首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Stable isotope data on humid tropical hydrology are scarce and, at present, no such data exist for Borneo. Delta18O, δ2H and δ13C were analysed on 22 water samples from different parts of the Sungai (river) Niah basin (rain, cave drip, rainforest pool, tributary stream, river, estuary, sea) in north‐central Sarawak, Malaysian Borneo. This was done to improve understanding of the modern stable isotope systematics of the Sungai Niah basin, essential for the palaeoenvironmental interpretation of the Late Quaternary stable isotope proxies preserved in the Great Cave of Niah. The Niah hydrology data are put into a regional context using the meteoric water line for Southeast Asia, as derived from International Atomic Energy Agency/World Meteorological Organization isotopes in precipitation network data. Although the Niah hydrological data‐set is relatively small, spatial isotopic variability was found for the different subenvironments of the Sungai Niah basin. A progressive enrichment occurs towards the South China Sea (δ18O ?4·6‰; δ2H ?29·3‰; δ13C ?4·8‰) from the tributary stream (δ18O ?8·4‰; δ2H ?54·7‰; δ13C ?14·5‰) to up‐river (δ18O c. ?8‰; δ2H c. ?51‰; δ13C c. ?12‰) and down‐river values (δ18O c. ?7·5‰; δ2H c. ?45‰; δ13C c. ?11‰). This is thought to reflect differential evaporation and mixing of different components of the water cycle and a combination of depleted biogenic δ13C (plant respiration and decay) with enriched δ13C values (due to photosynthesis, atmospheric exchange, mixing with limestone and marine waters) downstream. Cave drip waters are relatively enriched in δ13C as compared to the surface waters. This may indicate rapid degassing of the cave drips as they enter the cave atmosphere. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
Kai‐Yuan Ke 《水文研究》2014,28(3):1409-1421
This research proposes a combination of SWAT and MODFLOW, MD‐SWAT‐MODFLOW, to address the multi‐aquifers condition in Choushui River alluvial fan, Taiwan. The natural recharge and unidentified pumping/recharge are separately estimated. The model identifies the monthly pumping/recharge rates in multi‐aquifers so that the daily streamflow can be simulated correctly. A multi‐aquifers condition means a subsurface formation composed of at least the unconfined aquifer, the confined aquifer, and an in‐between aquitard. In such a case, the variation of groundwater level is related to pumping/recharge activities in vertically adjacent aquifer and the river‐aquifer interaction. Both factors in turn affect the streamflow performance. Results show that MD‐SWAT‐MODFLOW performs better than SWAT alone in terms of simulated streamflow, especially during low flow period, when pumping/recharge rates are properly estimated. A sensitivity analysis of individual parameter suggests that the vertical leakance may be the most sensitive among all investigated MODFLOW parameters in terms of the estimated pumping/recharge among aquifers, and the Latin‐Hypercube‐One‐factor‐At‐a‐Time sensitivity analysis indicates that the hydraulic conductivity of channel is the most sensitive to the model performance. It also points out the necessity to simultaneously estimate pumping/recharge rates in multi‐aquifers. The estimated net pumping rate can be treated as a lower bound of the actual local pumping rate. As a whole, the model provides the spatio‐temporal groundwater use, which gives the authorities insights to manage groundwater resources. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号