首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fragility curves for retrofitted bridges indicate the influence of various retrofit measures on the probability of achieving specified levels of damage. This paper presents an analytical methodology for developing fragility curves for classes of retrofitted bridge systems. The approach captures the impact of retrofit on the vulnerability of multiple components, which to date has not been adequately addressed, and results in a comparison of the system fragility before and after the application of different retrofit measures. Details presented include analytical modeling, uncertainty treatment, impact of retrofit on demand models, capacity estimates, and component and system fragility curves. The findings indicate the importance of evaluating the impact of retrofit not only on the targeted response quantity and component vulnerability but also on the overall bridge fragility. As illustrated by the case study of a retrofitted multi‐span continuous (MSC) concrete girder bridge class, a given retrofit measure may have a positive impact on some components, yet no impact or a negative impact on other critical components. Consideration of the fragility based only on individual retrofitted components, without regard for the system, may lead to over‐estimation or under‐estimation of the impact on the bridge fragility. The proposed methodology provides an opportunity to effectively compare the fragility of the MSC concrete bridge retrofit with a range of different retrofit measures. The most effective retrofit in reducing probable damage for a given intensity is a function of the damage state of interest. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Recent studies have addressed the computation of fragility curves for mainshock (MS)‐damaged buildings. However, aftershock (AS) fragilities are generally conditioned on a range of potential post‐MS damage states that are simulated via static or dynamic analyses performed on an intact building. Moreover, there are very few cases where the behavior of non‐ductile reinforced concrete buildings is analyzed. This paper presents an evaluation of AS collapse fragility conditioned on various return periods of MSs, allowing for the rapid assessment of post‐earthquake safety variations based solely on the intensity of the damaging earthquake event. A refined multi‐degree‐of‐freedom model of a seven‐storey non‐ductile building, which includes brittle failure simulations and the evaluation of a system level collapse, is adopted. Aftershock fragilities are obtained by performing an incremental dynamic analysis for a number of MS–AS ground motion sequences and a variety of MS intensities. The AS fragilities show that the probability of collapse significantly increases for higher return periods for the MS. However, this result is mainly ascribable to collapses occurred during MSs. When collapse cases that occur during a MS are not considered in the assessment of AS collapse probability, a smaller shift in the fragility curves is observed as the MS intensity increases. This result is justified considering the type of model and collapse modes introduced, which strongly depend on the brittle behavior of columns failing in shear or due to axial loads. The analysis of damage that is due to MSs when varying the return period confirms this observation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
Seismic fragility curves for greek bridges: methodology and case studies   总被引:2,自引:1,他引:1  
This study focusses on the estimation of seismic fragility curves for all common bridge types found in modern greek motorways. At first a classification scheme is developed in order to classify the existing bridges into a sufficient number of classes. A total of 11 representative bridge classes resulted, based on the type of piers, deck, and pier-to-deck connection. Then an analytical methodology for deriving fragility curves is proposed and applied to the representative bridge models. This procedure is based on pushover analysis of the entire bridge and definition of damage states in terms of parameters of the bridge pushover curves. The procedure differentiates the way of defining damage according to the seismic energy dissipation mechanism in each bridge, i.e. bridges with yielding piers of the column type and bridges with bearings (with or without seismic links) and non-yielding piers of the wall type. The activation of the abutment-backfill system due to closure of the gap between the deck and the abutments is also taken into account. The derived fragility curves are subjected to a first calibration against empirical curves based on damage data from the US and Japan.  相似文献   

4.
Fragility curves constitute an emerging tool for the seismic risk assessment of all constructions at risk. They describe the probability of a structure being damaged beyond a specific damage state for various levels of ground shaking. They are usually represented as two-parameter (median and log-standard deviation) cumulative lognormal distributions. In this paper a numerical approach is proposed for the construction of fragility curves for geotechnical constructions. The methodology is applied to cantilever bridge abutments on surface foundation often used in road and railway networks. The response of the abutment to increasing levels of seismic intensity is evaluated using a 2D nonlinear FE model, with an elasto-plastic criterion to simulate the soil behavior. A calibration procedure is followed in order to account for the dependency of both the stiffness and the damping on the soil strain level. The effect of soil conditions and ground motion characteristics on the global soil and structural response is taken into account considering different typical soil profiles and seismic input motions. The objective is to assess the vulnerability of the road network as regards the performance of the bridge abutments; therefore, the level of damage, is described in terms of the range of settlement that is observed on the backfill. The effect of backfill material to the overall response of the abutment wall is also examined. The fragility curves are estimated based on the evolution of damage with increasing earthquake intensity. The proposed approach allows the evaluation of new fragility curves considering the distinctive features of the structure geometry, the input motion and the soil properties as well as the associated uncertainties. The proposed fragility curves are verified based on observed damage during the 2007 Niigata-Chuetsu Oki earthquake.  相似文献   

5.
Fragility curves are found to be useful tools for predicting the extent of probable damage. They show the probability of highway structure damage as a function of strong motion parameters, and they allow the estimation of a level of damage probability for a known ground motion index. In this study, an analytical approach was adopted to develop the fragility curves for highway bridges based on numerical simulation. Four typical RC bridge piers and two RC bridge structures were considered, of which one was a non‐isolated system and the other was an isolated system, and they were designed according to the seismic design code in Japan. From a total of 250 strong motion records, selected from Japan, the United States, and Taiwan, non‐linear time history analyses were performed, and the damage indices for the bridge structures were obtained. Using the damage indices and ground motion parameters, fragility curves for the four bridge piers and the two bridge structures were constructed assuming a lognormal distribution. It was found that there was a significant effect on the fragility curves due to the variation of structural parameters. The relationship between the fragility curve parameters and the over‐strength ratio of the structures was also obtained by performing a linear regression analysis. It was observed that the fragility curve parameters showed a strong correlation with the over‐strength ratio of the structures. Based on the observed correlation between the fragility curve parameters and the over‐strength ratio of the structures, a simplified method was developed to construct the fragility curves for highway bridges using 30 non‐isolated bridge models. The simplified method may be a very useful tool to construct the fragility curves for non‐isolated highway bridges in Japan, which fall within the same group and have similar characteristics. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
基于IDA的高墩大跨桥梁地震易损性分析   总被引:2,自引:0,他引:2  
针对目前我国桥梁抗震设计规范仅适用于墩高40m以下规则桥梁的现状,以一常见山区高墩大跨连续刚构桥为研究对象,采用IDA方法分析了桥梁结构在15条地震动下的动态响应,得到桥墩各截面在所有地震动作用下的曲率包络图。以高墩最不利截面的材料损伤应变所对应的截面曲率为损伤指标,结合能力需求比对数回归分析,计算了高墩在不同损伤状态下的破坏概率,建立了墩柱易损性曲线,同时还建立了梁端支座的易损性曲线。基于联合失效概率分析方法,形成了桥梁系统易损性曲线。分析结果表明:薄壁空心墩连续刚构桥在强地震作用下高墩发生破坏的部位主要集中在墩顶和墩底区域;墩柱发生完全破坏的概率极小,但桥台处梁端活动支座的地震损伤概率较高;桥梁系统损伤概率能够更加准确地反映高墩大跨桥梁的真实抗震性能。  相似文献   

7.
Fragility curves express the probability of structural damage due to earthquakes as a function of ground motion indices, e.g., PGA, PGV. Based on the actual damage data of highway bridges from the 1995 Hyogoken‐Nanbu (Kobe) earthquake, a set of empirical fragility curves was constructed. However, the type of structure, structural performance (static and dynamic) and variation of input ground motion were not considered to construct the empirical fragility curves. In this study, an analytical approach was adopted to construct fragility curves for highway bridge piers of specific bridges. A typical bridge structure was considered and its piers were designed according to the seismic design codes in Japan. Using the strong motion records from Japan and the United States, non‐linear dynamic response analyses were performed, and the damage indices for the bridge piers were obtained. Using the damage indices and ground motion indices, fragility curves for the bridge piers were constructed assuming a lognormal distribution. The analytical fragility curves were compared with the empirical ones. The proposed approach may be used in constructing the fragility curves for highway bridge structures. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a copula technique to develop time-variant seismic fragility curves for corroded bridges at the system level and considers the realistic time-varying dependence among component seismic demands. Based on material deterioration mechanisms and incremental dynamic analysis, the time-evolving seismic demands of components were obtained in the form of marginal probability distributions. The time-varying dependences among bridge components were then captured with the best fitting copula function, which was selected from the commonly used copula classes by the empirical distribution based analysis method. The system time-variant fragility curves at different damage states were developed and the effects of time-varying dependences among components on the bridge system fragility were investigated. The results indicate the time-varying dependence among components significantly affects the time-variant fragility of the bridge system. The copula technique captures the nonlinear dependence among component seismic demands accurately and easily by separating the marginal distributions and the dependence among them.  相似文献   

9.
Seismic fragility curves provide a powerful tool to assess the reliability of structures. However, conventional fragility analysis of structures comprising a large number of components requires enormous computational efforts. In this paper, the application of probabilistic support vector machines (PSVM) for the system fragility analysis of existing structures is proposed. It is demonstrated that support vector machine based fragility curves provide accurate predictions compared to rigorous methodologies such as component based fragilities developed by Monte Carlo simulations. The proposed method is applied to an existing bridge structure in order to develop fragility curves for serviceability and collapse limit states. In addition, the efficiency of using the PSVM method in the application of vector-valued ground motion intensity measures (IM) as well as traditional single-valued IM are investigated. The results obtained from an incremental dynamic analysis of the structure are used to train PSVMs. The application of PSVM in binary and multi-class classifications is used for the fragility analysis and reliability assessment of the bridge structure.  相似文献   

10.
11.
The scope of this study is to investigate the effect of the direction of seismic excitation on the fragility of an already constructed, 99‐m‐long, three‐span highway overpass. First, the investigation is performed at a component level, quantifying the sensitivity of local damage modes of individual bridge components (namely, piers, bearings, abutments, and footings) to the direction of earthquake excitation. The global vulnerability at the system level is then assessed for a given angle of incidence of the earthquake ground motion to provide a single‐angle, multi‐damage probabilistic estimate of the bridge overall performance. A multi‐angle, multi‐damage, vulnerability assessment methodology is then followed, assuming uniform distribution for the angle of incidence of seismic waves with respect to the bridge axis. The above three levels of investigation highlight that the directivity of ground motion excitation may have a significant impact on the fragility of the individual bridge components, which shall not be a priori neglected. Most importantly, depending on the assumptions made for the component to the system level transition, this local sensitivity is often suppressed. It may be therefore necessary, based on the ultimate purpose of the vulnerability or the life cycle analysis, to obtain a comprehensive insight on the multiple damage potential of all individual structural and foundation components under multi‐angle excitation, to quantify the statistical correlation among the distinct damage modes and to identify the components that are both most critical and sensitive to the direction of ground motion and carefully define their limit states which control the predicted bridge fragility. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The convex model approach is applied to derive the robust seismic fragility curves of a five-span isolated continuous girder bridge with lead rubber bearings (LRB) in China. The uncertainty of structure parameters (the yield force and the post-yield stiffness of LRB, the yield strength of steel bars, etc.) are considered in the convex model, and the uncertainty of earthquake ground motions is also taken into account by selecting 40 earthquake excitations of peak ground acceleration magnitudes ranging from 0.125 to 1.126 g. A 3-D finite element model is employed using the software package OpenSees by considering the nonlinearity in the bridge piers and the isolation bearings. Section ductility of piers and shearing strain isolation bearings are treated as damage indices. The cloud method and convex model approach are used to construct the seismic fragility curves of the bridge components (LRB and bridge piers) and the bridge system, respectively. The numerical results indicate that seismic fragility of the bridge system and bridge components will be underestimated without considering the uncertainty of structural parameters. Therefore, the failure probability P f,max had better be served as the seismic fragility, especially, the fragility of the bridge system is largely dictated by the fragility of LRB. Finally, the probabilistic seismic performance evaluation of the bridge is carried out according to the structural seismic risk estimate method.  相似文献   

13.
A new methodology for the development of bridge‐specific fragility curves is proposed with a view to improving the reliability of loss assessment in road networks and prioritising retrofit of the bridge stock. The key features of the proposed methodology are the explicit definition of critical limit state thresholds for individual bridge components, with consideration of the effect of varying geometry, material properties, reinforcement and loading patterns on the component capacity; the methodology also includes the quantification of uncertainty in capacity, demand and damage state definition. Advanced analysis methods and tools (nonlinear static analysis and incremental dynamic response history analysis) are used for bridge component capacity and demand estimation, while reduced sampling techniques are used for uncertainty treatment. Whereas uncertainty in both capacity and demand is estimated from nonlinear analysis of detailed inelastic models, in practical application to bridge stocks, the demand is estimated through a standard response spectrum analysis of a simplified elastic model of the bridge. The simplified methodology can be efficiently applied to a large number of bridges (with different characteristics) within a road network, by means of an ad hoc developed software involving the use of a generic (elastic) bridge model, which derives bridge‐specific fragility curves. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
In light of recent earthquakes, structures damaged during an initial seismic event (mainshock) may be more vulnerable to severe damage and collapse during a subsequent event (aftershock). In this paper, a framework for the development of aftershock fragilities is presented; these aftershock fragilities define the likelihood that a bridge damaged during an initial event will exhibit a given damage state following one or more subsequent events. The framework is capable of (i) quantifying the cumulative damage of unrepaired bridges subjected to mainshock–aftershock sequences (effect of multiple earthquakes) and (ii) evaluating the effectiveness of column repair schemes such as steel and fiber‐reinforced‐polymer jackets (post‐repair effect of jackets). To achieve this aim, the numerical model of repaired columns is validated using existing experimental results. A non‐seismically designed bridge is chosen as a case study and is modeled for three numerical bridge models: a damaged (but unrepaired) bridge model, and two bridge models with columns repaired with steel and fiber‐reinforced polymer jackets. A series of back‐to‐back dynamic analyses under successive earthquakes are performed for each level of existing damage. Using simulated results, failure probabilities of components for multiple limit states are computed for each bridge model and then are used to evaluate the relative vulnerability of components associated with cumulative damage and column repair. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
考虑冲刷作用效应桥梁桩基地震易损性分析   总被引:3,自引:0,他引:3       下载免费PDF全文
冲刷造成桩周土体的剥蚀将会削弱土体对桩基的侧向支撑能力,冲刷效应会对桥梁桩基的地震易损性产生影响,因此有必要对冲刷和地震共同作用下桥梁桩基的易损性进行研究。利用SAP2000软件建立三维桥梁有限元模型,通过非线性时程分析得到桥梁桩基地震响应峰值。采用概率性地震需求分析方法,建立不同冲刷深度下桥梁桩基地震易损性模型,在地震易损性函数假设为对数正态分布函数的基础上,通过回归分析得到概率模型中的参数,进而得到不同冲刷深度下桥梁桩基在不同破坏状态所对应的地震易损性曲线,并分析冲刷深度对桩基破坏概率的影响。研究结果表明:随着冲刷深度的增加,桥梁桩基在地震作用下的破坏概率显著增加。  相似文献   

16.
以美国西部地区某斜交公路连续刚构桥为研究对象,研究其不等高墩易损性差异以及斜交角的改变对桥墩地震易损性的影响。考虑桥梁结构参数和地震动的不确定性,选取100条地震动,沿纵桥向输入,生成"结构-地震动"样本库,以地震动峰值加速度(PGA)为强度指标(IM),利用OpenSees软件对结构进行非线性时程分析得到桥墩动力响应,而后以桥墩曲率延性比衡量桥梁破坏状态,在确定桥墩损伤指标的基础上,采用可靠度理论得到各桥墩的地震易损性曲线,判断桥墩的损伤模式、损伤特点。在此基础上,改变桥梁斜交角度进行易损性分析,得到斜交角变化对桥墩地震易损性的影响。研究表明:该桥最矮墩发生损伤的概率大于其他桥墩,桥墩最先进入塑性的是墩顶和墩底区域;不同斜交角对桥墩的地震响应影响显著,各墩损伤破坏排序与斜交桥结构构造特点有关,同一排架墩的两侧墩柱易损性呈现与角度变化趋势相反的排列,损伤越严重,趋势越明显;对于此不等高的斜交刚构桥,最矮墩为其抗震薄弱环节,斜交角越大,越应该关注钝角处矮墩的损伤情况,并提高其设计标准,在进行斜交刚构桥抗震设计中应予以重视。  相似文献   

17.
This paper aims to assess the seismic fragility of vehicle-bridge-interaction (VBI) systems considering the effects of vehicle types, traffic conditions, and road surface qualities. A stochastic nonlinear mechanical model for the earthquake-VBI system is developed, and the fragility functions for the proposed VBI model are derived by considering the relevant probabilistic seismic demand parameters. On the basis of a typical four-span continuous prestressed concrete highway bridge in China, a complete numerical model for the VBI system is built considering multiple uncertainties from bridge and vehicle parameters, as well as the road surface qualities. A total of 120 real ground motion records with different combinations of magnitude-source-to-site distance (M-R) and earthquake intensity characteristics are selected. Meanwhile, 80 scenarios in terms of different combinations of vehicle types, vehicle speeds, and road surface irregularities are defined. In this context, 96,000 nonlinear time-history analyses are performed, and the developed fragility models are applied to the VBI system at both component and system levels. Results indicate that the fragilities of pier drift, bearing shear strain, and the overall VBI system increase with the increase of the vehicle weight or the decrease of the vehicle speed, while the vertical deck displacement is dominated by the vehicle weight. It is also found that the road surface quality has a negligible effect on both component and system fragilities.  相似文献   

18.
A simplified fragility analysis of fan type cable stayed bridges using Probabilistic Risk Analysis (PRA) procedure is presented for determining their failure probability under random ground motion. Seismic input to the bridge support is considered to be a risk consistent response spectrum which is obtained from a separate analysis. For the response analysis, the bridge deck is modeled as a beam supported on springs at different points. The stiffnesses of the springs are determined by a separate 2D static analysis of cable-tower-deck system. The analysis provides a coupled stiffness matrix for the spring system. A continuum method of analysis using dynamic stiffness is used to determine the dynamic properties of the bridges .The response of the bridge deck is obtained by the response spectrum method of analysis as applied to multidegree of freedom system which duly takes into account the quasi - static component of bridge deck vibration. The fragility analysis includes uncertainties arising due to the variation in ground motion, material property, modeling, method of analysis, ductility factor and damage concentration effect. Probability of failure of the bridge deck is determined by the First Order Second Moment (FOSM) method of reliability. A three span double plane symmetrical fan type cable stayed bridge of total span 689 m, is used as an illustrative example. The fragility curves for the bridge deck failure are obtained under a number of parametric variations. Some of the important conclusions of the study indicate that (i) not only vertical component but also the horizontal component of ground motion has considerable effect on the probability of failure; (ii) ground motion with no time lag between support excitations provides a smaller probability of failure as compared to ground motion with very large time lag between support excitation; and (iii) probability of failure may considerably increase for soft soil condition.  相似文献   

19.
Infrastructure owners and operators, or governmental agencies, need rapid screening tools to prioritize detailed risk assessment and retrofit resources allocation. This paper provides one such tool, for use by highway administrations, based on Bayesian belief network (BBN) and aimed at replacing so‐called generic or typological seismic fragility functions for reinforced concrete girder bridges. Resources for detailed assessments should be allocated to bridges with highest consequence of damage, for which site hazard, bridge fragility, and traffic data are needed. The proposed BBN based model is used to quantify seismic fragility of bridges based on data that can be obtained by visual inspection and engineering drawings. Results show that the predicted fragilities are of sufficient accuracy for establishing relative ranking and prioritizing. While the actual data and seismic hazard employed to train the network (establishing conditional probability tables) refer to the Italian bridge stock, the network structure and engineering judgment can easily be adopted for bridges in different geographical locations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
A framework for the generation of bridge-specific fragility curves utilizing the capabilities of machine learning and stripe-based approach is presented in this paper. The proposed methodology using random forests helps to generate or update fragility curves for a new set of input parameters with less computational effort and expensive resimulation. The methodology does not place any assumptions on the demand model of various components and helps to identify the relative importance of each uncertain variable in their seismic demand model. The methodology is demonstrated through the case study of a multispan concrete bridge class in California. Geometric, material, and structural uncertainties are accounted for in the generation of bridge numerical models and their fragility curves. It is also noted that the traditional lognormality assumption on the demand model leads to unrealistic fragility estimates. Fragility results obtained by the proposed methodology can be deployed in a risk assessment platform such as HAZUS for regional loss estimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号