共查询到20条相似文献,搜索用时 15 毫秒
1.
The rigin and fate of six phthalate esters (dimethyl phthalate (DMP), diethyl phthalate (DEP), di‐n‐butyl phthalate (DnBP), butyl benzyl phthalate (BBP), di (2‐ethylhexyl) phthalate (DEHP) and di‐n‐octyl phthalate (DnOP)), were investigated during 2005 and 2006 in the densely populated Seine river estuary. Four compounds, DMP, DEP, DnBP and DEHP were detected at all the stations with DEHP (160–314 ng L?1), followed by DEP (71–181 ng L?1) and next DnBP (67–319 ng L?1), except at la Bouille, where DnBP was the second most important compound. BBP and DnOP concentrations remained low and were not found at all the stations. Considering all six phthalates, Caudebec‐en‐Caux (beginning of the salinity gradient) was the least polluted station (464 ng L?1), whereas Honfleur (771 ng L?1) and La Bouille (716 ng L?1) displayed the highest contamination levels, probably related to important industrial plants. From Caudebec‐en‐Caux to Honfleur (maximum turbidity), variation of DEHP concentration was related to that of suspended matter. In addition, the salinity rise in that area might have facilitated DEHP sorption upon particles. A significant correlation between flow magnitude and DEHP concentration was found (P < 0·01, n = 12), supporting the influence of the hydrological cycle upon contamination. Runoff contribution (56·9 kg d?1) to river contamination was confirmed by the annual evolution of phthalate concentrations in the Seine river at Poses. Concentrations of DEHP in the tributaries were in the same range as those of the Seine River (100–350 ng L?1), except for two in densely populated and industrialized areas: Robec (800 ng L?1) and Cailly (970 ng L?1). The treatment plant discharge fluxes were in the same range as those of tributaries (30·4–250 g d?1). During high flow periods, the influence of tributaries and of treatment plants seemed to play a minor part in the contamination level of the Seine river estuary. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
2.
Between 1990 and 1995 a series of bed sediment, suspended sediment and fresh floodplain samples were collected within the Seine River Basin, in France, to evaluate variations in trace element geochemistry. Average background trace element levels for the basin were determined from the collection and subsequent analyses of bed sediment samples from small rural watersheds and from a prehistoric (5000 BP) site in Paris. Concentrations are relatively low, and similar to those observed for fine‐grained bed sediments from unaffected areas in the United States and Canada. However, the concentrations are somewhat higher than the reference levels presently adopted by French water authorities for areas north of the Seine Basin, which have similar bedrock lithologies. Downstream trace element variations were monitored in 1994 and 1995 using fresh surficial floodplain samples that were collected either as dried deposits a few days after peak discharge, or immediately after peak discharge (under ≤30 cm of water). Chemical comparisons between fresh floodplain deposits, and actual suspended sediments collected during flood events, indicate that, with some caveats, the former can be used as surrogates for the latter. The floodplain sediment chemical data indicate that within the Seine Basin, from the relatively unaffected headwaters through heavily affected urban streams, trace element concentrations vary by as much as three orders of magnitude. These trace element changes appear to be the result of both increases in population as well as concomitant increases in industrial activity. (This article is a US government work and is in the public domain in the United States.) 相似文献
3.
Occurrence and distribution of phthalate esters in riverine sediments from the Pearl River Delta region,South China 总被引:5,自引:0,他引:5
Hong Liu Kunyan Cui Feng Zeng Lixuan Chen Yating Cheng Huiru Li Shuocong Li Xi Zhou Fang Zhu Gangfeng Ouyang Tiangang Luan Zunxiang Zeng 《Marine pollution bulletin》2014
Sixty-eight sediment samples collected from Dongjiang River, Xijiang River, Beijiang River and Zhujiang River in the Pearl River Delta (PRD) region, Southern China, were analyzed for 16 phthalate esters (PAEs). PAEs were detected in all riverine sediments analyzed, which indicate that PAEs are ubiquitous environmental contaminants. The Σ16PAEs concentrations in riverine sediments in the PRD region ranged from 0.567 to 47.3 μg g−1 dry weight (dw), with the mean and median concentrations of 5.34 μg g−1 dw and 2.15 μg g−1 dw, respectively. Elevated PAEs concentrations in riverine sediments in the PRD region were found in the highly urbanized and industrialized areas. Of the 16 PAEs, diisobutyl phthalate (DiBP), di-n-butyl phthalate (DnBP) and di(2-ethylhexyl) phthalate (DEHP) dominated the PAEs, with the mean and median concentrations of 1.12 μg g−1 dw, 0.420 μg g−1 dw and 3.72 μg g−1 dw, and 0.429 μg g−1 dw, 0.152 μg g−1 dw and 1.55 μg g−1 dw, respectively, and accounted for 94.2–99.7% of the Σ16PAEs concentrations. Influenced by local sources and the properties of PAEs, a gradient trend of concentrations and a fractionation of composition from more to less industrialized and urbanized areas were discovered. As compared to the results from other studies, the riverine sediments in the PRD region were severely contaminated with PAEs. Information about PAEs contamination status and its effect on the aquatic organisms in the PRD region may deserve further attention. 相似文献
4.
Baptiste Mengual Pierre Le Hir Aurélie Rivier Matthieu Caillaud Florent Grasso 《国际泥沙研究》2021,36(6):723-735
This numerical modeling study (i) assesses the influence of the sediment erosion process on the sediment dynamics and subsequent morphological changes of a mixed-sediment environment, the macrotidal Seine estuary, when non-cohesive particles are dominant within bed mixtures (non-cohesive regime), and (ii) investigates respective contributions of bedload and suspended load in these dynamics. A three dimensional (3D) process-based morphodynamic model was set up and run under realistic forcings (including tide, waves, wind, and river discharge) during a 1-year period. Applying erosion homogeneously to bed sediment in the non-cohesive regime, i.e., average erosion parameters in the erosion law (especially the erodibility parameter, E0), leads to higher resuspension of fine sediment due to the presence of coarser fractions within mixtures, compared to the case of an independent treatment of erosion for each sediment class. This results in more pronounced horizontal sediment flux (two-fold increase for sand, +30% for mud) and erosion/deposition patterns (up to a two-fold increase in erosion over shoals, generally associated with some coarsening of bed sediment). Compared to observed bathymetric changes, more relevant erosion/deposition patterns are derived from the model when independent resuspension fluxes are considered in the non-cohesive regime. These results suggest that this kind of approach may be more relevant when local grain-size distributions become heterogeneous and multimodal for non-cohesive particles. Bedload transport appears to be a non-dominant but significant contributor to the sediment dynamics of the Seine Estuary mouth. The residual bedload flux represents, on average, between 17 and 38% of the suspended sand flux, its contribution generally increasing when bed sediment becomes coarser (can become dominant at specific locations). The average orientation of residual fluxes and erosion/deposition patterns caused by bedload generally follow those resulting from suspended sediment dynamics. Sediment mass budgets cumulated over the simulated year reveal a relative contribution of bedload to total mass budgets around 25% over large erosion areas of shoals, which can even become higher in sedimentation zones. However, bedload-induced dynamics can locally differ from the dynamics related to suspended load, resulting in specific residual transport, erosion/deposition patterns, and changes in seabed nature. 相似文献
5.
Fish mortality in the middle reaches of the Pilcomayo River (Bolivia), locally called ‘borrachera’, can be observed almost every year at the onset of the rainy season. In order to study the potential causes of the ‘borrachera’, suspended sediment (SS) and selected water quality parameters have been monitored from mid‐September until mid‐December 2010. Gill samples were taken and analysed, before and during the ‘borrachera’ event on December 7th 2010. Data on river discharge were obtained from a database. During the sampling period, the river hydrology changed dramatically. At the day of the ‘borrachera’, heavy rains in upstream reaches of the river catchment changed the river from a quiet stream into a turbulent river with extremely high concentrations of SS (> 100 g l?1). This may be caused by the inundation of the entire riverbed, which causes easily erodible material, left on the riverbanks at the end of the former rainy season, to be transported by the river during the first peak discharges. As concentrations of heavy metals in filtered water samples did not show higher values during the ‘borrachera’, it is concluded that the ‘borrachera’ is unlikely to be caused by heavy metal toxicity. Results showed a strong association between the SS concentration and the ‘borrachera’. Gills of fish collected during the ‘borrachera’ were clogged with sediment to such an extent that oxygen uptake became virtually impossible. High SS concentrations are therefore considered to be the cause of this typical fish mortality phenomenon. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
6.
From 1998 to 2002 investigations were carried out to estimate both the quantity and quality (heavy metal contents) of suspended matter loads discharged into a floodplain area measuring approx. 5 km2 of the Central German river Weiße Elster, a tributary of the river Saale in the Elbe river basin. Flood sediments, suspended particulate matter, and floodplain soils were investigated especially for the main pollutants Cd, Zn, Cu, Pb, Cr, and Hg. Supplementary gamma spectroscopy examinations were performed to help to identify the age of deposits in order to estimate sedimentation rates for last decades. The recent flood sediments are contaminated by up to 33 times the geogenic background (Cd). Up to 55% of the total annual SPM load of the river Weiße Elster is relocated into the investigated retention area in the flood‐stricken year 2002. The sedimentation rates for the last 50 years vary between 0.5 mm/a and 1 mm/a in far away and rarely flooded parts and between 1 mm/a and 2 mm/a in the frequently flooded parts of the inflow of the retention area. 相似文献
7.
The HIRHAM regional climate model suggests an increase in temperature in Denmark of about 3 °C and an increase in mean annual precipitation of 6–7%, with a larger increase during winter and a decrease during summer between a control period 1961–1990 and scenario period 2071–2100. This change of climate will affect the suspended sediment transport in rivers, directly through erosion processes and increased river discharges and indirectly through changes in land use and land cover. Climate‐change‐induced changes in suspended sediment transport are modelled for five scenarios on the basis of modelled changes in land use/land cover for two Danish river catchments: the alluvial River Ansager and the non‐alluvial River Odense. Mean annual suspended sediment transport is modelled to increase by 17% in the alluvial river and by 27% in the non‐alluvial for steady‐state scenarios. Increases by about 9% in the alluvial river and 24% in the non‐alluvial river were determined for scenarios incorporating a prolonged growing season for catchment vegetation. Shortening of the growing season is found to have little influence on mean annual sediment transport. Mean monthly changes in suspended sediment transport between ? 26% and + 68% are found for comparable suspended sediment transport scenarios between the control and the scenario periods. The suspended sediment transport increases during winter months as a result of the increase in river discharge caused by the increase in precipitation, and decreases during summer and early autumn months. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
8.
Nicholas J.C. Doriean Peter R. Teasdale David T. Welsh Andrew P. Brooks William W. Bennett 《水文研究》2019,33(5):678-686
The accurate measurement of suspended sediment (<200 μm) in aquatic environments is essential to understand and effectively manage changes to sediment, nutrient, and contaminant concentrations on both temporal and spatial scales. Commonly used sampling techniques for suspended sediment either lack the ability to accurately measure sediment concentration (e.g., passive sediment samplers) or are too expensive to deploy in sufficient number to provide landscape‐scale information (e.g., automated discrete samplers). Here, we evaluate a time‐integrated suspended sediment sampling technique, the pumped active suspended sediment (PASS) sampler, which collects a sample that can be used for the accurate measurement of time‐weighted average (TWA) suspended sediment concentration and sediment particle size distribution. The sampler was evaluated against an established passive time‐integrated suspended sediment sampling technique (i.e., Phillips sampler) and the standard discrete sampling method (i.e., manual discrete sampling). The PASS sampler collected a sample representative of TWA suspended sediment concentration and particle size distribution of a control sediment under laboratory conditions. Field application of the PASS sampler showed that it collected a representative TWA suspended sediment concentration and particle size distribution during high flow events in an urban stream. The particle size distribution of sediment collected by the PASS and Phillips samplers were comparable and the TWA suspended sediment concentration of the samples collected using the PASS and discrete sampling techniques agreed well, differing by only 4% and 6% for two different high flow events. We should note that the current configuration of the PASS sampler does not provide a flow‐weighted measurement and, therefore, is not suitable for the determination of sediment loads. The PASS sampler is a simple, inexpensive, and robust in situ sampling technique for the accurate measurement of TWA suspended sediment concentration and particle size distribution. 相似文献
9.
Carole Nehme Andrew Farrant Daniel Ballesteros Dominique Todisco Joel Rodet Diana Sahy J. Michael Grappone Jean-Claude Staigre Damase Mouralis 《地球表面变化过程与地形》2020,45(8):1860-1876
Quantifying rates of river incision and continental uplift over Quaternary timescales offer the potential for modelling landscape change due to tectonic and climatic forcing. In many areas, river terraces form datable archives that help constrain the timing and rate of valley incision. However, old river terraces, with high-level deposits, are prone to weathering and often lack datable material. Where valleys are incised through karst areas, caves and sediments can be used to reconstruct the landscape evolution because they can record the elevation of palaeo-water tables and contain preserved datable material. In Normandy (N. France), the Seine River is entrenched into an extensive karstic chalk plateau. Previous estimates of valley incision were hampered by the lack of preserved datable fluvial terraces. A stack of abandoned phreatic cave passages preserved in the sides of the Seine valley can be used to reconstruct the landscape evolution of the region. Combining geomorphological observations, palaeomagnetic and U/Th dating of speleothem and sediments in eight caves along the Lower Seine valley, we have constructed a new age model for cave development and valley incision. Six identified cave levels up to ∼100 m a.s.l. were formed during the last ~1 Ma, coeval with the incision of the Seine River. Passage morphologies indicate that the caves formed in a shallow phreatic/epiphreatic setting, modified by sediment influxes. The valley's maximum age is constrained by the occurrence of late Pliocene marine sand. Palaeomagnetic dating of cave infills indicates that the highest-level caves were being infilled prior to 1.1 Ma. The evidence from the studied caves, complemented by fluvial terrace sequences, indicates that rapid river incision occurred during marine isotope stage (MIS) 28 to 20 (0.8–1 Ma), with maximal rates of ~0.30 m ka−1, dropping to ~0.08 m ka−1 between MIS 20–11 (0.8–0.4 Ma) and 0.05 m ka−1 from MIS 5 to the present time. © 2020 John Wiley & Sons, Ltd. 相似文献
10.
A quarter century of declining suspended sediment fluxes in the Mississippi River and the effect of the 1993 flood 总被引:2,自引:0,他引:2
Arthur J. Horowitz 《水文研究》2010,24(1):13-34
Annual fluxes, flow‐weighted concentrations and linear least squares trendline calculations for a number of long‐term Mississippi River Basin (MRB) sampling sites covering 1981 through 2007, whilst somewhat ‘noisy’, display long‐term patterns of decline. Annual flow‐weighted concentration plots display the same long‐term patterns of decline, but are less noisy because they reduce/eliminate variations due to interannual discharge differences. The declines appear greatest in the middle MRB, but also are evident elsewhere. The pattern for the lower Ohio River differs and may reflect ongoing construction at the Olmsted lock and dam that began in 1993 and currently is ongoing. The ‘Great Flood of 1993’ appears to have superimposed a step function (a sharp drop) on the long‐term rate of decline in suspended sediment concentrations (SSC), annual fluxes and flow‐weighted concentrations in the middle MRB at St Louis and Thebes, Missouri and Vicksburg, Mississippi, and in the lower MRB at St Francisville, Louisiana. Evidence for a step function at other sites is less substantial, but may have occurred. The step function appears to have resulted from losses in available (erodible) sediment, rather than to a reduction in discharge; hence, the MRB appears to be supply limited rather than discharge limited. These evaluations support the need for daily discharge and SSC data collections in the MRB to better address questions regarding long‐term trends in sediment‐related issues. This is apparent when the results for the Mississippi River at Thebes and St Louis sites are compared with those from other MRB sites where intensive (daily) data collections are lacking. Published in 2009 by John Wiley & Sons, Ltd. 相似文献
11.
Julien Némery Vincent Mano Alexandra Coynel Henri Etcheber Florentina Moatar Michel Meybeck Philippe Belleudy Alain Poirel 《水文研究》2013,27(17):2498-2508
Carbon and total suspended sediment (TSS) loads were investigated from April 2006 to March 2008 in the mountainous watershed of the Isère River, French Alps (5570 km2). The river bed has been highly impounded for hydroelectricity production during the last century. Hydraulic flushes are managed every year to prevent TSS storage within upstream dams. The Isère River has been instrumented for high‐frequency monitoring of water, TSS by turbidity and carbon (organic, inorganic, dissolved and particulate) in order to evaluate the impact of natural floods and hydraulic flushes on annual loads. Annual TSS load which was estimated between 1.3 and 2.3 MT y?1 (i.e. 233 to 413 T km?2 y?1) highlighted the high erodibility of the Isère watershed. Annual carbon load was estimated between 173 103 T y?1 and 199 103 T y?1 (i.e 31 to 36 T km?2 y?1). About 80% of the annual carbon loads were inorganic. The impact of hydraulic flushes on annual loads appeared limited (less than 3% for annual TSS load and about 1.5% for annual carbon load), whereas the most important natural flood event contributed to 20% of the annual TSS load and 10% of the annual carbon load. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
12.
Alpine glacial basins are a significant source and storage area for sediment exposed by glacial retreat. Recent research has indicated that short‐term storage and release of sediment in proglacial channels may control the pattern of suspended sediment transfer from these basins. Custom‐built continuously recording turbidimeters installed on a network of nine gauging sites were used to characterize spatial and temporal variability in suspended sediment transfer patterns for the entire proglacial area at Small River Glacier, British Columbia, Canada. Discharge and suspended sediment concentration were measured at 5 min intervals over the ablation season of 2000. Differences in suspended sediment transfer patterns were then extracted using multivariate statistics (principal component and cluster analysis). Results showed that each gauging station was dominated c. 80% of days by diurnal sediment transfer patterns and ‘low’ suspended sediment concentrations. ‘Irregular’ transfer patterns were generally associated with ‘high’ sediment concentrations during snowmelt and rainfall events, resulting in the transfer of up to 70% of the total seasonal suspended sediment load at some gauging stations. Suspended sediment enrichment of up to 600% from channel storage release and extrachannel inputs occurred between the glacial front and distal proglacial boundary. However, these patterns differed significantly between gauging stations as determined by the location of the gauging station within the catchment and meteorological conditions. Overall, the proglacial area was the source for up to 80% of the total suspended sediment yield transferred from the Small River Glacier basin. These results confirmed that sediment stored and released in the proglacial area, in particular from proglacial channels, was controlling suspended sediment transfer patterns. To characterize this control accurately requires multiple gauging stations with high frequency monitoring of suspended sediment concentration. Accurate characterization of this proglacial control on suspended sediment transfer may therefore aid interpretation of suspended sediment yield patterns from glacierized basins. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
13.
Assessment of suspended sediment transport in four alpine watersheds (France): influence of the climatic regime 总被引:2,自引:0,他引:2
High‐frequency water discharge and suspended sediment concentration (SSC) databases were collected for 3 years on four contrasted watersheds: the Asse and the Bléone (two Mediterranean rainfall regime watersheds) and the Romanche and the Ferrand (two rainfall–snowmelt regime watersheds). SSCs were calculated from turbidity recordings (1‐h time step), converted into SSC values. The rating curve was calculated by means of simultaneous SSC measurement taken by water sampling and turbidity recording. Violent storms during springtime and autumn were responsible for suspended sediment transport on the Asse and the Bléone rivers. On the Ferrand and the Romanche, a large share of suspended sediment transport was also caused by local storms, but 30% of annual fluxes results from snowmelt or icemelt which occurred from April to October. On each watershed, SSC up to 50 g l?1 were observed. Annual specific fluxes ranged from 450 to 800 t km?2 year?1 and 40–80% of annual suspended sediment fluxes occurred within 2% of the time. These general indicators clearly demonstrate the intensity of suspended sediment transport on these types of watersheds. Suspended sediment fluxes proved to be highly variable at the annual scale (inter‐annual variability of specific fluxes) as well as at the event scale (through a hysteresis loop in the SSC/Q relationship) on these watersheds. In both cases, water discharge and precipitations were the main processes involved in suspended sediment production and transport. The temporal and spatial variability of hydro‐meteorological processes on the watershed provides a better understanding of suspended sediment dynamics. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
14.
Chantha Oeurng Sabine Sauvage Alexandra Coynel Eric Maneux Henri Etcheber José‐Miguel Sánchez‐Pérez 《水文研究》2011,25(15):2365-2378
Water draining from a large agricultural catchment of 1 110 km2 in southwest France was sampled over an 18‐month period to determine the temporal variability in suspended sediment (SS) and dissolved (DOC) and particulate organic carbon (POC) transport during flood events, with quantification of fluxes and controlling factors, and to analyze the relationships between discharge and SS, DOC and POC. A total of 15 flood events were analyzed, providing extensive data on SS, POC and DOC during floods. There was high variability in SS, POC and DOC transport during different seasonal floods, with SS varying by event from 513 to 41 750 t; POC from 12 to 748 t and DOC from 9 to 218 t. Overall, 76 and 62% of total fluxes of POC and DOC occurred within 22% of the study period. POC and DOC export from the Save catchment amounted to 3090 t and 1240 t, equivalent to 1·8 t km?2 y?1 and 0·7 t km?2 y?1, respectively. Statistical analyses showed that total precipitation, flood discharge and total water yield were the major factors controlling SS, POC and DOC transport from the catchment. The relationships between SS, POC and DOC and discharge over temporal flood events resulted in different hysteresis patterns, which were used to deduce dissolved and particulate origins. In both clockwise and anticlockwise hysteresis, POC mainly followed the same patterns as discharge and SS. The DOC‐discharge relationship was mainly characterized by alternating clockwise and anticlockwise hysteresis due to dilution effects of water originating from different sources in the whole catchment. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
15.
Aggregation processes of fine sediments have rarely been integrated in numerical simulations of cohesive sediment transport in riverine systems. These processes, however, can significantly alter the hydrodynamic characteristics of suspended particulate matter (SPM), modifying the particle settling velocity, which is one of the most important parameters in modelling suspended sediment dynamics. The present paper presents data from field measurements and an approach to integrate particle aggregation in a hydrodynamic sediment transport model. The aggregation term used represents the interaction of multiple sediment classes (fractions) with corresponding multiple deposition behaviour. The k–ε–turbulence model was used to calculate the coefficient of vertical turbulent mixing needed for the two‐dimensional vertical‐plane simulations. The model has been applied to transport and deposition of tracer particles and natural SPM in a lake‐outlet lowland river (Spree River, Germany). The results of simulations were evaluated by comparison with field data obtained for two levels of river discharge. Experimental data for both discharge levels showed that under the prevailing uniform hydraulic conditions along the river reach, the settling velocity distribution did not change significantly downstream, whereas the amount of SPM declined. It was also shown that higher flow velocities (higher fluid shear) resulted in higher proportions of fast settling SPM fractions. We conclude that in accordance with the respective prevailing turbulence structures, typical aggregation mechanisms occur that continuously generate similar distribution patterns, including particles that settle toward the river bed and thus mainly contribute to the observed decline in the total SPM concentration. In order to determine time‐scales of aggregation and related mass fluxes between the settling velocity fractions, results of model simulations were fitted to experimental data for total SPM concentration and of settling velocity frequency distributions. The comparison with simulations for the case of non‐interacting fractions clearly demonstrated the practical significance of particle interaction for a more realistic modelling of cohesive sediment and contaminant transport. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
16.
The Mekong Basin in southeast Asia is facing rapid development, impacting its hydrology and sediment dynamics. Although the understanding of the sediment transport rates in the Mekong is gradually growing, the sediment dynamics in the lower Mekong floodplains (downstream from Kratie) are poorly understood. The aim of this study is to conduct an analysis to increase the understanding of the sediment dynamics at the Chaktomuk confluence of the Mekong River, and the Tonle Sap River in the Lower Mekong River in Cambodia. This study is based on the data from a detailed field survey over the three hydrological years (May 2008–April 2011) at the two sites (the Mekong mainstream and the Tonle Sap River) at the Chaktomuk confluence. We further compared the sediment fluxes at Chaktomuk to an upstream station (i.e. Mukdahan) with longer time series. Inflow sediment load towards the lake was lower than that of the outflow, with a ratio on average of 84%. Although annually only a small amount of sediment load from the Tonle Sap contributes to the delta (less than 15%), its share is substantial during the February–April period. The annual sediment load transport from the confluence to the delta in 2009 and 2010 accounted for 54 and 50 Mt, respectively. This was on average only 55% of the sediment fluxes measured at Mukdahan, a more upstream station. Furthermore when compared to sediment loads further downstream at the Cambodia–Vietnam border, we found that the suspended sediment flux continued to decline towards the South China Sea. Our findings thus indicate that the sediment load to the South China Sea is much lower than the previous estimate 150–160 Mt/yr. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
17.
Few hyperpycnal flows have ever been observed in marine environments although they are believed to play a critical role in sediment dispersal within estuarine and deltaic depositional systems. The paper describes hyperpycnal flows observed in situ off the Huanghe (Yellow River) mouth, their relationship to tidal cycles, and the mechanisms that drive them. Simultaneous observations at six mooring stations during a cruise off the Huanghe mouth in the flood season of 1995 suggest that hyperpycnal flows observed at the river mouth are initiated by high concentrations of sediment input from river and modulated by tides. Hyperpycnal flows started near the end of ebb tides, when near‐bottom suspended sediment concentration (SSC) increased rapidly and salinity decreased drastically (an inverse salt wedge). The median grain size of suspended particles within the hyperpycnal layer increased, causing strong stratification of the suspended sediments in the water column. Towards the end of flood tides, the hyperpycnal flow attenuated due to frictions at the upper and lower boundaries of the flow and tidal mixing, which collapsed the stratification of the water column. Both sediment concentration and median grain size of suspended particles within the bottom layer significantly decreased. The coarser sediment particles were deposited and the hyperpycnal flows stopped. The intra‐tidal behaviors of hyperpycnal flows are closely associated with the variations of SSC, salinity, and stratification of the water column. As nearly 90% of riverine sediment is delivered to the sea during the flood seasons when hyperpycnal flows are active, hyperpycnal flows at the Huanghe mouth and the river's high sediment loads have caused rapid accretion of the Huanghe delta. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
18.
A method for collecting suspended sediment samples has been developed that pumps a discharge-weighted volume of water from fixed depths at four to 40 locations across a river and separates the suspended sediment in the sample using a continuous-flow centrifuge. The efficacy of the method is evaluated by comparing the particle size distributions of sediment collected by the discharge-weighted pumping method with the particle size distributions of sediment collected by depth integration and separated by gravitational settling. The pumping method was found to undersample the suspended sand sized particles (> 63 μm) but to collect a representative sample of the suspended silt and clay sized particles (< 63 μm). The centrifuge separated the silt and clay sized particles (< 63 μm) into three fractions. Based on the average results of processing 17 samples from the Mississippi River and several of its large tributaries in 1990, about 10% of the silt and clay sized material was trapped in a centrifuge bowl-bottom sealing unit containing the nozzle and consisted of mostly medium and coarse silt from 16 to 63 μm. About 74% was retained on a Teflon liner in the centrifuge bowl and consisted of sizes from 0–1 to 63 μm. About 9% was discharged from the centrifuge in the effluent and was finer than 0–1 μm. About 7% was lost during the processes of removing the wet sediment fractions from the centrifuge, drying and weighing. The success of the discharge-weighted pumping method depends on how homogeneously the silt and clay sized particles (< 63 μm) are distributed in the vertical direction in the river. The degree of homogeneity depends on the composition and degree of aggregation of the suspended sediment particles. 相似文献
19.
Hysteresis in the relationship between suspended sediment concentration and flow during run-off events is commonly used to inform on sediment sources and hydrological pathways. Less attention, however, has been paid to comparing the water and sediment hydrographs, which provide a more direct appreciation of in-event sediment dynamics and their relationship with the upstream catchment characteristics. The aim of this study is to better understand the catchment and hydrological controls on the phasing of water and sediment discharges during events and, in particular, to explore what controls sediment concentrations late on event recessions. Continuous records of flow and turbidity data (calibrated to suspended sediment concentration) were collected from 17 catchments across New Zealand for this purpose. Relationships between event sediment yield and peak flow showed, as anticipated, higher event sediment loads were generated in pasture compared with forested catchments and were also higher from catchments in more erodible terrain. One novel result was that these differences were greater during smaller, more frequent events, whereas the loads from larger flood events tended to converge between pasture and forest catchments. Another novel result was that event sediment load tends to be evenly split between rising and falling stages of the hydrograph in pasture catchments, but forested catchments yield more of their event loads on flood recessions, probably because of delayed erosion or more sediment sources remote from the channel network. Land cover, distance of the sediment sources from the monitoring site, and size of the catchments control sediment concentrations late on event recession. Pasture-dominated and more erodible catchments show longer sediment recessions and therefore stay dirtier for longer time periods. In addition, the size of previous flood events appeared to control the extent of sediment exhaustion after the flood peaks in some catchments. 相似文献
20.
Spatiotemporal variations of suspended sediment transport in the upstream and midstream of the Yarlung Tsangpo River (the upper Brahmaputra), China 总被引:4,自引:0,他引:4 下载免费PDF全文
Xiaonan Shi Fan Zhang Xixi Lu Zhaoyin Wang Tongliang Gong Guanxing Wang Hongbo Zhang 《地球表面变化过程与地形》2018,43(2):432-443
The Yarlung Tsangpo River, which flows from west to east across the southern part of the Tibetan Plateau, is the longest river on the plateau and an important center for human habitation in Tibet. Suspended sediment in the river can be used as an important proxy for evaluating regional soil erosion and ecological and environmental conditions. However, sediment transport in the river is rarely reported due to data scarcity. Results from this study based on a daily dataset of 3 years from four main stream gauging stations confirmed the existence of great spatiotemporal variability in suspended sediment transport in the Yarlung Tsangpo River, under interactions of monsoon climate and topographical variability. Temporally, sediment transport or deposition mainly occurred during the summer months from July to September, accounting for 79% to 93% of annual gross sediment load. This coincided with the rainy season from June to August that accounted for 51% to 80% of annual gross precipitation and the flood period from July to September that accounted for approximately 60% of annual gross discharge. The highest specific sediment yield of 177.6 t/km2/yr occurred in the upper midstream with the highest erosion intensity. The lower midstream was dominated by deposition, trapping approximately 40% of total sediment input from its upstream area. Sediment load transported to the midstream terminus was 10.43 Mt/yr with a basin average specific sediment yield of 54 t/km2/yr. Comparison with other plateau‐originated rivers like the upper Yellow River, the upper Yangtze River, the upper Indus River, and the Mekong River indicated that sediment contribution from the studied area was very low. The results provided fundamental information for future studies on soil and water conservation and for the river basin management. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献