首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Meltwaters collected from the proglacial stream escaping from Zongo Glacier (2·1 km2), Bolivia (16°S), have been monitored in order to analyse the internal drainage system of an Andean glacier. Electrical conductivity has been measured sporadically between February 1995 and March 1996, during 16 one-day field surveys, under various meteorological conditions in summer and winter. The mixing-model technique based on the electrical conductivity is used for a quantitative separation of discharge which is derived from continuous water level registration. Tracer experiments (mainly uranine dye and NaCl salt) have been carried out from March to June 1997 to obtain information about the internal drainage system. In the tropical Andes, accumulation only occurs in austral summer, whereas ablation occurs throughout the year and is higher during the accumulation season, between November and March. The assumptions involved in the use of mixing models for analysis of glacial drainage structure are applicable for tropical glaciers because glacial conduits do not suffer complete closure, and are permanently supplied by meltwaters, even in wintertime. Two components of discharge are separated: an englacial flow originating from surface meltwater which is routed without chemical enrichment, and offering low electrical conductivity; and a subglacial one routed in contact with bedrock or sediments showing high ionic concentrations. Electrical conductivity of meltwater varies diurnally, inversely to discharge fluctuations. According to this behaviour, total discharge is mainly formed by the englacial component. The drainage structures for englacial and subglacial flow have to be widely interconnected, as indicated by diurnal variations of the subglacial discharge. Comparison of hydrograph separation based on conductivity and on 18O isotope confirms that the subglacial flow is influenced by surface melting. A hydrograph separation of the subglacial flow is proposed, between a diurnal variable component, composed of water coming from the englacial network, and a base flow, which may vary seasonally. The dye tracing experiments confirm the drainage complexity of Zongo Glacier and demonstrate the interest of identifying three main drainage components. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
Proglacial suspended sediment transport was monitored at Haut Glacier d'Arolla, Switzerland, during the 1998 melt season to investigate the mechanisms of basal sediment evacuation by subglacial meltwater. Sub‐seasonal changes in relationships between suspended sediment transport and discharge demonstrate that the structure and hydraulics of the subglacial drainage system critically influenced how basal sediment was accessed and entrained. Under hydraulically inefficient subglacial drainage at the start of the melt season, sediment availability was generally high but sediment transport increased relatively slowly with discharge. Later in the melt season, sediment transport increased more rapidly with discharge as subglacial meltwater became confined to a spatially limited network of channels following removal of the seasonal snowpack from the ablation area. Flow capacity is inferred to have increased more rapidly with discharge within subglacial channels because rapid changes in discharge during highly peaked diurnal runoff cycles are likely to have been accommodated largely by changes in flow velocity. Basal sediment availability declined during channelization but increased throughout the remainder of the monitored period, resulting in very efficient basal sediment evacuation over the peak of the melt season. Increased basal sediment availability during the summer appears to have been linked to high diurnal water pressure variation within subglacial channels inferred from the strong increase in flow velocity with discharge. Basal sediment availability therefore appears likely to have been increased by (1) enhanced local ice‐bed separation leading to extra‐channel flow excursions and[sol ]or (2) the deformation of basal sediment towards low‐pressure channels due to a strong diurnally reversing hydraulic gradient between channels and areas of hydraulically less‐efficient drainage. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
We investigate the spatial and temporal englacial and subglacial processes associated with a temperate glacier resting on a deformable bed using the unique Glacsweb wireless in situ probes (embedded in the ice and the till) combined with other techniques [including ground penetrating radar (GPR) and borehole analysis]. During the melt season (spring, summer and autumn), high surface melt leads to high water pressures in the englacial and subglacial environment. Winter is characterized by no surface melting on most days (‘base’) apart from a series of positive degree days. Once winter begins, a diurnal water pressure cycle is established in the ice and at the ice/sediment interface, with direct meltwater inputs from the positive degree days and a secondary slower englacial pathway with a five day lag. This direct surface melt also drives water pressure changes in the till. Till deformation occurred throughout the year, with the winter rate approximately 60% that of the melt season. We were able to show the bed comprised patches of till with different strengths, and were able to estimate their size, relative percentage and temporal stability. We show that the melt season is characterized by a high pressure distributed system, and winter by a low pressure channelized system. We contrast this with studies from Greenland (overlying rigid bedrock), where the opposite was found. We argue our results are typical of soft bedded glaciers with low englacial water content, and suggest this type of glacier can rapidly respond to surface-driven melt. Based on theoretical and field results we suggest that the subglacial hydrology comprises a melt season distributed system dominated by wide anastomosing broad flat channels and thin water sheets, which may become more channelized in winter, and more responsive to changes in meltwater inputs. © 2019 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

4.
C. R. Fenn  B. Gomez 《水文研究》1989,3(2):123-135
Hourly, at-a-point samples of suspended sediment taken from the outflow stream of Glacier de Tsidjiore Nouve, Switzerland, over a 60 day sampling period (n = 1440) are shown to be dominantly composed of silt-sized particles. Particle size, SEM, and XRD analyses indicate a subglacial provenance for the suspended sediment. Temporal variations in particle size and sorting correspond poorly to fluctuations in water discharge, being dominated by erratic hour-to-hour fluctuations and clockwise hysteresis over diurnal flow events. Examination of grain size and sorting dynamics over snowmelt- and icemelt-related ablation events, during precipitation events, and during glacier drainage events enables some inferences to be drawn regarding sediment source areas and supply regimes. We conclude that although the bulk of the suspended sediment in the proglacial stream of Glacier de Tsidjiore Nouve is derived directly from subglacial sources (with occasional contributions from the valley train during rapid snowmelt and heavy rainfall periods), a portion of the suspended load undergoes intermittent ‘flush-fall’ transfer through the proglacial zone, which acts as a sediment source during rising flows and as a sink during periods of waning flow.  相似文献   

5.
Studies of glacier hydrology rely increasingly on measurements made in boreholes as a basis for reconstructing the character and behaviour of subglacial drainage systems. In temperate glaciers, in which boreholes remain open to the atmosphere following drilling, the interpretation of such data may be complicated by supraglacial or englacial water flows to and from boreholes. We report on a suite of techniques used to identify borehole water sources and to reconstruct patterns of water circulation within boreholes at Haut Glacier d'Arolla, Switzerland. Results are used to define a number of borehole ‘drainage’ types. Examples of each drainage type are presented, along with the manner in which they influence interpretations of borehole water‐levels, borehole water‐quality data, and borehole dye traces. The analysis indicates that a full understanding of possible borehole drainage modes is required for the correct interpretation of many borehole observations, and that those observations provide an accurate indication of subglacial conditions only under relatively restricted circumstances. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
To improve our understanding of the interactions between hydrology and dynamics in mostly cold glaciers (in which water flow is limited by thermal regime), we analyse short‐term (every two days) variations in glacier flow in the ablation zone of polythermal John Evans Glacier, High Arctic Canada. We monitor the spatial and temporal propagation of high‐velocity events, and examine their impacts upon supraglacial drainage processes and evolving subglacial drainage system structure. Each year, in response to the rapid establishment of supraglacial–subglacial drainage connections in the mid‐ablation zone, a ‘spring event’ of high horizontal surface velocities and high residual vertical motion propagates downglacier over two to four days from the mid‐ablation zone to the terminus. Subsequently, horizontal velocities fall relative to the spring event but remain higher than over winter, reflecting channelization of subglacial drainage but continued supraglacial meltwater forcing. Further transient high‐velocity events occur later in each melt season in response to melt‐induced rising supraglacial meltwater inputs to the glacier bed, but the dynamic response of the glacier contrasts with that recorded during the spring event, with the degree of spatial propagation a function of the degree to which the subglacial drainage system has become channelized. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Evacuation of basal sediment by subglacial drainage is an important mediator of rates of glacial erosion and glacier flow. Glacial erosion patterns can produce closed basins (i.e., overdeepenings) in glacier beds, thereby introducing adverse bed gradients that are hypothesized to reduce drainage system efficiency and thus favour basal sediment accumulation. To establish how the presence of a terminal overdeepening might mediate seasonal drainage system evolution and glacial sediment export, we measured suspended sediment transport from Findelengletscher, Switzerland during late August and early September 2016. Analyses of these data demonstrate poor hydraulic efficiency of drainage pathways in the terminus region but high sediment availability. Specifically, the rate of increase of sediment concentration with discharge was found to be significantly lower than that anticipated if channelized flow paths were present. Sediment availability to these flow paths was also higher than would be anticipated for discrete bedrock-floored subglacial channels. Our findings indicate that subglacial drainage in the terminal region of Findelengletscher is dominated by distributed flow where entrainment capacity increases only marginally with discharge, but flow has extensive access to an abundant sediment store. This high availability maintains sediment connectivity between the glacial and proglacial realm and means daily sediment yield is unusually high relative to yields exhibited by similar Alpine glaciers. We present a conceptual model illustrating the potential influence of ice-bed morphology on subglacial drainage evolution and sediment evacuation mechanics, patterns and yields, and recommend that bed morphology should be an explicit consideration when monitoring and evaluating glaciated basin sediment export rates.  相似文献   

8.
The sediment yields of Alpine catchments are commonly determined from streamload measurements made some distance downstream from glaciers. However, this approach indiscriminately integrates erosion processes occurring in both the glacial and proglacial areas. A specific method is required to ascertain the respective inputs from (i) subglacial and supraglacial sediments, (ii) proglacial hillslopes and (iii) proglacial alluvial areas or sandurs. This issue is addressed here by combining high‐resolution monitoring (2 min) of suspended sediment concentrations at different locations within a catchment with discharge gauging and precipitation data. This methodological framework is applied to two proglacial streams draining the Bossons glacier (Mont Blanc massif, France): the Bossons and Crosette streams. For the Bossons stream, discharge and suspended load data were acquired from June to October 2013 at 1.15 and 1.5 km from the glacial terminus, respectively upstream and downstream from a small valley sandur. These hydro‐sedimentary data are compared with the Crosette stream dataset acquired at the outlet of the Bossons glacier subglacial drainage system. A fourfold analysis focusing on seasonal changes in streamload and discharge, multilinear regression modelling, evaluation of the sandur flux balance and probabilistic uncertainty assessment is used to determine the catchment sediment budget and to explain the proglacial sediment dynamics. The seasonal fluctuation of the sediment signal observed is related to the gradual closing of the subglacial drainage network and to the role of the proglacial area in the sediment cascade: the proglacial hillslopes appear to be disconnected from the main channel and the valley sandur acts as a hydrodynamic sediment buffer both daily and seasonally. Our findings show that an understanding of proglacial sediment dynamics can help in evaluating paraglacial adjustment and subglacial erosion processes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
Sediment export from glaciated basins involves complex interactions between ice flow, basal erosion and sediment transfer in subglacial and proglacial streams. In particular, we know very little about the processes associated with sediment transfer by subglacial streams. The Haut Glacier d'Arolla (VS, Switzerland) was investigated during the summer melt season of 2015. LiDAR survey revealed positive surface changes in the ablation zone, indicating glacier uplift, at the end of the morning during the period of peak ablation. Instream measures of sediment transport showed that suspended load and bedload responded differently to diurnal flow variability. Suspended load depended on the availability of fine material whereas bedload depended mainly on the competence of the flow. Interpretation of these results allowed development of a conceptual model of subglacial sediment transport dynamics. It is based upon the mechanisms of clogging (deposition) and flushing (transport/erosion) in sub-glacial channels as forced by diurnal flow variability. Through the melt season, the glacier hydrological response evolves from being buffered by glacier snow cover with a poorly developed subglacial drainage system to being dominated by more rapid ice melt with a more hydraulically efficient subglacial channel system. The resultant changes in the shape of diurnal discharge hydrographs, and notably higher peak flows and lower base flows, causes sediment transport to become discontinuous, with overnight clogging and late morning flushing of subglacial channels. Overnight clogging may be sufficient to reduce subglacial channel size, creating temporarily pressurized flow and lateral transfer of water away from the subglacial channels, leading to the late morning glacier surface uplift. However, without further data, we cannot exclude other hypotheses for the uplift. © 2018 John Wiley & Sons, Ltd.  相似文献   

10.
The summer discharge pattern of the Skeldal River, which drains a 560 km2 partly glacierized catchment in north‐east Greenland, is dominated by diurnal oscillations reflecting variations in the melt rate of snow and ice in the basin. Superimposed on this diurnal pattern are numerous short‐lived discharge fluctuations of irregular periodicity and magnitude. The larger fluctuations are described and attributed to both rainfall events and periodic collapse of the glacier margin damming flow from beneath the Skelbrae glacier. Other minor fluctuations are less readily explained but are associated with changes in the channelized and distributed reservoirs and possibly temporary blockage of subglacial conduits caused by ice melt with subsequent damming. Fluctuations in suspended sediment concentration (SSC) are normally associated with discharge fluctuations, although examples of ‘transient flushes’ were observed where marked increases in SSC occurred in the absence of corresponding discharge variations. A strong relationship between the event discharge increase and event SSC increase for rainfall‐induced events was established, but no such relationship existed for non‐rainfall‐induced events. There is some evidence for an exhaustion effect in the SSC patterns both at the event time‐scale and as the month proceeds. A mean suspended sediment load of 1765 ± 0·26 t day?1 was estimated for the study period, which would be equivalent to a suspended sediment yield of 732 ± 4 t km?2 year?1. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
12.
Glaciers are major agents of erosion that increase sediment load to the downstream fluvial system. The Castle Creek Glacier, British Columbia, Canada, has retreated ~1.0 km in the past 70 years. Suspended sediment concentration (SSC) and streamflow (Q) were monitored independently at five sites within its pro‐glacial zone over a 60 day period from July to September 2011, representing part of the ablation season. Meteorological data were collected from two automatic weather stations proximal to the glacier. The time‐series were divided into hydrologic days and the shape and magnitude of the SSC response to hydro‐meteorological conditions (‘cold and wet’, ‘hot and dry’, ‘warm and damp’, and ‘storm’) were categorized using principal component analysis (PCA) and cluster analysis (CA). Suspended sediment load (SSL) was computed and summarized for the categories. The distribution of monitoring sites and results of the multivariate statistical analyses describe the temporal and spatial variability of suspended sediment flux and the relative importance of glacial and para‐glacial sediment sources in the pro‐glacial zone. During the 2011 study period, ~ 60% of the total SSL was derived from the glacial stream and sediment deposits proximal to the terminus of the glacier; during ‘storm’ events, that contribution dropped to ~40% as the contribution from diffuse and point sources of sediment throughout the pro‐glacial zone and within the meltwater channels increased. While ‘storm’ events accounted for just 3% of the study period, SSL was ~600% higher than the average over the monitoring period, and ~20% of the total SSL was generated in that time. Determining how hydro‐meteorological conditions and sediment sources control sediment fluxes will assist attempts to predict how pro‐glacial zones respond to future climate changes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Subglacial water flow drives the excavation of a variety of bedrock channels including tunnel valleys and inner gorges. Subglacial floods of various magnitudes – events occurring once per year or less frequently with discharges larger than a few hundred cubic metres per second – are often invoked to explain the erosive power of subglacial water flow. In this study we examine whether subglacial floods are necessary to carve bedrock channels, or if more frequent melt season events (e.g. daily production of meltwater) can explain the formation of substantial bedrock channels over a glacial cycle. We use a one‐dimensional numerical model of bedrock erosion by subglacial meltwater, where water flows through interacting distributed and channelized drainage systems. The shear stresses produced drive bedrock erosion by bed‐ and suspended‐load abrasion. We show that seasonal meltwater discharge can incise an incipient bedrock channel a few tens of centimetres deep and several metres wide, assuming abrasion is the only mechanism of erosion, a particle size of D=256 mm and a prescribed sediment supply per unit width. Using the same sediment characteristics, flood flows yield wider but significantly shallower bedrock channels than seasonal meltwater flows. Furthermore, the smaller the shear stresses produced by a flood, the deeper the bedrock channel. Shear stresses produced by seasonal meltwater are sufficient to readily transport boulders as bedload. Larger flows produce greater shear stresses and the sediment is carried in suspension, which produces fewer contacts with the bed and less erosion. We demonstrate that seasonal meltwater discharge can excavate bedrock volumes commensurate with channels several tens of metres to a few hundred metres wide and several tens of metres deep over several thousand years. Such simulated channels are commensurate with published observations of tunnel valleys and inner gorges. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

14.
In recent years, ground‐penetrating radar (GPR) has been increasingly used for characterization of subglacial and englacial environments at polythermal glaciers. The geophysical method is able to exploit the dielectric difference between water, air, sediment and ice, allowing delineation of subsurface hydrological, thermal and structural conditions. More recent GPR research has endeavoured to examine temporal change in glaciers, in particular the distribution of the cold ice zone at polythermal glaciers. However, the exact nature of temporal change that can be identified using GPR has not been fully examined. This research presents the results of three GPR surveys conducted over the course of a summer ablation season at a polythermal glacier in the Canadian Arctic. A total of approximately 30 km of GPR profiles were collected in 2002 repeatedly covering the lower 2 km of Stagnation Glacier, Bylot Island (72°58′ N 78°22′ W). Comparison between profiles indicated changes in the radar signature, including increased noise, appearance and disappearance of englacial reflections, and signal attenuation in the latter survey. Further, an area of chaotic returns in up‐glacier locations, which was interpreted to be a wet temperate ice zone, showed marked recession over the course of the ablation season. Combining all the temporal changes that were detected by GPR, results indicate that a polythermal glacier may exhibit strongly seasonal changes in hydrological and thermal characteristics throughout the ice body, including the drainage of 17 000 m3 of temporarily stored intra‐glacial meltwater. It is also proposed that the liquid water content in the temperate ice zone of polythermal glaciers can be described as a fraction of a specific retention capacity. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Digital elevation models of the surface and bed of Midtdalsbreen, Norway are used to calculate subglacial hydraulic potential and infer drainage system structure for a series of subglacial water pressure assumptions ranging from atmospheric to ice overburden. A distributed degree‐day model is used to calculate the spatial distribution of melt on the glacier surface throughout a typical summer, which is accumulated along the various drainage system structures to calculate water fluxes beneath the glacier and exiting the portals for the different water pressure assumptions. In addition, 78 dye‐tracing tests were performed from 33 injection sites and numerous measurements of water discharge were made on the main proglacial streams over several summer melt seasons. Comparison of the calculated drainage system structures and water fluxes with dye tracing results and measured proglacial stream discharges suggests that the temporally and spatially averaged steady‐state water pressures beneath the glacier are ~70% of ice overburden. Analysis of the dye return curves, together with the calculated subglacial water fluxes shows that the main drainage network on the eastern half of the glacier consists of a hydraulically efficient system of broad, low channels (average width/height ratio ≈ 75). The smaller drainage network on the west consists of a hydraulically inefficient distributed system, dominated by channels that are exceptionally broad and very low (average width/height ratio ≈ 350). The even smaller central drainage network also consists of a hydraulically inefficient distributed system, dominated by channels that are very broad and exceptionally low (average width/height ratio ≈ 450). The channels beneath the western and central glacier must be so broad and low that they can essentially be thought of as a linked cavity system. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Two-hourly suspended sediment concentration variations observed during the summer of 1987 in the proglacial stream draining Midtdalsbreen, Norway are modelled using multiple regression and time series techniques. Suspended sediment fluctuations are influenced by stream discharge variations, diurnal hysteresis effects, medium-term sediment supply and transport variations and the recent suspended sediment concentration history of the stream. They do not appear to be influenced by seasonal exhaustion or rainfall variations. Possible reasons for this are discussed. Large positive residuals from the fitted models are major pulses of suspended sediment unrelated to discharge variations; these sediment flushes correlate with periods of enhanced glacier motion. They cannot be explained by enhanced sediment production by subglacial erosion, but are probably due to the tapping of subglacially stored sediment during sudden changes in the hydraulics and/or configuration of the subglacial hydrological system. Seasonal changes in the lag between glacier motion peaks and suspended sediment flushes suggest that the subglacial hydrological system evolves over the summer from a distributed to a more channelized configuration.  相似文献   

17.
We reconstruct englacial and subglacial drainage at Skálafellsjökull, Iceland, using ground penetrating radar (GPR) common offset surveys, borehole studies and Glacsweb probe data. We find that englacial water is not stored within the glacier (water content ~0–0.3%). Instead, the glacier is mostly impermeable and meltwater is able to pass quickly through the main body of the glacier via crevasses and moulins. Once at the glacier bed, water is stored within a thin (1 m) layer of debris‐rich basal ice (2% water content) and the till. The hydraulic potential mapped across the survey area indicates that when water pressures are high (most of the year), water flows parallel to the margin, and emerges 3 km down glacier at an outlet tongue. GPR data indicates that these flow pathways may have formed a series of braided channels. We show that this glacier has a very low water‐storage capacity, but an efficient englacial drainage network for transferring water to the glacier bed and, therefore, it has the potential to respond rapidly to changes in melt‐water inputs. © 2015 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

18.
This paper presents sedimentary evidence for rapid englacial debris entrainment during jökulhlaups. Previous studies of jökulhlaup sedimentology have focused predominantly on proglacial impact, rather than depositional processes within glaciers. However, observations of supraglacial floodwater outbursts suggest that englacial sediment emplacement is possible during jökulhlaups. The November 1996 jökulhlaup from Skei?arárjökull, Iceland presented one of the first opportunities to examine englacial flood deposits in relation to former supraglacial outlets. Using observations from Skei?arárjökull, this paper identifies and explains controls on the deposition of englacial flood sediments and presents a qualitative model for englacial jökulhlaup deposition. Englacial jökulhlaup deposits were contained within complex networks of upglacier‐dipping fractures. Simultaneous englacial deposition of fines and boulder‐sized sediment demonstrates that englacial fracture discharge had a high transport capacity. Fracture geometry was an important control on the architecture of englacial jökulhlaup deposits. The occurrence of pervasively frozen flood deposits within Skei?arárjökull is attributed to freeze‐on by glaciohydraulic supercooling. Floodwater, flowing subglacially or through upglacier‐dipping fractures, would have supercooled as it was raised to the surface faster than its pressure‐melting point could increase as glaciostatic pressure decreased. Evidence for floodwater contact with the glacier bed is supported by the ubiquitous occurrence of sheared diamict rip‐ups and intra‐clasts of basal ice within jökulhlaup fractures, deposited englacially some 200–350 m above the bed of Skei?arárjökull. Evidence for fluidal supercooled sediment accretion is apparent within stratified sands, deposited englacially at exceptionally high angles of rest in the absence of post‐depositional disturbance. Such primary sediment structures cannot be explained unless sediment is progressively accreted to opposing fracture walls. Ice retreat from areas of former supraglacial outbursts revealed distinct ridges characterized by localized upwellings of sediment‐rich floodwater. These deposits are an important addition to current models of englacial sedimentation and demonstrate the potential for post‐jökulhlaup landform development. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
Factors influencing sediment transport and storage within the 156·6 km2 drainage basin of Pancho Rico Creek (PRC), and sediment transport from the PRC drainage basin to its c. 11 000 km2 mainstem drainage (Salinas River) are investigated. Numeric age estimates are determined by optically stimulated luminescence (OSL) dating on quartz grains from three sediment samples collected from a ‘quaternary terrace a (Qta)’ PRC terrace/PRC‐tributary fan sequence, which consists dominantly of debris flow deposits overlying fluvial sediments. OSL dating results, morphometric analyses of topography, and field results indicate that the stormy climate of the Pleistocene‐Holocene transition caused intense debris‐flow erosion of PRC‐tributary valleys. However, during that time, the PRC channel was backfilled by Qta sediment, which indicates that there was insufficient discharge in PRC to transport the sediment load produced by tributary‐valley denudation. Locally, Salinas Valley alluvial stratigraphy lacks any record of hillslope erosion occurring during the Pleistocene‐Holocene transition, in that the alluvial fan formed where PRC enters the Salinas Valley lacks lobes correlative to Qta. This indicates that sediment stripped from PRC tributaries was mostly trapped in Pancho Rico Valley despite the relatively moist climate of the Pleistocene‐Holocene transition. Incision into Qta did not occur until PRC enlarged its drainage basin by c. 50% through capture of the upper part of San Lorenzo Creek, which occurred some time after the Pleistocene‐Holocene transition. During the relatively dry Holocene, PRC incision through Qta and into bedrock, as well as delivery of sediment to the San Ardo Fan, were facilitated by the discharge increase associated with stream‐capture. The influence of multiple mechanisms on sediment storage and transport in the Pancho Rico Valley‐Salinas Valley system exemplifies the complexity that (in some instances) must be recognized in order to correctly interpret terrestrial sedimentary sequences in tectonically active areas. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Solute and runoff time-series at Finsterwalderbreen, Svalbard, provide evidence for considerable basal routing of water and the existence of at least two contrasting subglacial chemical weathering environments. The hydrochemistry of a subglacial upwelling provides evidence for a snowmelt-fed subglacial reservoir that dominates bulk runoff during recession flow. High concentrations of Cl and crustal ions, high pCO2 and ratios of [*SO2−4/(*SO2−4+HCO3)] close to 0·5 indicate the passage of snowmelt through a subglacial weathering environment characterized by high rock:water ratios, prolonged residence times and restricted access to the atmosphere. At higher discharges, bulk runoff becomes dominated by icemelt from the lower part of the glacier that is conveyed through a chemical weathering environment characterized by low rock:water ratios, short residence times and free contact with atmospheric gases. These observations suggest that icemelt is routed via a hydrological system composed of basal/ice-marginal, englacial and supraglacial components and is directed to the glacier margins by the ice surface slope. Upwelling water flows relatively independently of icemelt to the terminus via a subglacial drainage system, possibly constituting flow through a sediment layer. Cold basal ice at the terminus forces it to take a subterranean routing in its latter stages. The existence of spatially discrete flow paths conveying icemelt and subglacial snowmelt to the terminus may be the norm for polythermal-based glaciers on Svalbard. Proglacial mixing of these components to form the bulk meltwaters gives rise to hydrochemical trends that resemble those of warm-based glaciers. These hydrochemical characteristics of bulk runoff have not been documented on any other glacier on Svalbard to date and have significance for understanding interactions between thermal regime and glacier hydrology. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号