多卫星融合产品(IMERG_FRCal,IMERG_FRUncal,IMERG_ERCal)进行比较。结果表明,雷达和卫星的累积降水量与雨量站的空间相关性很强(相关系数大于0.9),基本上能捕捉到整个降水过程的空间分布。降水主要分布在江苏省北部,但卫星高估了江苏省东北部强降水中心的降水量;对于小时时序区域平均降水,卫星高估了降水,而雷达低估了累积降水量。综合降水中心区域分析,IMERG的强降水区域降水量与雨量站的时间序列的偏差显著;RQPE在降水峰值达到之前及峰值之后与地面雨量站的变化趋势基本一致,但对降雨量峰值有明显的偏低。RQPE能较为准确地在时间上捕捉到降雨强度的变化趋势,但对于大雨及暴雨的估测能力不佳;RQPE的POD、SCI值都远远高于IMERG, FAR也较小。IMERG几乎未能监测到强降水的发生。总体上,RQPE对此次龙卷风强降水量的估测表现优于3种IMERG产品,特别是在捕捉强降水区域的空间分布方面,但对于强降水的估测能力仍需进一步改善。  相似文献   

19.
北京地区强对流天气雷达回波特征   总被引:29,自引:11,他引:29  
通过近 2年的观测 ,收集了一些新的、不同类型的强天气个例的回波资料。对其中典型个例的分析可以得到北京地区的一些强天气的雷达回波特征。冰雹、雷雨大风回波高度高 ,达 1 2km ,暴雨过程回波高度仅 7km ;冰雹、雷雨大风这类强对流天气的雷达回波移动速度快 ,而局地暴雨的雷达回波移动速度缓慢。通过对多普勒径向速度图的分析 ,可以得出冰雹、雷雨大风与暴雨的动力结构有着明显的差异。地形的影响是显著的  相似文献   

20.
Numerical simulation of a low-precipitation supercell thunderstorm   总被引:1,自引:0,他引:1  
Summary Numerical simulations of thunderstorms using initial conditions from an Oklahoma storm event on 26 April 1984 have been carried out using the Klemp-Wilhelmson cloud model. Two thermodynamic and two horizontal wind profiles are mixed to create four initial storm environments. The two initial thermodynamic profiles are designated as moderately and highly unstable. Both hodographs have considerable vertical wind shear, with the extremely unstable profile having substantially stronger storm-relative curvature shear in the lowest few kilometers, as measured by the helicity of the environment. Storms are initialized with two different temperature-perturbation warm bubbles. A variety of storms, qualitatively covering the range observed on this day, are simulated. With a strongly sheared, moderate instability environment, the two different temperature-perturbation simulations differ qualitatively, unlike the other pairs of simulations.Of particular interest is the simulation carried out with the weaker temperature-perturbation. It displays many of the characteristics of observed low-precipitation (LP) supercell storms. Without artificially suppressing rainfall, this storm produces very little precipitation over the first 6000 s of its lifetime. During this time, there is no strong downdraft at the lowest model level and vorticity at that level is much less than the values aloft. We hypothesize that LP storms can be generated by smaller initial impulses than classic supercells in environments typically associated with a supercell storm, as speculated by Bluestein and Parks (1983), since they are more susceptible to turbulent entrainment in highly sheared environments.With 15 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号