首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Apart from some special cases, calculating the dynamic stiffness matrix of foundations on a layered half-space, especially for embedded foundations, is computationally expensive. An efficient method for two-dimensional foundations in a horizontally layered soil media is presented in this paper. This method is based on indirect boundary element methods and uses discrete wave number solution methods for calculating Green's functions for displacements and analytical methods for the integrations over the boundary. For surface foundations, the present method applies at all frequencies. For embedded foundations or for constructing energy transmitting boundaries, because the free-field part is modelled by boundary elements and the excavated part is modelled by finite elements, the present method applies only at low frequencies for the spring coefficients (the real parts of the dynamic stiffness matrix) but applies at all frequencies for the damping coefficients (the imaginary part of the dynamic stiffness matrix) for undamped sites. The novelty of the method can be used for three-dimensional foundations. © 1997 by John Wiley & Sons, Ltd.  相似文献   

2.
The foundation on deformable soil, which, in general, radiates energy, can be represented in structural dynamics as a simple spring-dashpot-mass model with frequency-independent coefficients. For the two limiting cases of a site, the homogeneous half-space and the homogeneous layer fixed at its base, the coefficients are specified in tables for varying parameters such as ratios of dimensions and Poisson's ratio. Rigid foundations on the surface and with embedment are considered for all translational and rotational motions. In a practical analysis of soil–structure interaction this dynamic model of the foundation is coupled directly to that of the structure, whereby a standard dynamics program is used. © 1997 by John Wiley & Sons, Ltd.  相似文献   

3.
An integral equation for the representation of the response of a structure impinged by an incident wave field including soil–structure interaction is proposed. It requires the knowledge of the fundamental solution for the overall soil–structure domain when a unit load is applied to the structure. This fundamental solution is obtained by means of a substructuring technique and boundary integral equations using the Green tensors for homogeneous or horizontally stratified soil media. The effects of a non‐stationary modulated random incident field are addressed in terms of the instantaneous power spectral density of the structural response of interest for a given coherency function of the free field. Several applications of the proposed procedure are presented. The first one considers kinematic interaction of a rigid circular foundation and is used to validate the numerical implementation. The second one considers a complex structure on a stiff stratified soil and the last one considers the pounding effect between two adjacent, identical structures resting on a thin soft soil layer. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
A combined boundary and finite element method is developed and applied to study the dynamic behaviour of a system of flexible surface footings of arbitrary shape bearing on an elastic half-space. The proposed method employs the frequency domain Green's function for the surface of the elastic half-space while a layered plate model is used for the flexible footing. Both the footing and the surface of the half-space are discretized by 8-noded quadratical isoparametric elements, and the meshes are identical. Thus, the compatibility of displacements and equilibrium of forces between the footing and the half-space are fully satisfied. This model provides a better approximation of the stress concentration at edges of relatively rigid footings. Numerical examples demonstrating the effects due to the excitation frequency, the relative rigidity and the distance between footings on the interaction between two square footings are presented. The external forces can be either harmonic or transient.  相似文献   

5.
The scaled boundary finite‐element method is a powerful semi‐analytical computational procedure to calculate the dynamic stiffness of the unbounded soil at the structure–soil interface. This permits the analysis of dynamic soil–structure interaction using the substructure method. The response in the neighbouring soil can also be determined analytically. The method is extended to calculate numerically the response throughout the unbounded soil including the far field. The three‐dimensional vector‐wave equation of elasto‐dynamics is addressed. The radiation condition at infinity is satisfied exactly. By solving an eigenvalue problem, the high‐frequency limit of the dynamic stiffness is constructed to be positive definite. However, a direct determination using impedances is also possible. Solving two first‐order ordinary differential equations numerically permits the radiation condition and the boundary condition of the structure–soil interface to be satisfied sequentially, leading to the displacements in the unbounded soil. A generalization to viscoelastic material using the correspondence principle is straightforward. Alternatively, the displacements can also be calculated analytically in the far field. Good agreement of displacements along the free surface and below a prism foundation embedded in a half‐space with the results of the boundary‐element method is observed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
An efficient discrete model for predicting the dynamic through-the-soil interaction between adjacent rigid, surface foundations supported by a homogeneous, isotropic and linear elastic half-space is presented. The model utilizes frequency-independent springs and dashpots, and the foundation mass, for the consideration of soil–foundation interaction. The through-the-soil coupling of the foundations is attained by frequency-independent stiffness and damping functions, developed in this work, that interconnect the degrees of freedom of the entire system of foundations. The dynamic analysis of the resulting coupled system is performed in the time domain and includes the time lagging effects of coupled dynamic input due to wave propagation using an appropriate modification of the Wilson-θ method. The basic foundation interaction model is also extended to the evaluation of coupled building-foundation systems. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
A study of the effects of dam–foundation interaction on the response of earth dams to obliquely incident P and SV waves is presented. Emphasis is placed on the effects of the foundation flexibility and the spatial variability of the ground motion. The study is based on a rigorous hybrid numerical formulation that combines the efficiency and versatility of the Finite Element Method (FEM) and the ability of Boundary Element Method (BEM) to account for the radiation conditions at the far field. The developed hybrid method is very powerful and can be used efficiently to obtain accurate solutions of problems of complex geometry, material heterogeneity and, for time-domain analyses, material nonlinearity. The 2-D frequency-domain formulation is used here to investigate the response of infinitely long earth dams to obliquely incident P and SV waves. By accounting rigorously for the energy radiated back into the half-space, the study demonstrates the dramatic effect of the flexibility of the foundation rock in reducing the overall response of the dam. The effects of the spatial variability of the ground motion for P and SV waves travelling across the width of the dam are also important, but somewhat less pronounced than those of the foundation flexibility.  相似文献   

8.
This paper introduces a simple method to consider the effects of inertial soil–structure interaction (SSI) on the seismic demands of a yielding single‐degree‐of‐freedom structure. This involves idealizing the yielding soil–structure system as an effective substitute oscillator having a modified period, damping ratio, and ductility. A parametric study is conducted to obtain the ratio between the displacement ductility demand of a flexible‐base system and that of the corresponding fixed‐base system. It is shown that while additional foundation damping can reduce the overall response, the effects of SSI may also increase the ductility demand of some structures, mostly being ductile and having large structural aspect ratio, up to 15%. Finally, a design procedure is provided for incorporation of the SSI effects on structural response. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents an extensive investigation into the influence of key mechanical and geometrical parameters on horizontal impedance of square foundations resting on or embedded in a two-layer soil deposit. The parameters investigated are the ratio of shear-wave velocities, the thickness of the top layer, the depth of embedment and the degree of contact between the footing-sidewall with backfill-soil. The results are presented in the form of simple and versatile dimensionless graphs, which should prove to be useful in understanding the steady-state harmonic response of square foundations in layered soils due to horizontal excitation. The investigation was conducted using a rigorous boundary element algorithm incorporating isoparametric boundary elements. Higher order quadratic elements were used since they can model the wavy nature of the dynamic problem investigated more accurately.  相似文献   

10.
The influence of inclined piles on the dynamic response of deep foundations and superstructures is still not well understood and needs further research. For this reason, impedance functions of deep foundations with inclined piles, obtained numerically from a boundary element–finite element coupling model, are provided in this paper. More precisely, vertical, horizontal, rocking and horizontal–rocking crossed dynamic stiffness and damping functions of single inclined piles and 2 × 2 and 3 × 3 pile groups with battered elements are presented in a set of plots. The soil is assumed to be a homogeneous viscoelastic isotropic half‐space and the piles are modeled as elastic compressible Euler–Bernoulli beams. The results for different pile group configurations, pile–soil stiffness ratios and rake angles are presented. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
It is important to estimate the influence of layered soil in soil–structure interaction analyses. Although a great number of investigations have been carried out on this subject, there are very few practical methods that do not require complex calculations. In this paper, a simple and practical method for estimating the horizontal dynamic stiffness of a rigid foundation on the surface of multi‐layered soil is proposed. In this method, waves propagating in the soil are traced using the conception of the cone model, and the impulse response function can be calculated directly and easily in the time domain with a good degree of accuracy. The characteristics of the impedance, that is the transformed value to the frequency domain of the obtained impulse response, are studied using two‐ to four‐layered soil models. The cause of the fluctuation of impedance is expressed clearly from its relation to reflected waves from the lower layer boundary in the model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
The influence of stochastic kinematic interaction (SKI) on structural response is investigated in this paper. The SKI is evaluated through a computational model based on the boundary element method (BEM) formulated in the frequency domain. The singular integrals required in the computation of BEM are evaluated in a closed form. It is assumed that the foundation input motion (FIM) is the result of the superposition of many plane, stationary, correlated stochastic SH‐, P‐ and SV‐waves travelling within a homogeneous viscoelastic soil at different angles. The results obtained indicate that the effect of SKI on the foundation response is qualitatively similar to that of wave passage. Both effects involve a reduction of translational components of the response at intermediate and high frequencies and creation of a rotational response component at intermediate frequencies, which decreases at high frequencies. While, it is found that the SKI decreases the maximum response of structures built on embedded rigid strip foundations excited by SH‐ and P‐waves, it increases the maximum response for SV‐waves, except when the natural frequency of the structure is less than 0.5 Hz and for short structures excited by shallowly incident SV‐waves. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
To calculate the dynamic-stiffness matrix at the structure–medium interface of an unbounded medium for the range of frequencies of interest, the consistent infinitesimal finite-element cell method based on finite elements is developed. The derivation makes use of similarity and finite-element assemblage, yielding a non-linear first-order ordinary differential equation in frequency. The asymptotic expansion for high frequency yields the boundary condition satisfying the radiation condition. In an application only the structure–medium interface is discretized resulting in a reduction of the spatial dimension by one. The boundary condition on the free surface is satisfied automatically. The consistent infinitesimal finite-element cell method is exact in the radial direction and converges to the exact solution in the finite-element sense in the circumferential directions. Excellent accuracy results.  相似文献   

14.
A coupling model of Finite Elements (FEs), Boundary Elements (BEs), Infinite Elements (IEs) and Infinite Boundary Elements (IBEs) is presented for analysis of soil–structure interaction (SSI). The radiation effects of the infinite layered soil are taken into account by FE–IE coupling, while the underlying bed rock half-space is discretized into BE–IBE coupling whereby the non-horizontal bed rock surface can be accounted for. Displacement compatabilities are satisfied for all types of aforementioned elements. The equivalent linear approach is employed for approximation of nonlinearity of the near field soil. This model has some advantages over the current SSI program in considering the bed rock half-space and non-vertical wave incidence from the far field. Examples of verification demonstrate the applicability and accuracy of the method when compared with the FLUSH program. Finally, the effects of the relative modulus ratio Er/Es of rock and soil and the incident angles of non-vertical waves on the responses of the structure and the soil are examined. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
A three‐dimensional transmitting boundary is formulated in the Cartesian co‐ordinate system. It is developed for the dynamic soil–structure interaction problems of arbitrary shape foundations in laterally heterogeneous strata overlying rigid bedrock. Dynamics of a rectangular rigid surface foundation on a homogeneous stratum is analysed by a hybrid approach in which the finite region including foundation is modelled by the conventional finite element method and the surrounding infinite region by the newly developed transmitting boundary. To demonstrate its strength, the present method is applied to a rectangular foundation in a horizontally heterogeneous ground consisting of two distinct regions divided by and welded along a vertical plane. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
The investigation reported in this paper studies the effects of soil–structure interaction (SSI) on the seismic response and damage of building–foundation systems. A simple structural model is used for conducting a parametric study using a typical record obtained in the soft soil area of Mexico City during the 1985 earthquake. Peak response parameters chosen for this study were the roof displacement relative to the base and the hysteretic energy dissipated by the simple structural model. A damage parameter is also evaluated for investigating the SSI effects on the seismic damage of buildings. The results indicate that in most cases of inelastic response, SSI effects can be evaluated considering the rigid‐base case and the SSI period. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
The paper is aimed at investigating the effect of foundation rigidity on dynamic stiffness for two circular foundations on a viscoelastic medium. To generate the dynamic stiffness, a substructure technique is employed. For the substructure of a viscoelastic medium, the solution for wave motion reported in Reference 11 is used. For the substructures of two flexible foundations, classical plate theory with the inertial force neglected is employed to find the displacement fields of the foundation plates subjected to the interaction stresses. Then, the continuity condition for all the substructures is imposed implicitly by using the variational principle; then with the help of the reciprocal theorem the dynamic stiffness for the two flexible foundations can be obtained. For the numerical study, the boundary condition at the rims of both foundation plates is assumed to be a hinge connection to superstructures. Some numerical investigations are performed and the effect of foundation rigidity on dynamic stiffness is examined. Some discussions and conclusions are also made.  相似文献   

18.
Transfer functions represent the ratio in the frequency domain of one ground motion to another. Transfer functions are a convenient way by which the variation of earthquake ground motions from the free-field to the foundation level of a structure can be quantified for studies of kinematic soil–structure interaction. Aside from ordinary filtering and baseline correction, substantial signal processing occurs in the computation of transfer functions, including windowing (to extract the S-wave portion of the record) and smoothing (to reduce scatter that can obscure physically significant trends). Utilizing several signal processing techniques on a sample data set, we find that detailed features of the transfer function ordinates (i.e., frequency-to-frequency variations) can be affected by the degree of smoothing and by the window length (e.g., whole record versus S-window). However, the overall shape and magnitude of the transfer functions are relatively consistent. More important than signal processing details is the frequency bandwidth over which the results are considered valid, because significant portions of the spectrum can be dominated by stochastic processes with little physical meaning. We argue that transfer functions should be interpreted over those portions of the spectrum having minimal noise impact, as indicated by high coherence.  相似文献   

19.
A boundary element formulation having discontinuous curved quadratic elements is presented for 2D elastodynamics. The first fundamental solution for static case is subtracted from and added to the first fundamental solution for dynamic case. As both kernels have the same order of singularity, the integral involving the regular expression arising from the subtraction can be calculated. matrix is calculated by employing the well-known rigid-body motion technique. The formulation is performed in Fourier transform space. Based on the formulation presented in this study, a general purpose computer program is developed for elastic or visco-elastic 2D elastodynamic problems. The program performs the analysis in Fourier transform space and can also be used for static analysis by assigning a very small value close to zero for the frequency. The results of some elastodynamic and dynamic soil–structure interaction problems obtained using the present study are compared with those in the literature.  相似文献   

20.
In this paper an efficient methodology applying modal analysis is developed to assess systematically the combined soil–structure interaction and torsional coupling effects on asymmetric buildings. This method is implemented in the frequency domain to accurately incorporate the frequency‐dependent foundation impedance functions. For extensively extracting the soil–structure interaction effects, a diagonal transfer matrix in the modal space is derived. A comprehensive investigation of asymmetric building–soil interaction can then be conveniently conducted by examining various types of response quantities. Results of parametric study show that the increasing height‐to‐base ratio of a structure generally amplifies its translational and torsional responses. Moreover, both the translational and torsional responses are reduced for the case where the two resonant frequencies are well separated and this reduction is enhanced with the decreasing values of the relative soil stiffness and the height‐to‐base ratio. The most noteworthy phenomenon may be the fact that the SSI effects can enlarge the translational response if the structure is slender and the two resonant frequencies are very close. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号