首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Methods for measuring throughfall, stemflow and, hence, interception in the tropical rainforests of the Wet Tropics region of North Queensland, Australia, were tested at three sites for between 581 and 787 days. The throughfall system design was based on long troughs mounted beneath the canopy and worked successfully under a range of rainfall conditions. Comparison of replicated systems demonstrated that the methodology is capable of capturing the variability in throughfall exhibited beneath our tropical rainforest canopies. Similarly, the stemflow system design which used spiral collars attached to sample trees worked well under a range of rainfall conditions and also produced similar estimates of stemflow in replicated systems. Higher altitude rainforests (>1000 m) in North Queensland can receive significant extra inputs of water as the canopy intercepts passing cloud droplets. This additional source of water is referred to as ‘cloud interception’ and an instrument for detecting this is described. The results obtained from this gauge are compared with cloud interception estimates made using a canopy water balance method. This method is based on stemflow and throughfall measurements and provides an alternative means to fog or cloud interception gauge calibration techniques used in the literature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
The water balance of four different rainforest types in the Wet Tropics region of north Queensland is inferred from measurements of canopy hydrological components undertaken for periods between 391 to 657 days. These measurements of rainfall, cloud interception, stem-flow, throughfall, canopy interception and transpiration have revealed considerable differences in the canopy water balance of different locations as a result of forest structural differences, altitude, exposure and climate. Cloud interception is a significant extra input of water to forests at high altitude sites (>1000 m) and varies between 7 and 29% of the total water input. At coastal and lower montane rainforests annual total evaporation is consistently around 50% of the total water input, but in upper montane cloud forest this drops dramatically to only 13% of the water input. At all sites actual evaporation is greater than potential evaporation for most of the year and on an annual basis exceeds potential by between 2 and 53%. The source of this additional energy is uncertain, but is likely to come from advection. Annual interception at all the rainforest sites was greater than annual transpiration, with transpiration dominating in the dry season and interception dominating in the wet season. All of the rainforests have a large annual net water balance to sustain runoff and recharge. Towards the end of the dry season runoff and recharge can cease in coastal lowland and lower mountain forests and they may have to draw on soil moisture and/or ground water at this time. In contrast, upper montane cloud forests have a positive net water balance throughout the year and are therefore an important source of dry season river flows. Furthermore, their exceptionally large annual runoff (∼6500 mm year−1) is a major source of downstream water. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
A rainfall interception measuring system was developed and tested for open‐grown trees. The system includes direct measurements of gross precipitation, throughfall and stemflow, as well as continuous collection of micrometeorological data. The data were sampled every second and collected at 30‐s time steps using pressure transducers monitoring water depth in collection containers coupled to Campbell CR10 dataloggers. The system was tested on a 9‐year‐old broadleaf deciduous tree (pear, Pyrus calleryana ‘Bradford’) and an 8‐year‐old broadleaf evergreen tree (cork oak, Quercus suber) representing trees having divergent canopy distributions of foliage and stems. Partitioning of gross precipitation into throughfall, stemflow and canopy interception is presented for these two mature open‐grown trees during the 1996–1998 rainy seasons. Interception losses accounted for about 15% of gross precipitation for the pear tree and 27% for the oak tree. The fraction of gross precipitation reaching the ground included 8% by stemflow and 77% by throughfall for the pear tree, as compared with 15% and 58%, respectively, for the oak tree. The analysis of temporal patterns in interception indicates that it was greatest at the beginning of each rainfall event. Rainfall frequency is more significant than rainfall rate and duration in determining interception losses. Both stemflow and throughfall varied with rainfall intensity and wind speed. Increasing precipitation rates and wind speed increased stemflow but reduced throughfall. Analysis of rainfall interception processes at different time‐scales indicates that canopy interception varied from 100% at the beginning of the rain event to about 3% at the maximum rain intensity for the oak tree. These values reflected the canopy surface water storage changes during the rain event. The winter domain precipitation at our study site in the Central Valley of California limited our opportunities to collect interception data during non‐winter seasons. This precipitation pattern makes the results more specific to the Mediterranean climate region. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
The forest canopy affects the water entering the forest ecosystem by intercepting rainfall. This is especially pertinent in forests that depend on rainfall for their ecological water needs, quantifying and simulating interception losses provide critical insights into their ecological hydrological processes. In the semi-arid areas of the Loess Plateau, afforestation has become an effective ecological restoration measure. However, the rainfall interception process of these plantations is still unclear. To quantify and model the canopy interception of these plantations, we conducted a two-year rainfall redistribution measurement experiment in three typical plantations, including a deciduous broadleaf plantation (Robinia pseudoacacia) and two evergreen coniferous plantations (Platycladus orientalis and Pinus tabuliformis). Based on this, the revised Gash model was used to simulate their interception losses, and the model applicability across varying rainfall types was further compared and verified. The experiment clarified the rainfall redistribution in the three plantations, and the proportions of throughfall to gross rainfall in Robinia pseudoacacia, Platycladus orientalis, and Pinus tabuliformis were 84.8%, 70.4%, and 75.6%; corresponding, the stemflow proportions were 2.0%, 2.2%, and 1.8%; the interception losses were 13.2%, 27.4%, and 22.6%, respectively. The dominant rainfall pattern during the experiment was characterized by low-amounts, moderate-intensity, and short-duration, during which the highest interception proportions across the three plantations were observed. We used the Penman-Monteith equation and the regression method, respectively, to estimate the canopy average evaporation rate of the revised Gash model, finding that the latter provides a closer match to the measured cumulative interception (NSE >0.7). When simulating interception under the three rainfall patterns, the model with the regression method better simulated the cumulative interception and event-scale interception for Platycladus orientalis and Pinus tabuliformis plantations under the dominant rainfall pattern. The results contribute valuable information to assess the impact of forest rainfall interception on regional hydrologic processes.  相似文献   

5.
Hydrological fluxes and associated nutrient budget were studied during a 2 year period (1998–99) in a montane moist evergreen broad‐leaved forest at Ailao Mountain, Yunnan. Water samples of rainfall, throughfall, and stemflow, and of surface runoff, soil water, and stream flow were collected bimonthly to determine the concentration and fluxes of nutrients. Soil budgets were determined from the difference between precipitation input (including nutrient leaching from canopy) and output via runoff and drainage. The forest was characterized by low canopy interception and surface runoff, and high percolation and stream flow. Concentrations of nutrients were increased in throughfall and stemflow compared with precipitation. Surface runoff and drainage water had higher nutrient concentrations than precipitation and stream water. Total nitrogen and NH4+‐N concentrations were higher in soil water than stream water, whereas K+, Ca2+, and Mg2+ concentrations were lower in the former than the latter. Annual nutrient fluxes decreased with soil depth following the pattern of water flux. Annual losses of most nutrient elements via stream flow were less than the corresponding inputs via throughfall and stemflow, except for calcium, for which solute loss was greater than the inputs via precipitation. Leaching losses of that element may be compensated by weathering. Losses of nitrogen, phosphorus, potassium, magnesium, sodium, and sulphur could be replaced through atmospheric inputs. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
Rainfall interception loss plays an important role in ecohydrological processes in dryland shrub ecosystems, but its drivers still remain poorly understood. In this study, a statistical model was developed to simulate interception loss based on the mass balance measurements arising from the partitioning of rainfall in 2 dominant xerophytic shrub (Hippophae rhamnoides and Spiraea pubescens) communities in the Loess Plateau. We measured throughfall and stemflow in the field under natural rainfall, calculated the canopy storage capacity in the laboratory, and identified key factors controlling these components for the 2 shrubs. We quantified and scaled up the stemflow and the canopy storage capacity measurements from the branches and/or leaves to stand level. The average interception loss, throughfall, and stemflow fluxes account for 24.9%, 72.2%, and 2.9% of the gross rainfall for Hrhamnoides, and 19.2%, 70.7%, and 10.1% for Spubescens, respectively. Throughfall increased with increasing rainfall for both shrubs; however, it was only correlated with the leaf area index for Spubescens. For stemflow measured from individual branches, we found that the rainfall amount and basal diameter are the best predictors for Hrhamnoides, whereas rainfall amount and branch biomass appear to be the best predictors for Spubescens. At the stand level, stemflow production is affected by the rainfall amount for Hrhamnoides, and it is affected by both the rainfall amount and the leaf area index for Spubescens. The canopy storage capacity of Hrhamnoides (1.07–1.28 mm) was larger than Spubescens (0.88–1.07 mm), and it is mainly determined by the branches and stems of Hrhamnoides and the leaves of Spubescens. The differences in interception loss between the 2 shrub stands are mainly attributed to different canopy structures that induced differences in stemflow production and canopy storage. We evaluated the effects of canopy structure on rainfall interception loss, and our developed model provides a better understanding of the effects of the canopy structure on the water cycles in dryland shrub ecosystems.  相似文献   

7.
Measurements are reported of rainfall, throughfall, stemflow, and derived interception losses made on a daily basis during two consecutive rainy seasons in a 4–5 year old and rapidly growing plantation forest of Acacia auriculiformis in a humid tropical environment. During the first observation period throughfall, stemflow, and interception loss amounted to respectively 81, 8, and 11 per cent of gross precipitation, whilst corresponding values for the second observation period were 75, 7, and 18 per cent. All three components correlated strongly with amounts of daily rainfall, but slopes of linear regression equations differed significantly between seasons for each component. Such differences are thought to reflect a 20 per cent increase in foliar mass as well as a certain instrumental bias introduced by the use of a fixed grid of throughfall troughs that differed between seasons. Tests did not reveal any effects of differences in rainfall characteristics although the two observation periods differed markedly in this respect. Although the present results fell within the (lower part of the) range reported for other sites in Southeast Asia application of Gash's analytical model suggested the results obtained during the second observation period to be anomalous. The model was tested with data from the second halves of the two observation periods, using parameters derived from the corresponding first halves. Discrepancies between estimated and observed losses were +9·4 and ?14·3 per cent for the two periods respectively. The bulk of the interception loss consisted of evaporation from a saturated canopy (69–80 per cent) and of evaporation after rainfall had ceased (25 and 15 per cent for the two periods respectively). Although the results were encouraging it would seem that a major difficulty in applying the analytical model to the humid tropics lies in obtaining a reliable estimate of the evaporation rate from a saturated canopy.  相似文献   

8.
Rainfall interception in forests is influenced by properties of the canopy that tend to vary over small distances. Our objectives were: (i) to determine the variables needed to model the interception loss of the canopy of a lower montane forest in south Ecuador, i.e. the storage capacity of the leaves S and of the trunks and branches St, and the fractions of direct throughfall p and stemflow pt; (ii) to assess the influence of canopy density and epiphyte coverage of trees on the interception of rainfall and subsequent evaporation losses. The study site was located on the eastern slope of the eastern cordillera in the south Ecuadorian Andes at 1900–2000 m above sea level. We monitored incident rainfall, throughfall, and stemflow between April 1998 and April 2001. In 2001, the leaf area index (LAI), inferred from light transmission, and epiphyte coverage was determined. The mean annual incident rainfall at three gauging stations ranged between 2319 and 2561 mm. The mean annual interception loss at five study transects in the forest varied between 591 and 1321 mm, i.e. between 25 and 52% of the incident rainfall. Mean S was estimated at 1·91 mm for relatively dry weeks with a regression model and at 2·46 mm for all weeks with the analytical Gash model; the respective estimates of mean St were 0·04 mm and 0·09 mm, of mean p were 0·42 and 0·63, and of mean pt were 0·003 and 0·012. The LAI ranged from 5·19 to 9·32. Epiphytes, mostly bryophytes, covered up to 80% of the trunk and branch surfaces. The fraction of direct throughfall p and the LAI correlated significantly with interception loss (Pearson's correlation coefficient r = −0·77 and 0·35 respectively, n = 40). Bryophyte and lichen coverage tended to decrease St and vascular epiphytes tended to increase it, although there was no significant correlation between epiphyte coverage and interception loss. Our results demonstrate that canopy density influences interception loss but only explains part of the total variation in interception loss. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
A. Iroum  A. Huber 《水文研究》2002,16(12):2347-2361
For a 26 month period, between 1 February 1998 and 31 March 2000, total precipitation, throughfall, stemflow and interception losses were measured for two different forest covers, one a managed broadleaved native forest and the other a Pseudotsuga menziesii (Mirb.) Franco (Douglas fir) plantation. Regressions between throughfall and stemflow and total precipitation (P) for individual storms and forest covers were computed and also for values of interception losses (expressed as a percentage of P) and P for each forest cover and period of development of the forest vegetation. Results obtained demonstrate the importance of forest canopies in rainfall distribution processes and for the availability of water resources. Also, that these forests generate particular interception patterns not strongly associated with the variation in crown cover throughout the year. These patterns are more closely related to the characteristics of rainfall and meteorological conditions during the growing and dormant periods. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Di Wang  Li Wang 《水文研究》2019,33(3):372-382
Canopy interception is one of the most important processes in an ecosystem, but it is still neglected when assessing evapotranspiration (ET) partitioning in apple orchards on the Loess Plateau in China. To explore the importance of canopy interception, we monitored two neighbouring apple orchards on the Loess Plateau in China, one 8‐year‐old and the other 18‐years old at the start of the study, from May to September for four consecutive years (2013–2016). We measured parameters of canopy interception (I) including precipitation, throughfall, stemflow, leaf area index, transpiration (T), and soil evaporation (S) to quantify ET. The importance of canopy interception was then assessed by comparing the relationship between water supply (precipitation) and water demand (ET), calculated with and without considering canopy interception (T + S and T + S + I, respectively). Tree age clearly influenced canopy interception, as estimates of annual canopy interception during the study years in the younger and older orchards amounted to 22.2–29.4 mm and 26.8–39.9 mm, respectively. Daily incident rainfall and rainfall intensity in both orchards were significantly positively correlated with daily canopy interception in each year. The relationship between annual precipitation and annual ET (calculated with and without consideration of canopy interception) in the younger orchard differed during 2015 and 2016. Ignoring canopy interception would result in underestimation of annual ET in both apple orchards and hence incorrect evaluation of the relationship between water supply and water demand, particularly for the younger orchard during 2015 and 2016. Thus, for a complete understanding of water consumption in apple orchards in this and similar regions, canopy interception should not be ignored when assessing ET partitioning.  相似文献   

11.
While the hydrological balance of forest ecosystems has often been studied at the annual level, quantitative studies on the factors determining rainfall partitioning of individual rain events are less frequently reported. Therefore, the effect of the seasonal variation in canopy cover on rainfall partitioning was studied for a mature deciduous beech (Fagus sylvatica L.) tree over a 2‐year period. At the annual level, throughfall amounted to 71% of precipitation, stemflow 8%, and interception 21%. Rainfall partitioning at the event level depended strongly on the amount of rainfall and differed significantly (p < 0·001) between the leafed and the leafless period of the year. Therefore, water fluxes of individual events were described using a multiple regression analysis (ra2 > 0·85, n = 205) with foliation, rainfall characteristics and meteorological variables as predictor variables. For a given amount of rainfall, foliation significantly increased interception and decreased throughfall and stemflow amounts. In addition, rainfall duration, maximum rainfall rate, vapour pressure deficit, and wind speed significantly affected rainfall partitioning at the event level. Increasing maximum hourly rainfall rate increased throughfall and decreased stemflow generation, while higher hourly vapour pressure deficit decreased event throughfall and stemflow amounts. Wind speed decreased throughfall in the growing period only. Since foliation and the event rainfall amount largely determined interception loss, the observed net water input under the deciduous canopy was sensitive to the temporal distribution of rainfall. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Under winter conditions, stemflow drainage in forested ecosystems is often assumed to be a negligible component of the hydrological cycle. This paper reports on mid-winter stemflow drainage from the broadleaved deciduous tree species Populus grandidentata. Stemflow volumes from this species at air temperatures of < 0°C were found to be comparable to rainfall-generated stemflow during summer. Over the three-month period January–March 1993, stemflow ranged from 5.4 to 9.9% of the incident gross precipitation. Expressed as depth equivalents per unit trunk basal area, these stemflow inputs ranged from 1.8 to 4.9 m. These concentrated mid-winter inputs of liquid water to the bases of canopy trees were attributable to: (1) snow interception by the leafless woody frame of each tree; (2) snow retention by glazed ice precipitation associated with the snowfall event; (3) increased temperature at the bark/snow interface caused by the low albedo of the bark tissue; and (4) convergence of snowmelt drainage from steeply inclined upthrust primary branches. The hydrological and ecological significance of liquid water inputs to the forest floor under sub-zero conditions are discussed. © 1997 by John Wiley & Sons Ltd.  相似文献   

13.
A study of partitioning of rainfall into throughfall, stemflow, and interception was conducted in a dry sclerophyll eucalypt forest and an adjacent pine plantation over a period of seven years, on a rainfall event basis. The following three issues are discussed: (1) the relationship between canopy storage capacity and interception of continuous events, (2) interception, throughfall, and stemflow, and (3) the effect on interception of thinning the pine plantation.
  • 1 The canopy storage capacity/interception interaction for the eucalypt forest was assessed by comparing a gravimetric estimate of canopy storage capacity with interception. The maximum possible value for canopy storage capacity was found to be a small proportion of interception for events of all sizes. This suggests that evaporation of intercepted water during the continuous events was responsible for most of the interception. This ‘within event’ evaporation appears to be responsible also for the net rainfall/gross rainfall estimate of canopy storage capacity being four times the gravimetric value. For the pines the regression estimate was more closely related to interception.
  • 2 Interception, throughfall, and stemflow of these forests were measured for four years. Data are presented for each year with overall average interception being 11-4 per cent of precipitation for the eucalypt forest and 18-3 per cent for the pine plantation. Topography and rainfall event type are considered in the comparison.
Species composition and tree type are considered when comparing these results with published studies from similar forest types in southeastern Australia. The periodic (annual) variations of interception in this and the other studies makes comparison difficult.
  • 3 The effect of thinning on the throughfall, stemflow, and interception in a Pinus radiata plantation is examined. Throughfall increased, interception decreased but not in proportion to the removed biomass; stemflow decreased on an area basis, but increased on a per tree basis. A positive relationshiip is established between interception and stemflow on the thinned plantation but not in the unthinned. Reasons for this are suggested. The results are compared to those reported from similar experiments in other forests.
  • 4 The periodic variations in interception and errors inherent in its estimation suggest that caution should be exercised when using average interception figures in water balance studies.
  相似文献   

14.
ABSTRACT

The interception process impacts rainfall magnitude and intensity under the canopy. In this study, the effect of plant interception on throughfall characteristics was assessed in the deciduous Caatinga vegetation, at different canopy development stages and for temporal scales ranging from seasonal to the intra-event scale. Throughfall and stemflow percentages were slightly higher at the onset of the rainy season, when leaf area density is low, with resulting lower interception losses. However, there was no statistical difference among the variables at the seasonal scale. At the intra-event scale, average and maximum throughfall intensity at different time intervals showed statistical difference between the stages of canopy development. Regardless of leaf area density and rainfall depth, vegetation is able to retain all the water up to 2 min in the beginning of each rainfall event with accumulated rainfall smaller than 0.6 mm. Furthermore, the Caatinga vegetation attenuates the rainfall intensity by 30–40%.  相似文献   

15.
《Journal of Hydrology》1999,214(1-4):103-110
During the growing season of 1995, canopy water fluxes were measured within a northern hardwood stand in southern Ontario, Canada. Observed canopy interception loss, throughfall, and stemflow fluxes from the stand were 19.3±3.5%, 76.4±2.9%, and 4.3±2.0% of incident precipitation, respectively. Both the original and revised Gash analytical rainfall interception loss models simulated these fluxes within the standard error of the observed estimates, suggesting that the analytical model may be appropriate for further applications within this forest type. The revised Gash model is recommended for further applications as it is better physically based. Both the original and revised models suggest that ∼60% of interception loss during the study period was evaporation from the canopy once rainfall has ceased while evaporation from the saturated canopy during rainfall accounted for ∼27%–33% of interception loss. Additional components of interception (e.g., evaporation from trunks) were computed to be minor contributors to total canopy interception loss.  相似文献   

16.
Abstract

The dynamic properties of rainfall interception were investigated at three growth stages in Chinese fir plantations. The results showed that the annual interception ratio was significantly higher in mature stands than in young stands. For a storm event, interception rainfall amount increased with increasing rainfall, but interception ratio decreased. In contrast to dry season conditions, the interception amount was high in the wet seasons, while the interception ratio was low. The rates of change in interception ratio were extremely rapid in small rainfall events. There was little stemflow in Chinese fir forests due to the pyramid-shaped crowns and thick rough bark of the trees. The power model was suitable to describe the interception process for an individual rainfall event for stands of any age. Our results indicate that the interception process varied for stands of different ages in Chinese fir plantations due to contrasting canopy structures.  相似文献   

17.
Analyses of the response by a weighing lysimeter in Kioloa State Forest during and after rainfall provided values of interception loss rate. The derived rates for time scales between 0.1 and 1.0mm h?1 were generally similar throughout storm events to losses determined from throughfall and stemflow observations. During post-rainfall periods of canopy drying, enhanced rates of lysimeter evaporation were consistent with micrometeorological determinations of the partitioning of available radiant energy, based on atmospheric gradients of humidity and temperature. Interception losses from the eucalypt forest, deduced from the lysimeter response, varied between 10 and 15 per cent of gross rainfall in three consecutive 12 month periods whereas the corresponding rainfall ranged between 590 and 1530 mm yr?1. Daytime losses accounted for about two-thirds of total interception loss with a similar fraction occurring during rain periods. Storage capacity of the evergreen forest canopy was inferred to be 0.35 mm. Hourly loss rates during rainfall ranged up to 0.8 mm h?1 but with decreasing mean values and variability with increasing time scale resulting in a monthly mean value computed for the total number of hours of rain of approximately 0.1 mm h?1. A preliminary analysis of loss rate in terms of storm windspeed and rainfall intensity explained about half of its variation in statistically derived relationships. Improved time resolution of the order of seconds was considered a prerequisite to the physical understanding of turbulent transport from saturated canopies. The small value of interception storage capacity was considered in relation to that for pine forest as a basis for explaining observed differences in interception behaviour between eucalypt forest and coniferous plantations in the same area. Large differences in interception losses between the Kioloa site and evergreen forest in the South Island of New Zealand and also eucalypt forest in Western Australia were attributed to dissimilar meteorological conditions at the various sites.  相似文献   

18.
Curtis D. Holder 《水文研究》2003,17(10):2001-2010
Fog precipitation occurs when fog droplets are filtered by the forest canopy and coalesce on the vegetative surfaces to form larger water droplets that drip to the forest floor. This study examines the quantity of throughfall compared with incident precipitation produced by the canopy of a lower montane rain forest (2100 m) and an upper montane cloud forest (2550 m) in the Sierra de las Minas Biosphere Reserve, Guatemala. Fog precipitation was measured with throughfall and precipitation gauges from 23 July 1995 to 7 June 1996. Fog precipitation occurred during sampling periods when throughfall exceeded incident precipitation. Fog precipitation contributed <1% of total water inputs in the cloud forest at 2100 m during the 44‐week period, whereas fog precipitation contributed 7·4% at 2550 m during the same period. The depth equivalent of fog precipitation was greater at 2550 m (203·4 mm) than at 2100 m (23·4 mm). The calculation of fog precipitation in this study is underestimated. The degree of underestimation may be evident in the difference in apparent rainfall interception between 2100 m (35%) and 2550 m (4%). Because the apparent interception rate at 2550 m is significantly lower than 2100 m, the canopy probably is saturated for longer periods as a result of cloud water contributions. Data show a seasonal pattern of fog precipitation most evident at the 2550 m site. Fog precipitation represented a larger proportion of total water inputs during the dry season (November to May). Because cloud forests generate greater than 1 mm day?1 of fog precipitation in higher elevations of the Sierra de las Minas, the conservation of the cloud forest may be important to meet the water demands of a growing population in the surrounding arid lowlands. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
With changes in climate looming, quantifying often‐overlooked components of the canopy water budget, such as cloud water interception (CWI), is increasingly important. Commonly, CWI quantification requires detailed continuous measurements, which is extremely challenging, especially when throughfall is included. In this study, we propose a simplified approach to estimate CWI using the Rutter‐type interception model, where CWI inputs in the canopy vegetation are proportional to fog interception measured by an artificial fog gauge. The model requires the continuous acquisition of meteorological variables as input and calibration datasets. Throughfall measurements below the forest are used only for calibration and validation of the model; thus, CWI estimates can be provided even after the cessation of throughfall monitoring. This approach provides an indirect and undemanding way to quantify CWI by vegetation and allows the identification of its controlling factors, which could be useful to the comparison of CWI in contrasting land covers. The method is applied on a 2‐year dataset collected in an endemic highland forest of San Cristobal Island (Galapagos). Our results show that CWI reaches 21% ± 6% of the total water input during the first year, and 9% ± 2% during the second one. These values represent 32% ± 10% and 17% ± 5% of water inputs during the cool foggy season of the first and second year, respectively. The difference between seasons is attributed to a lower fog liquid water during the second season.  相似文献   

20.
Redistribution of ground‐level rainfall and interception loss by an isolated Quercus ilex tree were measured over 2 years in a Mediterranean oak savannah. Stemflow, meteorological variables and sap flow were also monitored. Rainfall at ground level was measured by a set of rain‐gauges located in a radial layout centred on the tree trunk and extending beyond the crown limits. Interception loss was computed as the difference between the volume of rainwater that would reach the ground in the absence of the tree and the volume of water that actually fell on the ground sampling area (stemflow included). This procedure provided correct interception loss estimates, irrespective of rainfall inclination. Results have shown a clear non‐random spatial distribution of ground‐level rainfall, with rainwater concentrations upwind beneath the crown and rain‐shadows downwind. Interception loss amounted to 22% of gross rainfall, per unit of crown‐projected area. Stand interception loss, per unit of ground area, was only 8% of gross rainfall and 28% of tree evapotranspiration. These values reflect the low crown cover fraction of the stand (0·39) and the specific features of the Mediterranean rainfall regime (predominantly with few large storms). Nevertheless, it still is an important component of the water balance of these Mediterranean ecosystems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号