首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The seismic performance of post‐tensioned steel connections for moment‐resisting frames was examined experimentally and analytically. Cyclic tests were conducted on three full‐scale subassemblies, which had two steel beams post‐tensioned to a concrete‐filled tube (CFT) column with high‐strength strands to provide recentring response. Reduced flange plates (RFPs) welded to the column and bolted to the beam flange were used to increase the dissipation of energy. Test results indicated that (1) the proposed buckling‐restrained RFP could dissipate energy in axial tension and compression, (2) the subassemblies could reach an interstorey drift of 4% without strength degradation, and (3) buckling of the beam occurred towards an interstorey drift of 5%, causing a loss of the strand force, the recentring response, and the moment capacity. A general‐purpose non‐linear finite element analysis program (ABAQUS) was used to perform a correlation study. The behaviour of the steel beam under both post‐tensioning and flexural loadings was compared to the test results and predictions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Moment connections in an existing steel building located in Kaohsiung, Taiwan were rehabilitated to satisfy seismic requirements based on the 2005 AISC seismic provisions. Construction of the building was ceased in 1996 due to financial difficulties and was recommenced in 2007 with enhanced connection performance. Steel moment connections in the existing building were constructed by groove welding the beam flanges and bolting the beam web to the column. Four moment connections, two from the existing steel building, were cyclically tested. A non‐rehabilitated moment connection with bolted web‐welded flanges was tested as a benchmark. Three moment connections rehabilitated by welding full‐depth side plates between the column face and beam flange inner side were tested to validate the rehabilitation performance. Test results revealed that (1) the non‐rehabilitated existing moment connection made by in situ welding process prior to 1996 had similar deformation capacity as contemporary connection specimens made by laboratory welding process, (2) all rehabilitated moment connections exhibited excellent performance, exceeding a 4% drift without fractures of beam flange groove‐welded joints, and (3) presence of the full‐depth side plates effectively reduced beam flange tensile strain near the column face by almost half compared with the non‐rehabilitated moment connection. The connection specimens were also modeled using the non‐linear finite element computer program ABAQUS to further confirm the effectiveness of the side plate in transferring beam moments to the column and to investigate potential sources of connection failure. A design procedure was made based on experimental and analytical studies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents an experimental investigation on the seismic behavior of H‐beam to circular tubular column connections stiffened by an outer ring diaphragm. An innovative three‐dimensional (3D) connection subassembly testing system was first described. Specimens representative of two‐dimensional (2D) interior columns, 3D interior and exterior columns in a steel building frame were then tested to failure under unidirectional or bidirectional cyclic loads. Various specimen parameters are used to evaluate their effects on connection behavior. Test results indicate significantly different failure modes for 2D and 3D weak panel connections, with panel shear buckling and local distortion of outer diaphragm occurring only for 3D connections. The weak beam connections unexceptionally exhibited final fracture at the junction between diaphragm and beam flange. In contrast with weak beam connections, weak panel connections demonstrated better seismic performance and ductility. As a result, a seismic design philosophy considering panel zone yielding before beam flexural yielding is proposed. Based on experiment observations, small diaphragm width and simplified fillet welding are found to be feasible especially for weak beam connections, improving architectural appearance and facilitating construction. Strength evaluations also suggest that current AIJ design provisions may be appropriate when applied to panel zones in 3D connections. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
本文进行了2种矩形钢管混凝土柱与钢梁连接节点——翼缘全螺栓(BFP)连接节点与外加强环(WFP-BW)连接节点在柱端低周反复荷载作用下的抗震性能试验,分析比较了这2类节点与焊接翼缘板(WFP)连接节点在不同轴压比下的滞回性能、强度与刚度退化、延性比与耗能比、破坏机理与破坏特征,得出了一些有参考价值的结论。  相似文献   

5.
Ten full-scale steel beam-to-column moment connections used in moment-resisting frames (MRFs) were tested to study the failure process, failure mode, strength and plastic rotation capacity. The specimens include one traditional welded flange-bolted web connection, one traditional fully welded connection, four beam flange strengthened connections, three beam flange weakened connections, and one through-diaphragm connection. The test results show that the connections with flange cover plates or with partly cut beam flanges satisfy the beam plastic rotation demand for ductile MRFs. From the measured stress profiles along the beam flange and beam web depth, the mechanics of brittle fracture at the end of the beam is discussed. Design recommendations for steel beam-to-column moment connections are proposed.  相似文献   

6.
Steel box columns are widely used in steel building structures in Taiwan due to their dual strong axes. To transfer the beam-end moment to the column, diaphragm plates of the same thickness and elevations as the beam flanges are usually welded inside the box column. The electro-slag welding (ESW) process is widely used to connect the diaphragms to the column flanges in Taiwan because of its convenience and efficiency. However, ESW may increase the hardness of the welds and heat-affected zones (HAZs), while reducing the Charpy-V notch strength in the HAZ. This situation can cause premature fracture of the diaphragm-to-column flange welds before a large plastic rotation is developed in the beam-to-box column joints. To quantify the critical eccentricity and the effectiveness of fracture prediction, this study uses fracture prediction models and finite element model (FEM) analysis to correlate the test results. In this study, two beam-to-box column connection subassembly tests are conducted with different loading protocols and ESW chamber shapes. To implement a fracture prediction model, the material parameters are established from circumferential notched tensile tests and FEM analysis. Test results indicate that the fracture instances can be predicted on the basis of the cumulative plastic deformation in the HAZs. Analytical results indicate that fracture instances and locations are sensitive to the relative locations of the ESW joints and beam flange. Tests also confirm that the possible fracture of the diaphragm-to-column flange joints can be mitigated by enlarging the chamber of the ESW joint.  相似文献   

7.
A series of E‐Defense shaking table tests are conducted on a large‐scale test specimen that represents a high‐rise steel building. Two types of connections featuring the connection details commonly used in 1970s, in the early days of high‐rise construction in Japan, are adopted: the field‐welded connection consisting of welded unreinforced flanges and a bolted web type, and the shop‐welded connection in which the flanges and web are all‐welded to the column flange in the shop. To examine the seismic capacity of a total of 24 beam‐to‐column connections of the specimen, particularly when it is subjected to long‐period ground motion characterized not so much by large amplitude as by very many cycles of repeated loading, the test specimen is shaken repeatedly until the connections fractured. The test results indicate that a few of the field‐welded connections fractured from the bottom flange weld boundary in a relatively small cumulative rotation primarily due to the difficulties in ensuring the welding and inspection performance in the actual field welding. The shop‐welded connections are able to sustain many cycles of plastic rotation, with an averaged cumulative plastic rotation of 0.86 rad. Two shop‐welded connections exhibit ductile fractures but only after experiencing many cycles. The presence of RC floor slabs promotes the strain concentration at the toe of the weld access hole in the bottom flange by at least twice compared with the case without the slab, which had resulted in a decrease in the cumulative plastic rotation by about 50%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
A new type of beam-to-column connection for steel moment flames, designated as a "self-centering connection," is studied. In this connection, bolted top-and-seat angles, and post-tensioned (PT) high-strength steel strands running along the beam are used. The PT strands tie the beam flanges on the column flange to resist moment and provide self-centering force. After an earthquake, the connections have zero deformation, and can be restored to their original status by simply replacing the angles. Four full-scale connections were tested under cyclic loading. The strength, energy-dissipation capacity, hysteresis curve, as well as angles and PT strands behavior of the connections are investigated. A general FEM analysis program called ABAQUS 6.9 is adopted to model the four test specimens. The numerical and test results match very well. Both the test and analysis results suggest that: (1) the columns and beams remain elastic while the angles sustain plastic deformations for energy dissipation when the rotation of the beam related to the column equals 0.05 tad, (2) the energy dissipation capacity is enhanced when the thickness of the angle is increased, and (3) the number of PT strands has a significant influence on the behavior of the connections, whereas the distance between the strands is not as important to the performance of the connection.  相似文献   

9.
An assessment of seismic demands and capacities of welded column splice (WCS) connections in steel moment frames is presented. For demand assessment, nonlinear dynamic analyses are conducted for two case‐study buildings, that is, a 4‐story and a 20‐story moment frame. Results from the nonlinear dynamic analyses are assessed through a probabilistic seismic demand analysis (PSDA) framework to characterize recurrence rates of longitudinal flange stress in these connections. The PSDA is applied in two contexts. First, in the context of WCS connections constructed prior to the M 6.7 1994 Northridge earthquake, the PSDA is combined with sophisticated finite element‐based fracture mechanics analysis to compute the mean annual frequencies of fracture in these connections. The pre‐Northridge WCS are especially critical because they feature partial joint penetration and brittle materials that compromise their resistance to fracture. The analysis indicates that the mean annual frequencies of fracture in these connections may be unacceptably high for both the 4‐story and the 20‐story frames. This warrants a serious and urgent consideration of retrofit strategies. These findings are attributed to the brittleness of the pre‐Northridge splices (as indicated by the fracture mechanics simulations), as well as the force‐controlled nature of these components, wherein low‐intensity ground motions contribute disproportionately to fracture risk, as evidenced by fracture risk disaggregation. Second, in the context of new construction, the PSDA provides meaningful stress magnitudes for design. Currently, WCS connections employ complete joint penetration welds with the intent to develop the smaller column flange in yielding. The PSDA conducted in this study suggests that this requirement may be too stringent because stress demands in the splices corresponding even to high return periods (e.g., 2475 years) are significantly lower (~40 ksi), as compared with the stress required to yield the column (~55 ksi). Limitations of the study are outlined. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
This paper first presents the force–deformation relationship of a post‐tensioned (PT) steel beam‐to‐column connection constructed with bolted web friction devices (FDs). This paper then describes the test program conducted in the National Center for Research on Earthquake Engineering, Taiwan, on four bolted FDs and four full‐scale PT beam‐to‐column moment connection subassemblies using the FDs. Tests confirm that (1) the hysteretic behavior of four bolted FDs is very stable, (2) the friction coefficient between the steel plate and the brass shim is about 0.34, (3) the proposed force–deformation relationships reasonably predict the experimental responses of the PT connections under cyclically increasing deformations up to a beam peak rotation of 0.05 rad, and (4) the decompression moments do not degrade as beam cyclic deformations increase. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents the results of a probabilistic evaluation of the seismic performance of 3D steel moment‐frame structures. Two types of framing system are considered: one‐way frames typical of construction in the United States and two‐way frames typical of construction in Japan. For each framing system, four types of beam–column connections are considered: pre‐Northridge welded‐flange bolted‐web, post‐Northridge welded‐flange welded‐web, reduced‐beam‐section, and bolted‐flange‐plate connections. A suite of earthquake ground motions is used to compute the annual probability of exceedence (APE) for a series of drift demand levels and for member plastic‐rotation capacity. Results are compared for the different framing systems and connection details. It is found that the two‐way frames, which have a larger initial stiffness and strength than the one‐way frames for the same beam and column volumes, have a smaller APE for small drift demands for which members exhibit no or minimal yielding, but have a larger APE for large drift demands for which members exhibit large plastic rotations. However, the one‐way frames, which typically comprise a few seismic frames with large‐sized members that have relatively small rotation capacities, may have a larger APE for member failure. The probabilistic approach presented in this study may be used to determine the most appropriate frame configuration to meet an owner's performance objectives. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Despite the inherently advantages of the box column, finding the best option for the I beam to the box column connection is the main challenge in using the box column as a structural member for special moment frames. In this paper, the seismic performance of unreinforced connection, weakened connection and strengthened connection was evaluated through a comprehensive experimental program. The seismic comparisons were fabricated by assessing the strength, ductility and energy dissipation in each configuration. Three full scale tests with several connections were carried out. All the specimens were subjected to cyclic loading and prior to failure by forming a plastic hinge in the beam, all the connections managed to reach an inelastic rotation of more than 6.0% rad. The experimental and analytical results showed that the seismic performance of the strengthened connection with flange and shear plates turned out to be the most effective in the beam to the box column connection. Moreover, the normalized stress distribution of the continuity plates revealed that the possibility of the weld fracture in unreinforced connection is more than other specimens.  相似文献   

13.
Ductile‐jointed connections, which generally require some form of supplementary energy dissipation to alleviate displacement response, typically employ mild steel energy dissipation devices. These devices run the risk of low‐cycle fatigue, are effective only for peak cycles that exceed prior displacements, are prone to buckling, and may require replacement following an earthquake. This study presents an experimental investigation employing an alternative to mild steel: a high force‐to‐volume (HF2V) class of damper‐based energy dissipation devices. Tests are performed on a near full‐scale beam–column joint subassembly utilizing externally mounted compact HF2V devices. Two configurations are considered: an exterior joint with two seismic beams and one gravity beam framing into a central column, and a corner joint with only one seismic beam and one gravity beam framing into a column. Quasi‐static tests are performed to column drifts up to 4%. The experiments validate the efficacy of the HF2V device concept, demonstrating good hysteretic energy dissipation, and minimal residual device force, allowing ready re‐centring of the joint. The devices dissipate energy consistently on every cycle without the deterioration observed in the yielding steel bar type of devices. The effectiveness of the HF2V devices on structural hysteretic behavior is noted to be sensitive to the relative stiffness of the anchoring elements, indicating that better efficiency would be obtained in an embedded design. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents the results of a multi‐level pseudo‐dynamic seismic test program that was performed to assess the performance of a full‐scale three‐bay, two‐storey steel–concrete composite moment‐resisting frame built with partially encased composite columns and partial‐strength beam‐to‐column joints. The system was designed to develop a ductile response in the joint components of beam‐to‐column joints including flexural yielding of beam end plates and shear yielding of the column web panel zone. The ground motion producing the damageability limit state interstorey drift caused minor damage while the ultimate limit state ground motion level entailed column web panel yielding, connection yielding and plastic hinging at the column base connections. The earthquake level chosen to approach the collapse limit state induced more damage and was accompanied by further column web panel yielding, connection yielding and inelastic phenomena at column base connections without local buckling. During the final quasi‐static cyclic test with stepwise increasing displacement–amplitudes up to an interstorey drift angle of 4.6%, the behaviour was ductile although cracking of beam‐to‐end‐plate welds was observed. Correlations with numerical simulations taking into account the inelastic cyclic response of beam‐to‐column and column base joints are also presented in the paper together. Inelastic static pushover and time history analysis procedures are used to estimate the structural behaviour and overstrength factors of the structural system under study. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Six cyclic tests were conducted on three full‐scale subassemblies to investigate the behavior of interior beam‐to‐column post‐tensioned (PT) connections. Strands were placed along each side of the steel beam web, passing through the steel column to provide precompression between the beams and a column. Top and bottom energy‐dissipating (ED) bars, passing through the column and welded to the beam, were used to increase the moment capacity and ED capacity of the connection. One of the subassemblies also had a composite concrete slab with discontinuity at the column centerline to eliminate restraint from the metal deck, reinforcement, and welded wire mesh. The objectives of this paper were to investigate the following: the durability of the connection by loading each specimen twice, the ED capacity of the ED bar, and the effects that the type of ED bar and type of composite slab have on the self‐centering behavior of the connection. The experimental results showed that: (1) the connection could sustain severe inelastic cyclic loading at least twice without strength degradation, (2) the ED capacity of the bar was much larger than that dissipated by a single AISC loading protocol, and (3) a specimen with a discontinuous composite slab, which opened freely at the centerline of the column, ensured the same self‐centering hysteretic behavior as the bare steel specimen. However, the decompression moment of the PT connection decreased significantly at each interstory drift, resulting in an early opening of a gap at the beam–column interface. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The seismic capacity of beam‐to‐column connections in steel high‐rise frames is a matter of concern, particularly when they are subjected to long‐period ground motions. A previous full‐scale shaking table test conducted at the E‐Defense National Research Institute for Earth Science and Disaster Prevention in Japan disclosed cracks and fractures in such beam‐to‐column connections. This paper examines the effects of three types of beam‐to‐column connection retrofit: supplemental welds, wing plates, and a haunch. Quasi‐static member tests and a series of shaking table tests applied to a full‐scale specimen are conducted to quantify the respective performances of the retrofit schemes. The performance of a total of 28 connections tested by the member and shaking table tests is evaluated together with that of an additional 12 unretrofitted connections tested in the previous test. When the supplemental welds are applied only to the shear tab to the web, the connection fractures at the same instant as the connection without retrofit. The corresponding cumulative plastic rotation is not improved. When the supplement welds are further applied to the web‐to‐column connection, strain concentration at the bottom flange, primarily promoted by the presence of the RC floor slab, is significantly reduced, and the cumulative plastic rotation capacity is increased to eight times that of the connection without retrofit. For the wing plate connection and haunch connection, the critical section is moved from the beam end to the beam cross‐section corresponding to the tip of the wing plates or haunch, resulting in an improvement of ductility by eight times that of the unretrofitted connection. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The aim of this work is to model beam‐column behavior in a computationally effective manner, revealing reliably the overall response of reinforced concrete members subjected to intensive seismic loading. In this respect, plasticity and damage are considered in the predominant longitudinal direction, allowing for fiber finite element modeling, while in addition the effect of inelastic buckling of longitudinal rebars, which becomes essential at later stages of intensive cyclic loading, is incorporated. Α smooth plasticity‐damage model is developed for concrete, accounting for unilateral compressive and tensile behavior, nonlinear unloading and crack closure phenomena. This is used to address concrete core crushing and spalling, which triggers the inelastic buckling of longitudinal rebars. For this reason, a uniaxial local stress‐strain constitutive relation for steel rebars is developed, which is based on a combined nonlinear kinematic and isotropic hardening law. The proposed constitutive model is validated on the basis of existing experimental data and the formulation of the buckling model for a single rebar is developed. The cross section of rebar is discretized into fibers, each one following the derived stress‐strain uniaxial law. The buckling curve is determined analytically, while equilibrium is imposed at the deformed configuration. The proposed models for concrete and rebars are embedded into a properly adjusted fiber beam‐column element of reinforced concrete members and the proposed formulation is verified with existing experimental data under intensive cyclic loading.  相似文献   

18.
SRC框格复合墙是在普通RC密肋复合墙基础上结合型钢混凝土概念而提出来的一种复合墙板,以轻钢龙骨代替框格内原有纵向受力钢筋,通过焊接或螺栓连接在梁柱轻钢龙骨节点处实现刚性或半刚性连接.在SRC框格复合墙模型试验基的础上,利用ANSYS程序对墙体受力过程进行了非线性有限元分析,提出了SRC框格复合墙抗剪承载力的实用计算公式,并对框格含钢率、轻钢强度等影响因素进行了有限元分析.研究结果表明:所提出的SRC框格复合墙抗剪承载力计算公式,与非线性有限元计算结果吻合较好,能够适应框格含钢率等不同因素变化的计算精度要求;提高肋梁中轻钢强度或含钢率可以有效提高墙体抗剪承载力,而不宜单独采用提高混凝土强度的方法.  相似文献   

19.
This paper presents the development, experimental testing, and numerical modelling of a new hybrid timber‐steel moment‐resisting connection that is designed to improve the seismic performance of mid‐rise heavy timber moment‐resisting frames (MRF). The connection detail incorporates specially designed replaceable steel links fastened to timber beams and columns using self‐tapping screws. Performance of the connection is verified through experimental testing of four 2/3 scale beam‐column connections. All 4 connection specimens met the acceptance criteria specified in the AISC 341‐10 provisions for steel moment frames and exhibit high strength, ductility, and energy dissipation capacity up to storey drifts exceeding 4%. All of the timber members and self‐tapping screw connections achieved their design objective, remaining entirely elastic throughout all tests and avoiding brittle modes of failure. To assess the global seismic performance of the newly developed connection in a mid‐rise building, a hybrid timber‐steel building using the proposed moment‐resisting connection is designed and modelled in OpenSees. To compare the seismic performance of the hybrid MRF with a conventional steel MRF, a prototype steel‐only building is also designed and modelled in OpenSees. The building models are subject to a suite of ground motions at design basis earthquake and maximum credible earthquake hazard levels using non‐linear time history analysis. Analytical results show that drifts and accelerations of the hybrid building are similar to a conventional steel building while the foundation forces are significantly reduced for the hybrid structure because of its lower seismic weight. The results of the experimental program and numerical analysis demonstrate the seismic performance of the proposed connection and the ability of the hybrid building to achieve comparable seismic performance to a conventional steel MRF.  相似文献   

20.
李国强  陈琛 《地震学刊》2011,(6):603-608
利用经实验验证过的ABAQUS有限元模型对轴力和弯矩共同作用下的约束钢柱进行了参数分析。以钢柱的屈曲温度和临界温度作为主要的评价指标,主要考虑了轴力荷载比、弯矩荷载比、轴向约束刚度比、转动约束刚度比、长细比和钢柱端部弯矩比等参数的影响,并且对不同参数之间的耦合性进行了分析。参数分析结果表明,轴向约束刚度的增大将会明显降低约束钢柱的屈曲温度,但是对其临界温度的影响相对较小;端部弯矩比对钢柱的临界温度影响很小;当钢柱的轴力荷载比和弯矩荷载比较小、轴向约束刚度比和长细比较大时,考虑屈曲后性能可以显著提高钢柱的抗火能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号