首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrodynamical axially symmetric collapse of a 3M -cloud with an initial density of 10–20 g cm–3 has been investigated. In order to first arrive at an equilibrium configuration a temperature of 15 K has been assumed. During about 9 free-fall times the cloud has artificially been cooled down to the (Jeans-) critical temperature of 8 K. Thus, the dynamical collapse studied in this paper starts from an equilibrium configuration following a slow quasi-hydrostatic contraction. Two sequences corresponding to a different choice of the initial angular velocity i = 10–14 s–1 (Case A) and i = 10–15 s–1 (Case B) have been computed. In both cases a fast spinning, optically thick disk-like core of low mass and temperature forms for which fission into two or even more pieces is very likely to occur.Paper presented at the Conference on Protostars and Planets, held at the Planetary Science Institute, University of Arizona, Tucson, Arizona, between January 3 and 7, 1978.  相似文献   

2.
Alan Paul Boss 《Icarus》1982,51(3):623-632
Theories of solar system formation often presuppose the existence of the protosun and an accompanying preplanetary nebula. Numerical three-dimensional calculations are presented which demonstrate the possibility of formation of a co-orbital, triple protostellar system, which is unstable to decay to a binary and an ejected single star. The calculations are used to construct a plausible scenario for presolar nebula formation based on a hierarchy of collapse and fragmentation. While this sequence is unlikely to produce many single stars, it remains a possible sequence for the formation of the presolar nebula.  相似文献   

3.
If we assume that the cometary nuclei originated by the gravitational instability of a dust layer, which formed in the equatorial plane of the outer parts of the presolar nebula (PSN) during a period of approximate equilibrium between gravity, centrifugal force, and the pressure gradient, a simple relation is derived between the PSN's temperature and the upper limit to the mass of the planetesimals. It contains, besides the density of the cometary nuclei p , only the fraction (by mass) of the condensable elements in the PSN, which became part of the dust particle disc, which, on the basis of available observational evidence on the solid particles in interplanetary and interstellar space and of theoretical considerations on the relationship between them and on the sedimentation process, is found to be of the order of ~10%; this estimate will require still further justification. Assuming a temperature in the range 15–20 K, an equatorial diameter of the PSN of 0.1 pc and p few 0.1 g/cm3, upper limits for the planetesimal's mass of 1018g and for their radius of 10 km are obtained (on the basis of conservation of circulation, of mass and of angular momentum in the differentially rotating disc), in fair agreement with observation. With the dispersion of those parts of the PSN — of an assumed original mass of 2–3M —, which did not become part of the Sun or the planets, by the young Sun's activity, the planetesimals must have lost a large part of their gravitational binding energy and their orbits must have become so large (semimajor axis several 104 A.U. or more, if not negative), that stellar perturbations produced the distribution in configurational and in velocity space now observed.Paper dedicated to Professor Hannes Alfvén on the occasion of his 70th birthday, 30 May, 1978.The earlier work done since about 1950 in the U.S.S.R. is described in Safronov (1972).  相似文献   

4.
Abstract— Olivines in chondrules of the Allende CV3 carbonaceous chondrite contain two types of micron sized silicate melt inclusions: clear glass (type I) and devitrified glass (type II) inclusions. Many of the type I inclusions contain a gas bubble of variable size. Type II inclusions can be transparent (IIa), with or without a gas bubble, and brown (type IIb), with a gas bubble. A number of inclusions were measured with the Raman microprobe to detect possible presence of carbon. Carbon in the form of graphite was detected only in type II inclusions. Compositions of 11 inclusions were determined with the electron microprobe and proton microprobe in search for possible explanation of this preference of carbon for devitrified inclusions. All of the measured inclusions are rich in Si, Al and Ca. No significant differences between the compositions of the two types of inclusions were found. The data suggest that the inclusions formed from the melt trapped in growing olivine crystals, which themselves crystallized from a silicon rich, gas bearing melt. There is no coherent relation between the occurrence of graphite and the gas abundance in the original melt, as indicated by the sizes of gas bubbles. Therefore, carbon was not combined in a gaseous species (e.g., CO). It must have been preferentially dissolved in some domains of the melt.  相似文献   

5.
《Icarus》1987,72(2):430-436
Models assuming low temperature equilibrium fractionation have previously been employed to explain the range of D/H values observed in the solar system and to make predictions of deuterium enhancement in the outer planets. While the reaction rates of the homogeneous partitioning reactions are prohibitively low at nebular temperatures, it has been suggested that catalysis on grains could shorten equilibrium times sufficiently. This idea is quantitatively tested here. We find that under highly idealized conditions—the full cosmic abundance of nickel available for catalysis in pure 5-μm grains—the equilibrium time constant becomes greater than the lifetime of the nebula at temperatures lower than 560°K. Even this firm lower limit is not cold enough to allow strong fractionation. Speculations are offered on alternative explanations for the distribution of hydrogen isotopes in the solar system.  相似文献   

6.
Abstract— In an effort to confirm earlier observations of fullerenes in the Allende meteorite by Becker et al. (1994), we have treated nine separate whole-rock chips of this meteorite with toluene to search for extractable C60 and C70 fullerenes. The analysis was done with high performance liquid chromatography. Less than 1 ppb C60 and C70 were detected in a total of 131.82 g of this meteorite. Becker et al. (1994) have estimated a content of 100 ppm in one Allende sample. Either they have grossly overestimated the C60 content of their sample, or Allende is very inhomogeneous concerning fullerenes.  相似文献   

7.
Abstract— We have developed a nebular condensation model and a computational routine that potentially can account for the unequilibrated mineral assemblages in chondritic meteorites. The model assumes that as condensation proceeds, a specified fraction (called the isolation degree, ξ) of the existing condensate is steadily withdrawn from reactive contact with the residual gas, presumably as a result of the growth and aggregation of condensed mineral grains. The isolated condensates may remain in the condensing system as coarse inert objects; whereas, the mineral grains that are still in reactive contact with residual nebular gases are in the form of fine dust. This paper describes the condensation with partial isolation (CWPI) model of condensation and uses it to study condensation in a nebula of solar composition at a total pressure of 10?5 bar. The systematic isolation of condensates from residual nebular gases has profound effects on the condensation sequence. At ξ values <0.2%, the condensation sequence is essentially independent of the isolation degree and identical to the classic condensation sequence. At ξ values >2.5%, the condensation sequence is also independent of the isolation degree and closely resembles the “inhomogeneous accretion model” or “chemical disequilibrium model” of condensation. In the intermediate range of ξ values, the character of the condensation sequence is very sensitive to the degree of chemical fractionation caused by condensate isolation. The mineralogy of chondritic meteorites is not consistent with condensation sequences having ξ > 2.5; this is an upper limit on the ξ values that is characteristic of condensation in the solar nebula. The mineralogy and chemistry of carbonaceous and enstatite chondrites can be explained by accretion of isolated condensates formed at ξ values of ≤0.1% and 0.7–1.5%, respectively, providing that segregation of the inert coarse objects and fine reactive dust occurred in the nebula. Segregation of these two categories of condensate may have been responsible for the observed volatility-based chemical fractionations among chondritic meteorites.  相似文献   

8.
Abstract— The Mg‐isotopic compositions in five barred olivine (BO) chondrules, one coarse‐grained rim of a BO chondrule, a relic spinel in a BO chondrule, one skeletal olivine chondrule similar to BO chondrules in mineralogy and composition, and two non‐BO chondrules from the Allende meteorite have been measured by thermal ionization mass spectrometry. The Mg isotopes are not fractionated and are within terrestrial standard values (±2.0%o per amu) in seven of the eight analyzed ferromagnesian chondrules. A clump of relic spinel grain and its host BO chondrule R‐11 give well‐resolvable Mg fractionations that show an enrichment of the heavier isotopes, up to +2.5%‰ per amu. The Mg‐isotopic compositions of coarse‐grained rim are identical to those of the host chondrule with BO texture. The results imply that ferromagnesian and refractory precursor components of the Allende chondrule may have been formed from isotopically heterogeneous reservoirs. In the nebula region where Allende chondrules formed, recycling of chondrules and multiple high‐temperature heating did not significantly alter the chemical and isotopic memory of earlier generations. Chemical and isotopic characteristics of refractory precursors of carbonaceous chondrite chondrules and CAIs are more closely related than previously thought. One of the refractory chondrule precursors of CV Allende is enriched in the heavier Mg isotopes and different from those of more common ferromagnesian chondrule precursors. The most probable scenario at the location where chondrule R‐11 formed is as follows. Before chondrule formation, several high‐temperature events occurred and then RPMs, refractory oxides, and silicates condensed from the nebular gas in which Mg isotopes were fractionated. Then, this CAI was transported into the chondrule formation region and mixed with more common, ferromagnesian precursors with normal Mg isotopes, and formed the BO chondrule. Because Mg isotope heterogeneity among silicates and spinel are found in some CAIs (Esat and Taylor, 1984), we cannot rule out the possibility that Mg isotopes of a melted portion of the refractory precursor (i.e., outer portion of CAI) are normal or enriched in the light isotope. Magnesium isotopes in the R‐11 host are also enriched in the heavier isotopes, +2.5%o per amu, which suggests that effects of isotopic heterogeneity among silicates and spinel, if they existed, are not considered to be large. It is possible that CAI precursor silicates partially dissolved during the chondrule forming event, contributing Mg to the melt and producing a uniform Mg‐isotopic signature but enriched in the heavier Mg isotopes, +2.5%‰ per amu. Most Mg isotopes in more common ferromagnesian chondrules represent normal chondritic material. Chemical and Mg‐isotopic signatures formed during nebular fractionations were not destroyed during thermal processes that formed the chondrule, and these were partly preserved in relic phases. Recycling of Allende chondrules and multiple heating at high temperature did not significantly alter the chemical and Mg‐isotopic memory of earlier generations.  相似文献   

9.
In this paper, we confirm our earlier observations of fullerenes (C60 and C70) in the Allende meteorite (Becker et al., 1994a, 1995). Fullerene C60 was also detected in two separate C-rich (approximately 0.5-1.0%) dark inclusions (Heymann et al., 1987) that were hand picked from the Allende sample. The amounts of C60 detected were approximately 5 and approximately 10 ppb, respectively, which is considerably less than what was detected in the Allende 15/21 sample (approximately 100 ppb; Becker et al., 1994a, 1995). This suggests that fullerenes are heterogeneously distributed in the meteorite. In addition, we present evidence for fulleranes, (C60Hx), detected in separate samples by laser desorption (reflectron) time-of-flight (TOF) mass spectrometry (LDMS). The LDMS spectra for the Allende extracts were remarkably similar to the spectra generated for the synthetic fullerane mixtures. Several fullerane products were synthesized using a Rh catalyst (Becker et al., 1993a) and separated using high-performance liquid chromatography (HPLC). Polycyclic aromatic hydrocarbons (PAHs) were also observed ppm levels) that included benzofluoranthene and corannulene, a cup-shaped molecule that has been proposed as a precursor molecule to the formation of fullerenes in the gas phase (Pope et al., 1993).  相似文献   

10.
The presolar nebula may have formed from the collapse of a very slowly rotating interstellar cloud. The first three-dimensional, hydrodynamical calculations of the collapse of such clouds are presented. The models include radiative transfer in the Eddington approximation, as well as detailed equations of state appropriate for the nonisothermal regime of protostellar evolution. Very slowly rotating clouds, i.e., those with initial ratios of rotational energy to gravitational energy of 10?3 or less, avoid fragmentation and instead collapse to form single central objects, containing quasistatic cores with densities of about 10?10 g cm?3. These cores are, however, surrounded by significantly nonaxisymmetric regions, such that the presolar nebula would have been bar-like over the scale of the present solar system. This nonaxisymmetry, coupled with differential rotation, results in gravitational torques that produce rapid outward transfer of angular momentum. The center of the presolar nebula should then be able to contract and collapse to pre-main-sequence densities without suffering fission or fragmentation.  相似文献   

11.
Abstract— –We present data from TEM and NanoSIMS investigations of Murchison (CM2) KFC1 presolar graphites. TEM examinations of graphite ultramicrotome sections reveal varying degrees of graphite disorder, leading to distinctions between well‐graphitized onions, more turbostratic platy graphites, and the most disordered cauliflower graphites. Aside from their larger size, platy graphites are roughly similar in isotopic composition and in internal grain properties to the well‐graphitized onions. Most carbide‐containing platy graphites exhibit large s‐process element enrichments (∼200× solar Mo/Ti ratios), suggesting origins predominantly in AGB carbon stars. The C isotopic distribution of platy graphites is similar to onions, with representatives in both 12C‐depleted (5 < 12C/13C < 40) and 12C‐enriched groups (100 < 12C/13C < 350) and a pronounced gap in the 40 < 12C/13C < 75 region that contains 75% of mainstream SiCs. The large 12C enrichments combined with the extreme s‐process element enrichments suggest formation in an environment inhomogeneously enriched in the nucleosynthetic products of thermal pulses in AGB stars. In contrast, numerous scaly cauliflower graphites show 18O enrichments and lack s‐process‐enriched carbides, suggesting a SN origin, as was the case for many Murchison KE3 SN graphites. The more turbostratic graphites (platy and scaly) are on average larger than onions, likely resulting from formation in a gas with higher C number density. Oxygen content increases progressively with increasing degree of graphite disorder, which can stabilize these grains against further graphitization and may be a reflection of higher O/C ratios in their formation environments.  相似文献   

12.
Rare-earth elements in a whole-rock sample and in major components of the Allende meteorite were investigated; for a few samples, abundances of Ba, Sr, Ca, and Al were also determined. Of the materials investigated in the present work, CaAl-rich inclusions G and O seem to be of the greatest significance. In spite of the minor difference in mineralogy between them, the apparent chondrite-normalized RE pattern is much different between these two inclusions. (Yb and Eu in inclusion G appear exceptionally irregular). This observation is inferred to reflect a rather subtle difference in condition of condensation. It is also worthwhile to note that, while two portions (pink and white) of the inclusion G show similar aspects in the abundances of lithophile trace elements investigated, they show a remarkable difference at the same time. The white portion (Gw) of inclusion G can be considered to be a mixture of chondritic material and highly fractionated material like the faintly pink portion (Gp) picked from the same inclusion. This would suggest the possibility that the Gp-like material was produced from chondritic dust.The “matrix” separated from Allende was found to be fractionated with respect to the RE abundances relative to representative chondrite. It has also a very high value for the Ba abundance.  相似文献   

13.
Abstract— We report measurements of isotopic ratios of C, N, Mg, Si, Ca, Ti, Cr, and Fe in bulk samples (aggregates of many grains) of up to seven different fractions of silicon carbide (SiC), ranging from 0.38 to 3.0μm in diameter, from the Murchison CM2 carbonaceous chondrite. Ratios of 12C/13C range from 37 to 42 and 14N/15N ratios from 370 to 520, within the range of single‐grain measurements on coarser samples and in agreement with an asymptotic giant branch (AGB) star origin of most of the grains. Variations among size fractions do not show any simple trend and can be explained by varying contamination with isotopically normal material. Silicon isotopic ratios vary only little and, with one exception, lie to the right of the singlegrain mainstream correlation line. This might indicate a higher percentage of the minor populations Y and Z among finer grain‐size fractions. All bulk samples have large 26Mg excesses attributed to the presence of short‐lived 26Al at the time of grain formation. Inferred 26Al/27Al ratios are much larger than those measured in single larger mainstream grains. This is probably because of the presence of SiC grains of type X; we obtain an estimate of 0.4 for their 26Al/27Al ratio. Our Ca‐isotopic measurements, the first made on presolar SiC grains, show excesses in 42Ca and 43Ca, which is in general agreement with theoretical expectations for AGB stars. Calcium‐44 excesses are much larger than expected and are probably because of X grains, which have high44Ca excesses because of the decay of short‐lived 44Ti produced in supernova explosions. We arrive at an estimate of 0.014 for the initial 44Ti/48Ti ratio of the X grains, within the range obtained from previous single X grain measurements. The Ti‐isotopic ratios of the bulk samples show a V‐shaped pattern with excesses of all isotopes relative to 48Ti. Isotopes 46Ti, 47Ti, and 50Ti show excesses relative to the correlation between Ti and Si ratios for single grains and are in general agreement with theoretical models of s‐process nucleosynthesis in AGB stars. In contrast, 49Ti does not show any excess relative to the singlegrain data; it also fails to agree with theory, which predicts much larger excesses than observed. Measured 53Cr/52Cr and 57Fe/56Fe ratios are normal within errors. The first result is expected even for Cr in AGB star envelopes, but the second result suggests that most of the Fe analyzed originates from contamination. We have found no simple trends in isotopic composition with respect to grain size that can be interpreted in terms of nucleosynthetic origin, unlike the results for Kr, Xe, Ba, and Sr.  相似文献   

14.
Abstract— The trace element distributions in the matrix of primitive chondrites were examined using four least‐contaminated matrix specimens from the polished sections of the Allende (CV) meteorite. Analysis of rare earth element (REE), Ba, Sr, Rb, and K abundances by isotope dilution mass spectrometry revealed that the elemental abundances of lithophile elements except for alkali metals (K, Rb) in the specimens of the Allende matrix studied here are nearly CI (carbonaceous Orgueil) chondritic (~1 × CI). Compared to refractory elements, all the matrix samples exhibited systematic depletion of the moderately volatile elements K and Rb (0.1–0.5 × CI). We suggest that the matrix precursor material did not carry significant amounts of alkali metals or that the alkalis were removed from the matrix precursor material during the parent body process and/or before matrix formation and accretion. The matrix specimens displayed slightly fractionated REE abundance patterns with positive Ce anomalies (CI‐normalized La/Yb ratio = 1.32–1.65; Ce/Ce* = 1.16–1.28; Eu/Eu* = 0.98–1.10). The REE features of the Allende matrix do not indicate a direct relationship with chondrules or calcium‐aluminum‐rich inclusions (CAIs), which in turn suggests that the matrix was not formed from materials produced by the breakage and disaggregation of the chondrules or CAIs. Therefore, we infer that the Allende matrix retains the REE features acquired during the condensation process in the nebula gas.  相似文献   

15.
Abstract— In addition to the Mg‐, Al‐, 16O‐rich spinels that are known to occur in refractory inclusions, the Murchison meteorite contains Cr‐rich, 16O‐poor spinels, most of whose sources are unknown because they are rarely found in situ. Here we report the in situ occurrence in Allende of Cr‐rich spinels, found in 13 chondrules and 4 “olivine‐rich objects”. The Allende spinels exhibit major and minor element contents, isotopic compositions, and zoning of Cr2O3 contents like those of the Cr‐spinels from Murchison. Some chondrules contain patchy‐zoned spinel (Simon et al., 1994), which suggests that such grains did not form by sintering but perhaps by formation of overgrowths on relic grains. Unlike the olivine‐rich objects, phases in all three chondrules that were analyzed by ion microprobe have uniform, near‐normal O‐isotopic compositions. One olivine‐rich object, ALSP1, has a huge (1 mm) fragment of chevron‐zoned spinel. This spinel has near‐normal O‐isotopic compositions that are quite distinct from those of adjacent forsteritic olivine, which are relatively 16O‐rich and plot on the calcium‐aluminum‐inclusion (CAI) line, like some isolated forsterite grains found in Allende. The spinel and olivine in this object are therefore not genetically related to each other. Another olivine‐rich object, ALSP11A, contains a rectangular, 150 ×s 100 μm, homogeneous spinel grain with 50 wt% Cr2O3 and 23 wt% FeO in a vuggy aggregate of finer‐grained (5–90 μm), FeO‐rich (Fo47–55) olivine. The magnesian core of one olivine grain has a somewhat 16O‐rich isotopic composition like that of the large spinel, whereas the FeO‐rich olivine is relatively 16O‐poor. The composition of the spinel in ALSP11A plots on the CAI line, the first Cr‐rich spinel found to do so. Chevron‐zoned spinel has not been observed in chondrules, and it is unlikely that either ALSP1 or ALSP11A were ever molten. Calculations show that a spinel with the composition of that in ALSP1 can condense at 1780 K at a Ptot of 10?3 atm and a dust/gas ratio of 100 relative to solar. The Cr‐rich spinel in ALSP11A could condense at ~1420 K, but this would require a dust/gas enrichment of 1000 relative to solar. The data presented here confirm that, as in Murchison, the coarse Cr‐rich spinels in Allende are relatively 16O‐depleted and are isotopically distinct from the 16O‐enriched MgAl2O4 from CAIs. Sample ALSP11A may represent a third population, one that is Cr‐rich and plots on the CAI line. That the O‐isotopic composition of ALSP1 is like those of Cr‐rich spinels from chondrules indicates that O‐isotopic compositions cannot be used to distinguish whether grains from such unequilibrated objects are condensates or are fragments from a previous generation of chondrules.  相似文献   

16.
Abstract— A spherical, 220-μm diameter, spinel-hibonite-perovskite inclusion from the Allende C3V meteorite contains a central hibonite cluster with an angular boundary. This central hibonite is enclosed within spinel that is zoned from Mg-rich at the hibonite boundary to more Fe-rich at the inclusion boundary. This spinel zone includes lath-shaped hibonites usually oriented subradial to the central hibonites. Two textural types of perovskites are present as exsolution from the central hibonite and as equidimensional grains within both the central hibonite and spinel. These second perovskites have exsolution lamellae of Al2O3. Within the central hibonite and adjacent to some equidimensional perovskites, a fine porous phase interpreted as alteration has a composition of nearly pure Al2O3 with minor amounts of Na and Si. This is possibly either an intergrowth of corundum and nepheline or a modified Al2O3, β-alumina. The central hibonites and equidimensional perovskites are considered relict grains on which the spinel-hibonite layer crystallized. The relict material had undergone slow cooling in a previous event to produce exsolution of original high-temperature compositions. Later alteration caused breakdown of hibonite to give an Al2O3-rich phase. This inclusion represents a composite body which formed in a Ca-Al-rich environment.  相似文献   

17.
Abstract— A crystal of clinopyroxene from the coarse-grained refractory inclusion Egg 6 of the Allende meteorite has been studied in detail by transmission electron microscopy. The pyroxene crystal contains euhedral, dislocation-free inclusions of pure spinel MgAl2O4, without any topotactic relation to the host. Extensive dislocation walls at equilibrium, characteristic of high-temperature anneal, are present in the crystal. Alteration products are occasionally observed at the spinel-pyroxene interface close to regions where dislocation walls decorated with bubbles (or voids) are present. The bubbles, often in the shape of tubes along the dislocation lines, are thought to be due to the precipitation of a fluid migrating along the dislocations. The observations are compatible with crystallization of the refractory inclusions from the melt and with the existence of a later stage of metasomatism.  相似文献   

18.
Evidence of impact-induced compaction in the carbonaceous chondrites, specifically CMs and CVs, has been widely investigated utilizing microscopy techniques and impact experiments. Here, we use high-resolution photography and large area and high-resolution electron backscattered diffraction (EBSD) mapping analyses in tandem, to explore the effects of impact-induced compaction at both the meso- and micro-scales in the Allende CV3.6 carbonaceous chondrite. Macro-scale photography images of a ~25 cm slab of Allende captured meso-scale features including calcium-aluminum inclusions (CAIs) and chondrules. CAIs have a long-axis shape-preferred orientation (SPO). Examination of such meso-scale features in thin section revealed the same trend. Matrix grains from this section display a large amount of heterogeneity in petrofabric orientation; microscale, high-resolution, large area EBSD mapping of ~300,000 olivine matrix grains; high-resolution large area EBSD map across an elongate CAI; and a series of high-resolution EBSD maps around two chondrules and around the CAI revealed crystallographic preferred orientations (CPOs) in different directions. Finally, internal grains of the CAI were found to demonstrate a weak lineation CPO, the first crystallographic detection of possible CAI “flow.” All results are consistent with multiple, gentle impacts on the Allende parent body causing hemispheric compaction. The larger, more resistant components are likely to have been compressed and oriented by earlier impacts, and the matrix region petrofabrics and CAI “flow” likely occurred during subsequent impacts. Meteoritic components respond differently to impact events, and consequently, it is likely that different components would retain evidence of different impact events and angles.  相似文献   

19.
Abstract— Yamato 82042 is an unusual CM2 chondrite consisting mainly of phyllosilicates, a few olivines and carbonates, very minor sulphides and trace metal. Olivine occurs: (1) as isolated grains dispersed in the phyllosilicate matrix, (2) as constituents of mineral aggregates or accretionary fragments associated with abundant phyllosilicates and minor sulphides, and (3) as objects which resemble barred olivine chondrules also associated with phyllosilicates. Olivine, from all occurrences, ranges in composition from 0.26 to 22.6 weight % FeO, but generally contains less than 1.25 wt.% FeO. Minor element contents, particularly Ca, Al, and Cr, are relatively high and are generally correlated, as reported for olivines in other carbonaceous chondrites. However, we report here uncorrected trends for the same minor elements which occur in distinct areas (volumes) within the same olivines. These compositional trends may be due to condensation of olivine from a vapor of non-solar composition and partial mobilization of Ca during later annealing. If this is the case, the data may be used to trace changes in the Ca/Al ratio of the parent medium during the formation of these olivines, provided that it is possible to distinguish the effects of any post-formation annealing which could have redistributed the minor elements. Some isolated olivines show distinctive minor element zoning which severely limits the possibility of any post-formation redistribution of these elements. Accordingly, these isolated olivines indeed retain evidence of early condensation processes in the solar nebula, though non-classic conditions are implied for their formation.  相似文献   

20.
Abstract— We investigate heterogeneous nucleation and growth of graphite on precondensed TiC grains in the gas outflows from carbon‐rich asymptotic giant branch (AGB) stars employing a newly‐derived heterogeneous nucleation rate taking into account of the chemical reactions at condensation. Competition between heterogeneous and homogeneous nucleations and growths of graphite is investigated to reveal the formation conditions of the TiC core‐graphite mantle spherules found in the Murchison meteorite. It is shown that no homogeneous graphite grain condenses whenever TiC condenses prior to graphite in the plausible ranges of the stellar parameters. Heterogeneous condensation of graphite occurs on the surfaces of growing TiC grains, and prevents the TiC cores from reaching the sizes realized if all available Ti atoms were incorporated into TiC grains. The physical conditions at the formation sites of the TiC core‐graphite mantle spherules observed in the Murchison meteorite are expressed by the relation 0.2 < n?0.1 (M5/ζ)?1/2L41/4 < 0.7, where v0.1 is the gas outflow velocity at the formation site in units of 0.1 km s?1, M5 the mass loss rate in 10?5 M⊙ year?1, L4 the stellar luminosity in 104 L⊙, and M/ζ is the effective mass loss rate taking account of non‐spherical symmetry of the gas outflows. The total gas pressures Pc at the formation sites for the effective mass loss rates M/ζ = 10?5‐10?3 M⊙ year?1 correspond to 0.01 < Pc < 0.9 dyn cm?2, implying that the observed TiC core‐graphite mantle spherules are formed not only at the superwind stage but also at the earlier stage of low mass loss rates. The constraint on the C/O abundance ratio, 1 < ? ? 1.03, is imposed to reproduce the observed sizes of the TiC cores. The derived upper limit of the C/O ratio is lower than the values estimated from the calculations without taking into account of heterogeneous condensation of graphite, and is close to the lower end of the C/O ratios inferred from the astronomical observations of carbon‐rich AGB stars. Brief discussion is given on other types of graphite spherules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号