首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
Hydrogeochemical investigations along an E–W transect in the middle Meghna basin show groundwater chemistry and redox condition vary considerably with the change in geology. Groundwater in the Holocene shallow (<150 m bgl) alluvial aquifer in western part of the transect is affected by high arsenic concentration (As > 10 μg/l) and salinity. On the other hand, groundwater from the Pliocene Dupi Tila sandy aquifer in the eastern part is fresh and low in As (<10 μg/l). The Holocene shallow aquifers are high in dissolved As, , Fe and dissolved organic carbon (DOC), but generally low in and . High concentrations (250–716 mg/l) together with high DOC concentrations (1.4–21.7 mg/l) in these aquifers reflect active sources of degradable natural organic matter that drives the biogeochemical process. There is generally de-coupling of As from other redox-sensitive elements. In contrast, the Pliocene aquifers are low in As, and DOC. Molar ratio of /H4SiO4 suggests that silicate weathering is dominant in the deeper Holocene aquifers and in the Pliocene aquifers. Molar ratios of Cl/ and Na+/Cl suggest mixing of relict seawater with the fresh water as the origin of groundwater salinity. Speciation calculations show that saturation indices for siderite and rhodochrosite vary significantly between the Holocene and Pliocene aquifers. Stable isotopes (δ2H and δ18O) in groundwater indicate rapid infiltration without significant effects of evaporation. The isotopic data also indicates groundwater recharge from monsoonal precipitation with some impact of altitude effect at the base of the Tripura Hills in the east. The results of the study clearly indicate geological control (i.e. change in lithofacies) on groundwater chemistry and distribution of redox-sensitive elements such as As along the transect.  相似文献   

2.
The hydroclimatology of the Peruvian Amazon–Andes basin (PAB) which surface corresponding to 7% of the Amazon basin is still poorly documented. We propose here an extended and original analysis of the temporal evolution of monthly rainfall, mean temperature (Tmean), maximum temperature (Tmax) and minimum temperature (Tmin) time series over two PABs (Huallaga and Ucayali) over the last 40 years. This analysis is based on a new and more complete database that includes 77 weather stations over the 1965–2007 period, and we focus our attention on both annual and seasonal meteorological time series. A positive significant trend in mean temperature of 0.09 °C per decade is detected over the region with similar values in the Andes and rainforest when considering average data. However, a high percentage of stations with significant Tmean positive trends are located over the Andes region. Finally, changes in the mean values occurred earlier in Tmax (during the 1970s) than in Tmin (during the 1980s). In the PAB, there is neither trend nor mean change in rainfall during the 1965–2007 period. However, annual, summer and autumn rainfall in the southern Andes presents an important interannual variability that is associated with the sea surface temperature in the tropical Atlantic Ocean while there are limited relationships between rainfall and El Niño‐Southern Oscillation (ENSO) events. On the contrary, the interannual temperature variability is mainly related to ENSO events. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The spatial and temporal variations of precipitation in the desert region of China (DRC) from 1951 to 2005 were investigated using a rotated empirical orthogonal function (REOF), the precipitation concentration index (PCI) and the Mann–Kendall trend test method (M‐K method). In addition, the association between variation patterns of precipitation and large‐scale circulation were also explored using the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data. The results indicated that the spatial pattern of precipitation was primarily the local climate effect significant type, with the first three EOFs explaining a total of 55·3% of the variance, and the large‐scale climate system effect type, which explained 9·8% of the variance. Prior to the 1970s, the East Asian summer monsoon was stronger, which resulted in abundant precipitation in the Inner Mongolia region. Conversely, the climate of the Xinjiang region was controlled by westerly circulation and had lower precipitation. However, this situation has been reversed since the 1980s. It is predicted that precipitation will decrease by 15–40 and 0–10 mm/year in the Inner Mongolia plateau and southern Xinjiang, respectively, whereas it will likely increase by 10–40 mm/year in northern Xinjiang. Additionally, 58–62% of the annual rainfall occurred during summer in the DRC, with precipitation increasing during spring and summer and decreasing in winter. The intra‐annual precipitation is becoming uniform, but the inter‐annual variability in precipitation has been increasing in the western portions of the DRC. The probability of precipitation during the study period increased by 30% and 22·2% in the extreme‐arid zones and arid zones, respectively. Conversely, the probability of precipitation during the study period decreased by 18·5% and 37·5% in the semi‐arid zones and semi‐wet zones, respectively. It is predicted that the northwest portion of the DRC will become warmer and wetter, while the central portion will become warmer and drier and the northeast portion will be subjected to drought. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
This study investigated spatial and temporal patterns of trends of the precipitation maxima (defined as the annual/seasonal maximum precipitation) in the Yangtze River basin for 1960–2005 using Mann–Kendall trend test, and explored association of changing patterns of the precipitation maxima with large-scale circulation using NCEP/NCAR reanalysis data. The research results indicate changes of precipitation maxima from relative stable patterns to the significant increasing/decreasing trend in the middle 1970s. With respect to annual variability, the rainy days are decreasing and precipitation intensity is increasing, and significant increasing trend of precipitation intensity was detected in the middle and lower Yangtze River basin. Number of rain days with daily precipitation exceeding 95th and 99th percentiles and related precipitation intensities are in increasing tendency in summer. Large-scale atmospheric circulation analysis indicates decreasing strength of East Asian summer monsoon during 1975–2005 as compared to that during 1961–1974 and increasing geopotential height in the north China, South China Sea and west Pacific regions, all of which combine to negatively impact the northward propagation of the vapor flux. This circulation pattern will be beneficial for the longer stay of the Meiyu front in the Yangtze River basin, leading to more precipitation in the middle and lower Yangtze River basin in summer months. The significant increasing summer precipitation intensity and changing frequency in the rain/no-rain days in the middle and lower Yangtze River basin have potential to result in higher occurrence probability of flood and drought hazards in the region.  相似文献   

5.
Gang Liu  Fuguo Tong  Bin Tian 《水文研究》2019,33(26):3378-3390
This work introduces water–air two‐phase flow into integrated surface–subsurface flow by simulating rainfall infiltration and run‐off production on a soil slope with the finite element method. The numerical model is formulated by partial differential equations for hydrostatic shallow flow and water–air two‐phase flow in the shallow subsurface. Finite element computing formats and solution strategies are presented to obtain a numerical solution for the coupled model. An unsaturated seepage flow process is first simulated by water–air two‐phase flow under the atmospheric pressure boundary condition to obtain the rainfall infiltration rate. Then, the rainfall infiltration rate is used as an input parameter to solve the surface run‐off equations and determine the value of the surface run‐off depth. In the next iteration, the pressure boundary condition of unsaturated seepage flow is adjusted by the surface run‐off depth. The coupling process is achieved by updating the rainfall infiltration rate and surface run‐off depth sequentially until the convergence criteria are reached in a time step. A well‐conducted surface run‐off experiment and traditional surface–subsurface model are used to validate the new model. Comparisons with the traditional surface–subsurface model show that the initiation time of surface run‐off calculated by the proposed model is earlier and that the water depth is larger, thus providing values that are closer to the experimental results.  相似文献   

6.
Dynamic relationships among rainfall patterns, soil water distribution, and plant growth are crucial for sustainable conservation of soil and water resources in water‐limited ecosystems. Spatial and temporal variation in deep soil water content at a watershed scale have not yet been characterized adequately due to the lack of deep soil water data. Deep soil–water storage (SWS) up to a depth of 5 m (n = 73) was measured at 19 sampling occasions at the LaoYeManQu watershed on the Chinese Loess Plateau (CLP). At a depth of 0–1.5 m, the annual mean SWS was highly correlated with rain intensity, and the correlation decreased with depth, but within the layers at 1.5–5.0 m, the changes in SWS indicated a lag between precipitation and the replenishment of soil water. Geostatistical parameters of SWS were also highly dependent on depth, and the mean SWS presented similar spatial structures in two adjacent layers. Temporal stability of SWS as indicated by mean relative difference, standard deviation of the relative difference (SDRD), and mean absolute bias error (MABE) was significantly weaker at the shallow than at deeper layers. Soil separates and organic carbon content controlled the spatial pattern of SWS at the watershed scale. One representative location (Site 57) was identified to estimate the mean SWS in the 1‐ to 5‐m layer of the watershed. Semivariograms of the SDRD and MABE were best fitted by an isotropic spherical model, and their spatial distributions were depth‐dependent. Both temporal stability and spatial variability of SWS increased over depth. This study is helpful for deep SWS estimation and sustainable management of soil and water on the CLP, and for other similar regions around the world.  相似文献   

7.
This paper presents preliminary results from the application of a transfer‐function rainfall–runoff model to ephemeral streams in Mediterranean Spain. Flow simulations have been conducted for two small catchments (Carraixet and Poyo basins), located in close proximity to one another yet with significantly different geological characteristics. Analysis of flow simulations for a number of high‐flow events has revealed the dominant influence of the rainfall on the catchment response, particularly for high‐rainfall events. Particular success has been attained modelling the highest magnitude events in both catchments and for all events in the faster responding (Poyo) catchment. In order to investigate the viability of the model for forecasting floods in ungauged catchments, additional investigations have been conducted by calibrating the model for one catchment (donor catchment) and then applying it to another (receptor catchment). The results indicate that this can be successful when either the donor catchment is a fast response catchment or when the model is calibrated using a high‐magnitude event in the donor catchment, providing that the modelled receptor catchment event is of a lower magnitude. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Recharge areas of the Guarani Aquifer System (GAS) are particularly sensitive and vulnerable to climate variability; therefore, the understanding of infiltration mechanisms for aquifer recharge and surface run‐off generation represent a relevant issue for water resources management in the southeastern portion of the Brazilian territory, particularly in the Jacaré‐Pepira River watershed. The main purpose of this study is to understand the interactions between precipitation, surface water, and groundwater using stable isotopes during the strong 2014–2016 El Niño Southern Oscillation event. The large variation in the isotopic composition of precipitation (from ?9.26‰ to +0.02‰ for δ18O and from ?63.3‰ to +17.6‰ for δ2H), mainly associated with regional climatic features, was not reflected in the isotopic composition of surface water (from ?7.84‰ to ?5.83‰ for δ18O and from ?49.7‰ to +33.6‰ for δ2H), mainly due to the monthly sampling frequency, and groundwater (from ?7.04‰ to ?7.76‰ for δ18O and from ?49.5‰ to ?44.7‰ for δ2H), which exhibited less variation throughout the year. However, variations in deuterium excess (d‐excess) in groundwater and surface water suggest the occurrence of strong secondary evaporation during the infiltration process, corresponding with groundwater level recovery. Similar isotopic composition in groundwater and surface water, as well as the same temporal variations in d‐excess and line‐conditioned excess denote the strong connectivity between these two reservoirs during baseflow recession periods. Isotopic mass balance modelling and hydrograph separation estimate that the groundwater contribution varied between 70% and 80%, however, during peak flows, the isotopic mass balance tends to overestimate the groundwater contribution when compared with the other hydrograph separation methods. Our findings indicate that the application of isotopic mass balance methods for ungauged rivers draining large groundwater reservoirs, such as the GAS outcrop, could provide a powerful tool for hydrological studies in the future, helping in the identification of flow contributions to river discharge draining these areas.  相似文献   

9.
Spatial and seasonal variations in CO2 and CH4 concentrations in streamwater and adjacent soils were studied at three sites on Brocky Burn, a headwater stream draining a peatland catchment in upland Britain. Concentrations of both gases in the soil atmosphere were significantly higher in peat and riparian soils than in mineral soils. Peat and riparian soil CO2 concentrations varied seasonally, showing a positive correlation with air and soil temperature. Streamwater CO2 concentrations at the upper sampling site, which mostly drained deep peats, varied from 2·8 to 9·8 mg l?1 (2·5 to 11·9 times atmospheric saturation) and decreased markedly downstream. Temperature‐related seasonal variations in peat and riparian soil CO2 were reflected in the stream at the upper site, where 77% of biweekly variation was explained by an autoregressive model based on: (i) a negative log‐linear relationship with stream flow; (ii) a positive linear relationship with soil CO2 concentrations in the shallow riparian wells; and (iii) a negative linear relationship with soil CO2 concentrations in the shallow peat wells, with a significant 2‐week lag term. These relationships changed markedly downstream, with an apparent decrease in the soil–stream linkage and a switch to a positive relationship between stream flow and stream CO2. Streamwater CH4 concentrations also declined sharply downstream, but were much lower (<0·01 to 0·12 mg l?1) than those of CO2 and showed no seasonal variation, nor any relationship with soil atmospheric CH4 concentrations. However, stream CH4 was significantly correlated with stream flow at the upper site, which explained 57% of biweekly variations in dissolved concentrations. We conclude that stream CO2 can be a useful integrative measure of whole catchment respiration, but only at sites where the soil–stream linkage is strong. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
11.
Hortonian runoff was measured from plots with lengths of 1·25 and 12 m, and at watershed level for rainstorms during the 1996 rainy season in cental Côte d'Ivoire, Africa. A clear reduction in runoff coefficients was found with increasing slope lengths, giving order of magnitude differences between runoff measurements at point level (1 m2: 30–50% of total rain) and watershed level (130 ha: 4% of total rain). Runoff reduction from 1·25 and 12 m slopes was reproduced for each major runoff‐producing rainstorm at two different sets of plots, but the reduction was erratic for rainfall events which produced little runoff. In addition, runoff reduction varied wildly from one rainstorm to the next. In the analysis, we show that the spatial variability of runoff parameters causes the erratic behaviour during rainstorms with little runoff. During the more important, larger runoff‐producing events, which give 78% of total runoff, the temporal dynamics of the rainfall–runoff process determine the reduction of runoff coefficients from longer slopes. A simple infiltration/runoff model was used to simulate the field results, thereby confirming the importance of rainfall dynamics as an explanatory factor for measured reduction of runoff coefficients. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
Understanding and representing hydrologic fluxes in the urban environment is challenging because of fine scale land cover heterogeneity and lack of coherent scaling relationships. Here, the impact of urban land cover heterogeneity, scale, and configuration on the hydrologic and surface energy budget (SEB) is assessed using an integrated, coupled land surface/hydrologic model at high spatial resolutions. Archetypes of urban land cover are simulated at varying resolutions using both the National Land Cover Database (NLCD; 30 m) and an ultra high‐resolution land cover dataset (0.6 m). The analysis shows that the impact of highly organized, yet heterogeneous, land cover typical of the urban domain can cause large variations in hydrologic and energy fluxes within areas of similar land cover. The lateral flow processes that occur within each simulation create variations in overland flow of up to ±200% and ±4% in evapotranspiration. The impact on the SEB is smaller and largely restricted to the wet season for our semi‐arid forcing scenarios. Finally, we find that this seasonal bias, predominantly caused by lateral flow, is displaced by a systematic diurnal bias at coarser resolutions caused by deficiencies in the method used for scaling of land surface and hydrologic parameters. As a result of this research, we have produced land surface parameters for the widely used NLCD urban land cover types. This work illustrates the impact of processes that remain unrepresented in traditional high‐resolutions land surface models and how they may affect results and uncertainty in modeling of local water resources and climate. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
High‐elevation tropical grassland systems, called Páramo, provide essential ecosystem services such as water storage and supply for surrounding and lowland areas. Páramo systems are threatened by climate and land use changes. Rainfall generation processes and moisture transport pathways influencing precipitation in the Páramo are poorly understood but needed to estimate the impact of these changes, particularly during El Niño conditions, which largely affect hydrometeorological conditions in tropical regions. To fill this knowledge gap, we present a stable isotope analysis of rainfall samples collected on a daily to weekly basis between January 2015 and May 2016 during the strongest El Niño event recorded in history (2014–2016) in two Páramo regions of Central America (Chirripó, Costa Rica) and the northern Andes (Cajas, south Ecuador). Isotopic compositions were used to identify how rainfall generation processes (convective and orographic) change seasonally at each study site. Hybrid Single Particle Lagrangian Integrated Trajectory model (HYSPLIT) air mass back trajectory analysis was used to identify preferential moisture transport pathways to each Páramo site. Our results show the strong influence of north‐east trade winds to transport moisture from the Caribbean Sea to Chirripó and the South American low‐level jet to transport moisture from the Amazon forest to Cajas. These moisture contributions were also related to the formation of convective rainfall associated with the passage of the Intertropical Convergence Zone over Costa Rica and Ecuador during the wetter seasons and to orographic precipitation during the transition and drier seasons. Our findings provide essential baseline information for further research applications of water stable isotopes as tracers of rainfall generation processes and transport in the Páramo and other montane ecosystems in the tropics.  相似文献   

14.
The relationship between El Niño–Southern Oscillation (ENSO) events versus precipitation anomalies, and the response of seasonal precipitation to El Niño and La Niña events were investigated for 30 basins that represent a range of climatic types throughout South‐east Asia and the Pacific region. The teleconnection between ENSO and the hydroclimate is tested using both parametric and non‐parametric approaches, and the lag correlations between precipitation anomalies versus the Southern Oscillation Index (SOI) several months earlier, as well as the coherence between SOI and precipitation anomalies are estimated. The analysis shows that dry conditions tend to be associated with El Niño in the southern zone, and part of the middle zone in the study area. The link between precipitation anomalies and ENSO is statistically significant in the southern zone and part of the middle zone of the study area, but significant correlation was not observed in the northern zone. Patterns of precipitation response may differ widely among basins, and even the response of a given river basin to individual ENSO events also may be changeable. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Knowledge and understanding of shore platform erosion and tidal notch development in the tropics and subtropics relies mainly on short‐term studies conducted on recently deposited carbonate rocks, predominantly Holocene and Quaternary reef limestones and aeolianites. This paper presents erosion rates, measured over a 10 year period on notches and platforms developed on the Permian, Ratburi limestone at Phang Nga Bay, Thailand. In so doing it contributes to informing a particular knowledge gap in our understanding of the erosion dynamics of shore platform and tidal notch development in the tropics and subtropics – notch erosion rates on relatively hard, ancient limestones measured directly on the rock surface using a micro‐erosion meter (MEM) over time periods of a decade or more. The average intertidal erosion rate of 0.231 mm/yr is lower than erosion rates measured over 2–3 years on recent, weaker carbonate rocks. Average erosion rates at Phang Nga vary according to location and site and are, in rank order from highest to lowest: Mid‐platform (0.324 mm/yr) > Notch floor (0.289 mm/yr) > Rear notch wall (0.228 mm/yr) > Lower platform (0.140 mm/yr) > Notch roof (0.107 mm/yr) and Supratidal (0.095 mm/yr). The micro‐relief of the eroding rock surfaces in each of these positions exhibits marked differences that are seemingly associated with differences in dominant physical and bio‐erosion processes. The results begin to help inform knowledge of longer term shore platform erosion dynamics, models of marine notch development and have implications for the use of marine notches as indicators of changes in sea level and the duration of past sea levels. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号