首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Knowledge of the mechanisms of rain‐induced shallow landslides can improve the prediction of their occurrence and mitigate subsequent sediment disasters. Here, we examine an artificial slope's subsurface hydrology and propose a new slope stability analysis that includes seepage force and the down‐slope transfer of excess shear forces. We measured pore water pressure and volumetric water content immediately prior to a shallow landslide on an artificial sandy slope of 32°: The direction of the subsurface flow shifted from downward to parallel to the slope in the deepest part of the landslide mass, and this shift coincided with the start of soil displacement. A slope stability analysis that was restricted to individual segments of the landslide mass could not explain the initiation of the landslide; however, inclusion of the transfer of excess shear forces from up‐slope to down‐slope segments improved drastically the predictability. The improved stability analysis revealed that an unstable zone expanded down‐slope with an increase in soil water content, showing that the down‐slope soil initially supported the unstable up‐slope soil; destabilization of this down‐slope soil was the eventual trigger of total slope collapse. Initially, the effect of apparent soil cohesion was the most important factor promoting slope stability, but seepage force became the most important factor promoting slope instability closer to the landslide occurrence. These findings indicate that seepage forces, controlled by changes in direction and magnitude of saturated and unsaturated subsurface flows, may be the main cause of shallow landslides in sandy slopes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Seepage erosion in layered stream bank material   总被引:1,自引:0,他引:1  
Current stream restoration practices often require anthropogenic manipulation of natural field soils to reconstruct stream banks in the absence of stabilizing vegetation. For this study, researchers conducted laboratory experiments on reconstructed, non‐vegetated stream banks with layered soils experiencing seepage. The objective of the study was to determine the effect of seepage, pore water pressure, and bank geometry on erosion and bank stability of layered streambanks. The experimental design consisted of an intermediate‐size soil lysimeter packed with a sandy clay loam top soil and an underlying fine sand layer at three bank slopes (90°, 45° and 26°). Shallow groundwater flow and seepage resulted in bank failure of geometrically stable banks. Pop out failures, liquid deformation, and piping were all observed failure mechanisms in the underlying sand material, dependent on the bank angle. Groundwater seepage processes created small‐scale failures of the underlying sand leading to larger‐scale failures of the overlying sandy clay loam. The underlying sand layer eroded according to the initial bank angle and change in overburden loading. The overlying loam layer failed along linear failure planes. The gradually sloped bank (i.e. 26° slope) failed faster, hypothesized to be due to less confining pressure and greater vertical seepage forces. Researchers analyzed the laboratory experiments using the Bank Stability and Toe Erosion Model, version 4·1. The model calculated an accurate shear surface angle similar to the failure angle observed in the lysimeter tests. The model predicted failure only for the undercut 90° bank slope, and indicated stable conditions for the other geometries. Steeper initial bank slopes and undercut banks decreased the bank factor of safety. The observed failure mechanisms and measured saturation data indicated an interaction between overburden pressure, seepage forces, and bank slope on bank stability. Future bank stability modeling would benefit by incorporating lateral seepage erosion and soil liquefaction prediction calculations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Gang Liu  Fuguo Tong  Bin Tian 《水文研究》2019,33(26):3378-3390
This work introduces water–air two‐phase flow into integrated surface–subsurface flow by simulating rainfall infiltration and run‐off production on a soil slope with the finite element method. The numerical model is formulated by partial differential equations for hydrostatic shallow flow and water–air two‐phase flow in the shallow subsurface. Finite element computing formats and solution strategies are presented to obtain a numerical solution for the coupled model. An unsaturated seepage flow process is first simulated by water–air two‐phase flow under the atmospheric pressure boundary condition to obtain the rainfall infiltration rate. Then, the rainfall infiltration rate is used as an input parameter to solve the surface run‐off equations and determine the value of the surface run‐off depth. In the next iteration, the pressure boundary condition of unsaturated seepage flow is adjusted by the surface run‐off depth. The coupling process is achieved by updating the rainfall infiltration rate and surface run‐off depth sequentially until the convergence criteria are reached in a time step. A well‐conducted surface run‐off experiment and traditional surface–subsurface model are used to validate the new model. Comparisons with the traditional surface–subsurface model show that the initiation time of surface run‐off calculated by the proposed model is earlier and that the water depth is larger, thus providing values that are closer to the experimental results.  相似文献   

4.
为深入理解井水位同震响应机理,本文开展了向完整井-松散含水层系统输入由不同频率和振幅(加速度)组成的正弦波荷载的振动台实验。以实验模型为物理模型,建立了振动作用下松散承压含水层中孔隙水压力响应的流固耦合模型和含水层水流与井流的相互作用模型,并运用多物理场耦合模拟软件COMSOL Multiphysics对实验过程进行了数值模拟。实验中观测到的四种典型水位变化形态与野外场地同震井水位变化形态相似。数值模拟结果显示,本研究建立的数学模型能较好地反映松散承压含水层中孔隙水压力和水位的响应情况。本文研究对解释地下水同震响应机制、岩体渗流稳定性和安全问题具有重要意义。  相似文献   

5.
In the Dolomitic region, abundant coarse hillslope sediment is commonly found at the toe of rocky cliffs. Ephemeral channels originate where lower permeability bedrock surfaces concentrate surface runoff. Debris flows initiate along such channels following intense rainfall and determine the progressive erosion and deepening of the channels. Sediment recharge mechanisms include rock fall, dry ravel processes and channel-bank failures. Here we document debris flow activity that took place in an active debris flow basin during the year 2015. The Cancia basin is located on the southwestern slope of Mount Antelao (3264 m a.s.l.) in the dolomitic region of the eastern Italian Alps. The 2.5 km2 basin is incised in dolomitic limestone rocks. The data consist of repeated topographic surveys, distributed rainfall measurements, time-lapse (2 s) videos of two events and pore pressure measurements in the channel bed. During July and August 2015, two debris flow events occurred, following similarly intense rainstorms. We compared rainfall data to existing rainfall triggering thresholds and simulated the hydrological response of the headwater catchment with a distributed model in order to estimate the total and peak water discharge. Our data clearly illustrate how debris entrainment along the channel is the main contributor to the overall mobilized volume and that erosion is dominant when the channel slope exceeds 16°. Further downstream, sediment accumulation and depletion occurred alternately for the two successive events, indicating that sediment availability along the channel also influences the flow behaviour along the prevailing-transport reach. The comparison between monitoring data, topographical analysis and hydrological simulation allows the estimation of the average solid concentration of the two events and suggests that debris availability has a significant influence on the debris flow volume. © 2020 John Wiley & Sons, Ltd.  相似文献   

6.
Quantifying groundwater flow at seepage faces is crucial because seepage faces influence the hydroecology and water budgets of watersheds, lakes, rivers and oceans, and because measuring groundwater fluxes directly in aquifers is extremely difficult. Seepage faces provide a direct and measurable groundwater flux but there is no existing method to quantitatively image groundwater processes at this boundary. Our objective is to determine the possibilities and limitations of thermal imagery in quantifying groundwater discharge from discrete seeps. We developed a conceptual model of temperature below discrete seeps, observed 20 seeps spectacularly exposed in three dimensions at an unused limestone quarry and conducted field experiments to examine the role of diurnal changes and rock face heterogeneity on thermal imagery. The conceptual model suggests that convective air‐water heat exchange driven by temperature differences is the dominant heat transfer mechanism. Thermal imagery is effective at locating and characterizing the flux of groundwater seeps. Areas of active groundwater flow and ice growth can be identified from thermal images in the winter, and seepage rates can be differentiated in the summer. However, the application of thermal imagery is limited by diverse factors including technical issues of image acquisition, diurnal changes in radiation and temperature, and rock face heterogeneity. Groundwater discharge rates could not be directly quantified from thermal imagery using our observations but our conceptual model and experiments suggest that thermal imagery could quantify groundwater discharge when there are large temperature differences, simple cliff faces, non‐freezing conditions, and no solar radiation.  相似文献   

7.
Unlike rivers in humid regions, dryland rivers typically exhibit reduced flow in the downstream direction as a result of transmission losses, which include seepage of streamflow into the aquifer, evaporation, and transpiration. However, much remains to be learned about the nature of the exchange between surface water and groundwater in these landscapes, especially in terms of spatial and temporal variability. Our study focused on streambank seepage and groundwater flow in the alluvial aquifer, specifically on answering questions such as: Is there seasonal variability in seepage losses? Is seepage permanently lost? Can losses be reduced by killing riparian vegetation? To better understand the magnitude, variability, and fate of streambank seepage, we assessed river stages, groundwater hydraulic gradients, and groundwater flow paths at two sites along a reach of the Pecos River, a dryland perennial river in West Texas. We found that along this reach the river was losing water to the aquifer even under low‐flow conditions; but seepage was controlled by a number of different mechanisms. Seepage increased not only during high‐flow events but also when the groundwater level was declining owing to long periods of no irrigation release. Tamarix (saltcedar) control did not affect hydraulic gradients nor reduce streambank seepage and given that this reach of the Pecos River is a losing one, streamflow will not be enhanced by controlling saltcedar. These findings can be used to improve basic conceptual models of dryland river systems and to predict hydrologic responses to changes in the timing and magnitude of streamflows and to riparian vegetation management. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Several mechanisms contribute to streambank failure including fluvial toe undercutting, reduced soil shear strength by increased soil pore‐water pressure, and seepage erosion. Recent research has suggested that seepage erosion of noncohesive soil layers undercutting the banks may play an equivalent role in streambank failure to increased soil pore‐water pressure. However, this past research has primarily been limited to laboratory studies of non‐vegetated banks. The objective of this research was to utilize the Bank Stability and Toe Erosion Model (BSTEM) in order to determine the importance of seepage undercutting relative to bank shear strength, bank angle, soil pore‐water pressure, and root reinforcement. The BSTEM simulated two streambanks: Little Topashaw Creek and Goodwin Creek in northern Mississippi. Simulations included three bank angles (70° to 90°), four pore‐water pressure distributions (unsaturated, two partially saturated cases, and fully saturated), six distances of undercutting (0 to 40 cm), and 13 different vegetation conditions (root cohesions from 0·0 to 15·0 kPa). A relative sensitivity analysis suggested that BSTEM was approximately three to four times more sensitive to water table position than root cohesion or depth of seepage undercutting. Seepage undercutting becomes a prominent bank failure mechanism on unsaturated to partially saturated streambanks with root reinforcement, even with undercutting distances as small as 20 cm. Consideration of seepage undercutting is less important under conditions of partially to fully saturated soil pore‐water conditions. The distance at which instability by undercutting became equivalent to instability by increased soil pore‐water pressure decreased as root reinforcement increased, with values typically ranging between 20 and 40 cm at Little Topashaw Creek and between 20 and 55 cm at Goodwin Creek. This research depicts the baseline conditions at which seepage undercutting of vegetated streambanks needs to be considered for bank stability analyses. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The water budget in clay shale terrain is controlled by a complex interaction between the vertisol soil layer, the underlying fractured rock, land use, topography, and seasonal trends in rainfall and evapotranspiration. Rainfall, runoff, lateral flow, soil moisture, and groundwater levels were monitored over an annual recharge cycle. Four phases of soil–aquifer response were noted over the study period: (1) dry‐season cracking of soils; (2) runoff initiation, lateral flow and aquifer recharge; (3) crack closure and down‐slope movement of subsurface water, with surface seepage; (4) a drying phase. Surface flow predominated within the watershed (25% of rainfall), but lateral flow through the soil zone continued for most of the year and contributed 11% of stream flow through surface seepage. Actual flow through the fractured shale makes up a small fraction of the water budget but does appear to influence surface seepage by its effect on valley‐bottom storage. When the valley soil storage is full, lateral flow exits onto the valley‐bottom surface as seasonal seeps. Well response varied with depth and hillslope position. FLOWTUBE model results and regional recharge estimates are consistent with an aquifer recharge of 1·6% of annual precipitation calculated from well heights and specific yield of the shale aquifer. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
In the work reported here the comprehensive physics‐based Integrated Hydrology Model (InHM) was employed to conduct both three‐ and two‐dimensional (3D and 2D) hydrologic‐response simulations for the small upland catchment known as C3 (located within the H. J. Andrews Experimental Forest in Oregon). Results from the 3D simulations for the steep unchannelled C3 (i) identify subsurface stormflow as the dominant hydrologic‐response mechanism and (ii) show the effect of the down‐gradient forest road on both the surface and subsurface flow systems. Comparison of the 3D results with the 2D results clearly illustrates the importance of convergent subsurface flow (e.g. greater pore‐water pressures in the hollow of the catchment for the 3D scenario). A simple infinite‐slope model, driven by subsurface pore‐water pressures generated from the 3D and 2D hydrologic‐response simulations, was employed to estimate slope stability along the long‐profile of the C3 hollow axis. As expected, the likelihood of slope failure is underestimated for the lower pore pressures from the 2D hydrologic‐response simulation compared, in a relative sense, to the higher pore pressures from the 3D hydrologic response simulation. The effort reported herein provides a firm quantitative foundation for generalizing the effects that forest roads can have on near‐surface hydrologic response and slope stability at the catchment scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Riverbanks along the Arno River have been investigated with the aims of de?ning the main mechanisms of failure and retreat, their spatial distribution, and their causes. Geomorphological aspects were investigated by a reconnaissance of riverbank processes, for a number (26) of representative sites. Laboratory and in situ tests were then performed on a selected number of riverbanks (15). Based on the material characteristics, six main typologies of riverbanks have been de?ned, with homogeneous ?ne‐grained and composite banks representing the most frequent types. Slab‐type failures are the most frequent mechanism observed on ?ne‐grained banks, while cantilever failures prevail on composite banks. The role of river stage and related pore water pressure distributions in triggering the main observed mechanisms of failure has been investigated using two different types of stability analysis. The ?rst was conducted for 15 riverbanks, using the limit equilibrium method and considering simpli?ed hypotheses for pore water pressure distribution (annulment of negative pore pressures in the portion of the bank between low water stage and peak stage). Stability conditions and predicted mechanisms of failure are shown to be in reasonably good agreement with ?eld observations. Three riverbanks, representative of the main alluvial reaches of the river, were then selected for a more detailed bank stability analysis, consisting of: (a) de?nition of characteristic hydrographs of the reach with different return periods; (b) modelling of saturated and unsaturated ?ow using ?nite element seepage analysis; and (c) stability analysis with the limit equilibrium method, by adopting pore water pressure values derived from the seepage analysis. The results are compared to those obtained from the previous simpli?ed analysis, and are used to investigate the different responses, in terms of stability, to different hydrological and riverbank conditions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Snowmelt water supplies streamflow and growing season soil moisture in mountain regions, yet pathways of snowmelt water and their effects on moisture patterns are still largely unknown. This study examined how flow processes during snowmelt runoff affected spatial patterns of soil moisture on two steep sub‐alpine hillslope transects in Rocky Mountain National Park, CO, USA. The transects have northeast‐facing and east‐facing aspects, and both extend from high‐elevation bedrock outcrops down to streams in valley bottoms. Spatial patterns of both snow depth and near‐surface soil moisture were surveyed along these transects in the snowmelt and summer seasons of 2008–2010. To link these patterns to flow processes, soil moisture was measured continuously on both transects and compared with the timing of discharge in nearby streams. Results indicate that both slopes generated shallow lateral subsurface flow during snowmelt through near‐surface soil, colluvium and bedrock fractures. On the northeast‐facing transect, this shallow subsurface flow emerged through mid‐slope seepage zones, in some cases producing saturation overland flow, whereas the east‐facing slope had no seepage zones or overland flow. At the hillslope scale, earlier snowmelt timing on the east‐facing slope led to drier average soil moisture conditions than on the northeast‐facing slope, but within hillslopes, snow patterns had little relation to soil moisture patterns except in areas with persistent snow drifts. Results suggest that lateral flow and exfiltration processes are key controls on soil moisture spatial patterns in this steep sub‐alpine location. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
This paper intended to evaluate the behavior of saturated sand and sloped ground subjected to flow failure with seepage of pore water in the ground after earthquake and the resultant liquefaction. Triaxial compression tests of sand with constant deviator stress but changing of pore pressure and volume of the specimens were conducted in this study. It was revealed that the relation between the volume change and the amount of shear strain during deformation depended on the initial density of the sand but it did not much depend on shear stress and initial confining stress levels. Based on this test results and numerical analysis of the seepage of pore water in liquefied ground, a methodology was proposed to predict the deformation of inclined ground due to liquefaction.  相似文献   

14.
Soil surface roughness is a dynamic property which determines, to a large extent, erosion and infiltration rates. Although soils containing rock fragments are widespread in the Mediterranean region, the effect of the latter on surface roughness evolution is yet poorly understood. Therefore, laboratory experiments were conducted in order to investigate the effect of rock fragment content, rock fragment size and initial moisture content of the fine earth on the evolution of interrill surface roughness during simulated rainfall. Surface elevations of simulated plough layers along transects of 50 cm length were measured before and after simulated rainfall (totalling 192.5 mm, I = 70 mm h−1) with a laser microreliefmeter. The results were used to investigate whether systematic variations in interrill surface roughness along stony hillslopes in southeastern Spain could be attributed to rock fragment cover and rock fragment size. Soil surface elevations were measured along the contour lines (50 cm long transects) with a contact microreliefmeter. Roughness was expressed by two parameters related to the height and frequency of roughness elements, respectively: standard deviation of de-trended surface elevations (random roughness: RR), and correlation length (L) derived from exponential fits of the autocorrelation functions. The frequently used assumption that surface roughness (RR) of cultivated topsoils decreases exponentially with cumulative rain is not valid for soil surfaces covered by rock fragments. The RR of soils containing small rock fragments (1.7–2.7 cm) increased with cumulative rainfall after an initial decrease during the first 17.5 mm of rainfall. For soils containing large rock fragments (7.7 cm), RR increased with rainfall above a threshold rock fragment content by mass of 52 per cent. For a given rainfall application, RR increased non-linearly with rock fragment content. The correlation length for soils containing small rock fragments decreases with rock fragment content and is significantly lower than for soils with large rock fragments. Soils covered with small rock fragments (large RR and small L) are thus well protected against raindrop impact by a water film in the depressions between the rock fragments. On abandoned agricultural fields along hillslopes in southeastern Spain, rock fragments cover increases non-linearly with slope owing to selective erosion of finer particles on steep slopes. The increase of surface cover by large rock fragments (>25 mm) is even more pronounced. The simultaneous increase of rock fragment cover and rock fragment size with slope explains the non-linear increase of RR with slope. These relationships differ for soils covered by platy misaschists and those covered with cubic andesites. The variations in correlation length along the hillslopes are not clear, probably owing to a simultaneous increase in rock fragment cover and rock fragment size. These findings may provide a better prediction of soil surface roughness of interrill areas covered by rock fragments using slope angle and lithology.  相似文献   

15.
This paper uses the catastrophic landslide that occurred in Zhongxing Town, Dujiangyan City, as an example to study the formation mechanism of landslides induced by heavy rainfall in the post-Wenchuan earthquake area. The deformation characteristics of a slope under seismic loading were investigated via a shaking table test. The results show that a large number of cracks formed in the slope due to the tensile and shear forces of the vibrations, and most of the cracks had angles of approximately 45° with respect to the horizontal. A series of flume tests were performed to show how the duration and intensity of rainfall influence the responses of the shaken and non-shaken slopes. Wetting fronts were recorded under different rainfall intensities, and the depth of rainfall infiltration was greater in the shaken slope than in the non-shaken slope because the former experienced a greater extreme rainfall intensity under the same early rainfall and rainfall duration conditions. At the beginning of the rainfall infiltration experiment, the pore water pressure in the slope was negative, and settling occurred at the top of the slope. With increasing rainfall, the pore water pressure changed from negative to positive, and cracks were observed on the back surface of the slope and the shear outlet of the landslide on the front of the slope. The shaken slope was more susceptible to crack formation than the non-shaken slope under the same rainfall conditions. A comparison of the responses of the shaken and non-shaken slopes under heavy rainfall revealed that cracks formed by earthquakes provided channels for infiltration. Soil particles in the cracks of slopes were washed away, and the pore water pressure increased rapidly, especially the transient pore water pressure in the slope caused by short-term concentrated rainfall which decreased rock strength and slope stability.  相似文献   

16.
During the 2003 Sanriku‐Minami earthquake, Japan, a flowslide was triggered on a slope of about 13.5º. The displaced landslide mass developed into a flowslide and deposited on a horizontal rice paddy after traveling approximately 130 m. To study the trigger and movement mechanisms of this landslide, field investigation and laboratory ring‐shear tests were performed. Field investigation revealed that the landslide originated from a fill slope, where a gully was buried for cultivation some decades ago, and shallow ground water was present. Undrained monotonic and cyclic ring‐shear tests on a sample (pyroclastic deposits) taken from the source area revealed that the soil is highly liquefiable, and its steady‐state shear strength can be little affected by overconsolidation. Using the seismic records of the earthquake, probable seismic loadings on the sliding surface were synthesized and applied to the samples in ring‐shear tests, which were performed under undrained or partially drained conditions. The undrained and partially drained tests revealed that shear failure can be triggered by the introduction of seismic loading and formation of excess pore‐water pressure. The generation of excess pore‐water pressure along with increase of shear displacement and the inhibited dissipation of excess pore‐water pressure due to the thickness of the saturated soil layer above the sliding surface probably enabled the continued post‐failure landsliding. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Streaming‐potentials are produced by electrokinetic effects in relation to fluid flow and are used for geophysical prospecting. The aim of this study is to model streaming potential measurements for unsaturated conditions using an empirical approach. A conceptual model is applied to streaming potential measurements obtained from two drainage experiments in sand. The streaming potential data presented here show a non‐monotonous behaviour with increasing water saturation, following a pattern that cannot be predicted by existing models. A model involving quasi‐static and dynamic components is proposed to reproduce the streaming potential measurements. The dynamic component is based on the first time derivative of the driving pore pressure. The influence of this component is investigated with respect to fluid velocity, which is very different between the two experiments. The results demonstrate that the dynamic component is predominant at the onset of drainage in experiments with the slowest water flow. On the other hand, its influence appears to vanish with increasing drainage velocity. Our results suggest that fluid flow and water distribution at the pore scale have an important influence on the streaming potential response for unsaturated conditions. We propose to explain this specific streaming potential response in terms of the behaviour of both rock/water interface and water/air interfaces created during desaturation processes. The water/air interfaces are negatively charged, as also observed in the case of water/rock interfaces. Both the surface area and the flow velocity across these interfaces are thought to contribute to the non‐monotonous behaviour of the streaming potential coefficient as well as the variations in its amplitude. The non‐monotonous behaviour of air/water interfaces created during the flow was highlighted as it was measured and modelled by studies published in the literature. The streaming potential coefficient can increase to about 10 to 40 when water saturation decreases. Such an increase is possible if the amount of water/air interfaces is increased in sufficient amount, which can be the case.  相似文献   

18.
Hydrogeomorphic processes influencing alluvial gully erosion were evaluated at multiple spatial and temporal scales across the Mitchell River fluvial megafan in tropical Queensland, Australia. Longitudinal changes in floodplain inundation were quantified using river gauge data, local stage recorders and HEC‐RAS modelling based on LiDAR topographic data. Intra‐ and interannual gully scarp retreat rates were measured using daily time‐lapse photographs and annual GPS surveys. Erosion was analysed in response to different water sources and associated erosion processes across the floodplain perirheic zone, including direct rainfall, infiltration‐excess runoff, soil‐water seepage, river backwater and overbank flood inundation. The frequency of river flood inundation of alluvial gullies changed longitudinally according to river incision and confinement. Near the top of the megafan, flood water was contained within the macrochannel up to the 100‐year recurrence interval, but river backwater still partially inundated adjacent gullies eroding into Pleistocene alluvium. In downstream Holocene floodplains, inundation of alluvial gullies occurred beyond the 2‐ to 5‐year recurrence interval and contributed significantly to total annual erosion. However, most gully scarp retreat at all sites was driven by direct rainfall and infiltration‐excess runoff, with the 24‐h rainfall total being the most predictive variable. The remaining variability can be explained by seasonal vegetative conditions, complex cycles of soil wetting and drying, tension crack development, near‐surface pore‐water pressure, soil block undermining from spalling and overland flow, and soil property heterogeneity. Implications for grazing management impacts on soil surface and perennial grass conditions include effects on direct rainfall erosion, water infiltration, runoff volume, water concentration along tracks, and the resistance of highly dispersible soils to gully initiation or propagation under intense tropical rainfall. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
孕震过程中孔隙压及地下水位变化的数值模拟   总被引:2,自引:2,他引:2  
张永仙  石耀霖 《地震》1994,(1):65-72
地震孕育过程中孕震区内各点的应力应变都将发生变化,介质的物性参数也将改变,因此孔隙压和地下水位随之改变。本文在研究孕震过程中包括扩容和断层蠕变效应在内的应力应变场的基础上,根据应力场与孔隙压场的耦合方程,把孔隙压场随应力场的应力变化定量地计算出来。计算结果表明,孕震过程中孔隙压的变化与应力场变的化的强弱及南的渗透性能等因素相关。孕震过程后期,震源区表现为扩容区并且孔隙压强以负压为主,此结果显示着震  相似文献   

20.
前人曾指出液化后伴随着超孔隙水压重新分配的渗透会引起流体破坏的可能性。为了研究这一现象,利用实验室三轴试验将孔隙水注入土壤检测了土壤的渗透剪切破坏。该实验是在各项异性的固结作用后保持差应力,使用孔隙水控制装置在体积不变的应变控制条件下将孔隙水注入。实验中所用的材料是在1995年神户地震时被液化的常规洁净细砂和风化的花岗岩土壤。本文以实验结果为基础,讨论了由孔隙水注入引起的渗透剪切破坏判据和导致后液化行为的剪切应变发展特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号