首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liwen Zhao  Wenzhi Zhao 《水文研究》2015,29(13):2983-2993
With a maize seed planting area of about 67 000 hm2, Zhangye city supplies the seeds for more than 40% of the maize planting area in China. Irrigation water is often overused to ensure the quality of the maize seeds, leading to serious water shortage problems in recent years. An accurate and convenient estimate of canopy transpiration is of particular importance to ease the problem. In this paper, leaf transpiration and sap flow in a maize field were measured in 2012 using a portable photosynthesis system and a heat balance sap flow system. Based on a large amount of meteorological data and relevant maize plant‐growing parameters, canopy transpiration was up‐scaled from both leaf transpiration (Tl) and sap flow (Tf), and also calculated by the FAO‐56 dual crop coefficient method (T). Comparing these three types of transpiration, Tf was proved to be more reliable than Tl. Taking Tf as a benchmark, the basal crop coefficient (Kcb, the key parameter of FAO‐56 dual crop coefficient method) was further adjusted and verified for the maize plants in this region. In addition, the errors when using up‐scaling methods and FAO‐56 dual crop coefficient method are summarized. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Understanding the variation and magnitude of crop coefficient (Kc) is important for accurate determination of crop evapotranspiration and water use. In this study, we calculated Kc in an irrigated maize field with ground mulching by eddy covariance evapotranspiration measurements during the whole growing periods in 2009 and 2010 in an arid region of northwest China. A semi‐empirical practical approach for estimating Kc was proposed by introducing the dynamic fraction of canopy cover and incorporating the effect of leaf senescence as a function of days after sowing. The contribution of arid advection of sensible heat resulting from irrigation to Kc and the response of Kc to canopy conductance (Gc) were investigated. The averaged values of daily Kc were lower than typical values obtained previously without mulching due to decreasing effect of mulching on Kc, with 0.82 and 0.80 for the 2 years, respectively. The maximum average Kc occurred at the heading stage, with 1.21 and 1.04 for the 2 years, respectively. The difference of Kc was attributed to the difference of leaf area index. The semi‐empirical practical approach could well estimate the variations of Kc, thus could be a robust and useful tool for the practical users and water managers. The contributions to daily Kc from the arid advection were 4.4–28.0% of the measured Kc. The Gc had stronger control on daily Kc at the early and later stages than at the middle stage. When Gc, leaf area index and relative soil extractable water were lower than the respective threshold values of 20 mm s?1, 3.0 m2 m?2 and 0.5, the daily Kc increased significantly with the increase of the three factors, and almost remained constant when the three factors were beyond the threshold values. These results are helpful for quantifying contributions of individual factors to Kc, and subsequently improving water management practices according to Kc. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Rapidly depleting unconfined aquifers are the primary source of water for irrigation on the North China Plain. Yet, despite its critical importance, groundwater recharge to the Plain remains an enigma. We introduce a one‐dimensional soil‐water‐balance model to estimate precipitation‐ and irrigation‐generated areal recharge from commonly available crop and soil characteristics and climate data. To limit input data needs and to simplify calculations, the model assumes that water flows vertically downward under a unit gradient; infiltration and evapotranspiration are separate, sequential processes; evapotranspiration is allocated to evaporation and transpiration as a function of leaf‐area index and is limited by soil‐moisture content; and evaporation and transpiration are distributed through the soil profile as exponential functions of soil and root depth, respectively. For calibration, model‐calculated water contents of 11 soil‐depth intervals from 0 to 200 cm were compared with measured water contents of loam soil at four sites in Luancheng County, Hebei Province, over 3 years (1998–2001). Each 50‐m2 site was identically cropped with winter wheat and summer maize, but received a different irrigation treatment. Average root mean‐squared error between measured and model‐calculated water content of the top 180 cm was 4·2 cm, or 9·3% of average total water content. In addition, model‐calculated evapotranspiration compared well with that measured by a large‐scale lysimeter. To test the model, 12 additional sites were simulated successfully. Model results demonstrate that drainage from the soil profile is not a constant fraction of precipitation and irrigation inputs, but rather the fraction increases as the inputs increase. Because this drainage recharges the underlying aquifer, improving irrigation efficiency by reducing seepage will not reverse water‐table declines. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
Two methods, indirect and direct, for simulating the actual evapotranspiration (E) were applied to an irrigated overhead table grape vineyard during summer, situated in the Mediterranean region (south Italy), over two successive years. The first method, indirect but more practical, uses the crop coefficient (Kc) approach and requires determination of the reference evapotranspiration E0 (FAO (Food and Agriculture Organization) method). This method underestimated on average by 17% the daily values of the actual evapotranspiration E. The analysis in this paper shows that the values of Kc for the table grapes determined by the FAO method seem to not be valid in our experimental conditions. Similar conclusions can be found in the literature for the table grape cultivated under different experimental conditions and using different training systems. The second method, is a direct method for estimating the evapotranspiration. It requires development of a model for the overhead table grape vineyard E, following the Penman–Monteith one‐step approach, and using standard meteorological variables as inputs for the determination of the canopy resistance. This method, which needs a particularly simple calibration, provided a better simulation of the hourly and daily evapotranspiration than the indirect method. In additon, the standard error of the daily values for the direct method ( ± 0 · 41 mm) was about 50% lower than that obtained for the indirect method, also when the indirect method used a locally calibrated coefficient Kc instead of a generic Kc. Both, for practical application and theoretical issues, the advantages and disadvantages linked to the use of each tested method are discussed in detail. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
6.
A cell‐based long‐term hydrological model (CELTHYM) that can be integrated with a geographical information system (GIS) was developed to predict continuous stream flow from small agricultural watersheds. The CELTHYM uses a cell‐by‐cell soil moisture balance approach. For surface runoff estimation, the curve number technique considering soil moisture on a daily basis was used, and release rate was used to estimate baseflow. Evapotranspiration was computed using the FAO modified Penman equation that considered land‐use‐based crop coefficients, soil moisture and the influence of topography on radiation. A rice paddy field water budget model was also adapted for the specific application of the model to East Asia. Model sensitivity analysis was conducted to obtain operational information about the model calibration parameters. The CELTHYM was calibrated and verified with measured runoff data from the WS#1 and WS#3 watersheds of the Seoul National University, Department of Agricultural Engineering, in Hwaseong County, Kyounggi Province, South Korea. The WS#1 watershed is comprised of about 35·4% rice paddy fields and 42·3% forest, whereas the WS#3 watershed is about 85·0% forest and 11·5% rice paddy fields. The CELTHYM was calibrated for the parameter release rate, K, and soil moisture storage coefficient, STC, and results were compared with the measured runoff data for 1986. The validation results for WS#1 considering all daily stream flow were poor with R2, E2 and RMSE having values of 0·40, ?6·63 and 9·69 (mm), respectively, but validation results for days without rainfall were statistically significant (R2 = 0·66). Results for WS#3 showed good agreement with observed data for all days, and R2, E2 and RMSE were 0·92, 0·91 and 2·23 (mm), respectively, suggesting potential for CELTHYM application to other watersheds. The direct runoff and water balance components for watershed WS#1 with significant areas of paddy fields did not perform well, suggesting that additional study of these components is needed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
The eddy covariance and energy balance method was employed to determine evapotranspiration (LE) over a wet temperate C3–C4 co‐existing grassland in Japan. After sensible heat flux (H) was estimated via the eddy covariance technique, LE was calculated as the residual of the energy budget with calibration against the direct measurements of LE by a lysimeter. Daily mean LE varied from 0·8 to 10·5 MJ d−1, with a peak at 16·5 MJ d−1 in late July to early August. Day‐to‐day and seasonal variability in LE was affected appreciably by net radiation (Rn), atmospheric vapour pressure deficit (VPD), canopy surface conductance (gc) and leaf area index (LAI). Before the canopy closure, LE responded to LAI in a linear manner. However, LE decreased with increasing LAI later in summer. Daytime variation in the decoupling coefficient (Ω) demonstrates that the canopy decoupled from the atmosphere in the morning and LE was primarily driven by the available energy, while in the afternoon the canopy partially coupled to the atmosphere so that LE was sensitive to VPD and gc. Throughout the whole measurement period, Ω was generally larger than 0·5, suggesting that the available energy contributes more to LE than VPD. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Components of the energy budget were measured continuously above a 300‐year‐old temperate mixed forest at the Changbaishan site, northeastern China, from 1 January to 31 December 2003, as a part of the ChinaFlux programme. The albedo values above the canopy were lower than most temperate forests, and the values for snow‐covered canopy were over 50% higher than for the snow‐free canopy. In winter, net radiation Rn was generally less than 5% of the summer value due to high albedo and low incoming solar radiation. The annual mean latent heat LE was 37·5 W m?2, accounting for 52% of Rn. The maximum daily evaporation was about 4·6 mm day?1 in summer. Over the year, the accumulated precipitation was 578 mm; this compares with 493 mm of evapotranspiration, which shows that more than 85% of water was returned to the atmosphere through evapotranspiration. The LE was strongly affected by the transpiration activity and increased quickly as the broadleaved trees began to foliate. The sensible heat H dropped at that time, although Rn increased. Consequently, the seasonal variation in the Bowen ratio β was clearly U‐shaped, and the minimum value (0·1) occurred on a sunny day just after rain, when most of the available energy was used for evapotranspiration. Negative β values occurred occasionally in the non‐growing season as a result of intensive radiative cooling and the presence of water on the surface. The β was very high (up to 13·0) in snow‐covered winter, when evapotranspiration was small due to low surface temperature and available soil water. Vegetation phenology and soil moisture were the key variables controlling the available energy partitioning between H and LE. Energy budget closure averaged better than 86% on a half‐hourly basis, with slightly greater closure on a daily basis. The degree of closure showed a dependence on friction velocity u*. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Measurements of sap flow, meteorological parameters, soil water content and tension were made for 4 months in a young cashew (Anacardium occidentale L.) plantation during the 2002 rainy season in Ejura, Ghana. This experiment was part of a sustainable water management project in West Africa. The Granier system was used to measure half‐hourly whole‐tree sap flow. Weather variables were observed with an automatic weather station, whereas soil moisture and tension were measured with a Delta‐T profile probe and tensiometers respectively. Clearness index (CI), a measure of the sky condition, was significantly correlated with tree transpiration (r2 = 0·73) and potential evaporation (r2 = 0·86). Both diurnal and daily stomata conductance were poorly correlated with the climatic variables. Estimated daily canopy conductance gc ranged from 4·0 to 21·2 mm s−1, with a mean value of 8·0 ± 3·3 mm s−1. Water flux variation was related to a range of environmental variables: soil water content, air temperature, solar radiation, relative humidity and vapour pressure deficit. Linear and non‐linear regression models, as well as a modified Priestley–Taylor formula, were fitted with transpiration, and the well‐correlated variables, using half‐hourly measurements. Measured and predicted transpiration using these regression models were in good agreement, with r2 ranging from 0·71 to 0·84. The computed measure of accuracy δ indicated that a non‐linear model is better than its corresponding linear one. Furthermore, solar radiation, CI, clouds and rain were found to influence tree water flux. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
The eddy covariance (EC) method was used in a 30‐month study to quantify evapotranspiration (ET) and vegetation coefficient (KCW) for a wetland on a ranch in subtropical south Florida. To evaluate the errors in ET estimates, the EC‐based ET (ETC‐EC) and the Food and Agricultural Organization (FAO) Penman–Monteith (PM) based ET (ETC‐PM) estimates (with literature crop coefficient, KC) were compared with each other. The ETC‐EC and FAO‐PM reference ET were used to develop KCW. Regression models were developed to estimate KCW using climatic and hydrologic variables. Annual and daily ETC‐EC values were 1152 and 3.27 mm, respectively. The FAO‐PM model underestimated ET by 25% with ETC‐EC being statistically higher than ETC‐PM. The KCW varied from 0.79 (December) to 1.06 (November). The mean KCW for the dry (November–April) season (0.95) was much higher than values reported for wetlands in literature; whereas for the wet (May–October) season, KCW (0.97) was closer to literature values. Higher than expected KCW values during the dry season were due to higher temperature, lower humidity and perennial wetland vegetation. Regression analyses showed that factors affecting the KCW were different during the dry (soil moisture, temperature and relative humidity) and wet (net radiation, inundation and wind speed) seasons. Separate regression models for the dry and wet seasons were developed. Evapotranspiration and KCW from this study, one of the first for the agricultural wetlands in subtropical environment, will help improve the ET estimates for similar wetlands. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Artemisia ordosica is considered as an excellent sand‐fixing plant in revegetated desert areas, which plays a pertinent role in stabilizing the mobile dunes and sustaining the desert ecosystems. Stem sap flows of about 10‐year‐old Artemisia ordosica plants were monitored continuously with heat balance method for the entire growing season in order to understand the water requirement and the effects of environmental factors on its transpiration and growth. Environment factors such as solar radiation, air temperatures, relative humidity, wind speed and precipitation were measured by the eddy covariance. Diurnal and seasonal variations of sap flow rate with different stem diameters and their correlation with meteorological factors and reference evapotranspiration were analysed. At the daily time scale, there was a significantly linear relationship between sap flow rate and reference evapotranspiration with a correlation coefficient of R2 = 0·6368. But at the hourly time scale, the relationship of measured sap flow rate and calculated reference evapotranspiration (ET0) was affected by the precipitation. A small precipitation would increase the sap flow and the ET0; however, when the precipitation is large, the sap flow and ET0 decrease. Leaf area index had a coincident variation with soil water content; both were determined by the precipitation, and meteorological factors were the most significant factors that affected the sap flow of Artemisia ordosica in the following order: solar radiation > vapour pressure deficit > relative humidity > air temperature > wind speed. The close correlation between daily sap flow rate and meteorological factors in the whole growing season would provide us an accurate estimation of the transpiration of Artemisia ordosica and rational water‐carrying capacity of sand dunes in the revegetated desert areas. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Tamarix elongata Ledeb is a desert shrub found in the desert region of Northwest China and is commonly cultivated as a sand‐holding plant in this region. To understand its water requirement and the effects of climate conditions on its growth, trunk xylem sap flows of irrigated 8‐year‐old Tamarix elongata Ledeb plants were monitored continuously with heat‐pulse sap flow meters for the entire season. Soil moisture contents at 0–300 cm layer depth were also measured with a tube type time domain reflectometry (Tube‐TDR). Meteorological factors, i.e. solar radiation, air temperature, relative humidity and wind speed were simultaneously monitored by an automatic weather station at the site. Daily and seasonal variations of the trunk sap fluxes and their correlations with the meteorological factors, reference evapotranspiration and soil moisture contents in the root‐zone were analysed. The results indicated that frost influenced the trunk sap flux greatly under irrigated conditions, although the flux generally fluctuated with the variation of environmental factors and showed a mean trunk sap flux of 4·18 l d?1. There was a significantly exponential relationship between sap flux and the reference value of crop evapotranspiration, with a correlation coefficient of R2 = 0·7172. The sap flux also had a significant correlation with the soil water contents at a depth of 150–300 cm from soil surface (R2 = 0·5014). The order of the main meteorological factors affecting the sap flux of Tamarix elongata Ledeb trees was solar radiation > air temperature > vapour pressure deficit > relative humidity > wind speed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Probabilistic water balance modelling provides a useful framework for investigating the interactions between soil, vegetation, and the atmosphere. It has been used to estimate temporal soil moisture dynamics and ecohydrological responses at a point. This study combines a nonlinear rainfall–runoff theory with probabilistic water balance model to represent varied source area runoff as a function of rainfall depth and a runoff coefficient at hillslope scale. Analytical solutions of the soil‐moisture probability density function and average water balance model are then developed. Based on a sensitivity analysis of soil moisture dynamics, we show that when varied source area runoff is incorporated, mean soil moisture is always lower and total runoff higher, compared with the original probabilistic water balance model. The increased runoff from the inclusion of varied source area runoff is mainly because of a reduction in leakage when the index of dryness is less than one and evapotranspiration when the index of dryness is greater than one. Inclusion of varied source area runoff in the model means that the actual evapotranspiration is limited by less available water (i.e. water limit), which is stricter than Budyko’s and Milly’s water limit. Application of the model to a catchment located in Western Australia showed that the method can predict annual value of actual evapotranspiration and streamflow accurately. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Jing Wang  Qiang Yu  Xuhui Lee 《水文研究》2007,21(18):2474-2492
Understanding the exchange processes of energy and carbon dioxide (CO2) in the soil–vegetation–atmosphere system is important for assessing the role of the terrestrial ecosystem in the global water and carbon cycle and in climate change. We present a soil–vegetation–atmosphere integrated model (ChinaAgrosys) for simulating energy, water and CO2 fluxes, crop growth and development, with ample supply of nutrients and in the absence of pests, diseases and weed damage. Furthermore, we test the hypotheses of whether there is any significant difference between simulations over different time steps. CO2, water and heat fluxes were estimated by the improving parameterization method of the coupled photosynthesis–stomatal conductance–transpiration model. Soil water evaporation and plant transpiration were calculated using a multilayer water and heat‐transfer model. Field experiments were conducted in the Yucheng Integrated Agricultural Experimental Station on the North China Plain. Daily weather and crop growth variables were observed during 1998–2001, and hourly weather variables and water and heat fluxes were measured using the eddy covariance method during 2002–2003. The results showed that the model could effectively simulate diurnal and seasonal changes of net radiation, sensible and latent heat flux, soil heat flux and CO2 fluxes. The processes of evapotranspiration, soil temperature and leaf area index agree well with the measured values. Midday depression of canopy photosynthesis could be simulated by assessing the diurnal change in canopy water potential. Moreover, the comparisons of simulated daily evapotranspiration and net ecosystem exchange (NEE) under different time steps indicated that time steps used by a model affect the simulated results. There is no significant difference between simulated evapotranspiration using the model under different time steps. However, simulated NEE produces large differences in the response to different time steps. Therefore, the accurate calculation of average absorbed photosynthetic active radiation is important for the scaling of the model from hourly steps to daily steps in simulating energy and CO2 flux exchanges between winter wheat and the atmosphere. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Different commonly used predictive equations for the reaeration rate coefficient (K2) have been evaluated using 231 data sets obtained from the literature and 576 data sets measured at different reaches of the River Kali in western Uttar Pradesh, India. The data sets include stream/channel velocity, bed slope, flow depth, cross‐sectional area and reaeration rate coefficient (K2), obtained from the literature and generated during the field survey of River Kali, and were used to test the applicability of the predictive equations. The K2 values computed from the predictive equations have been compared with the corresponding K2 values measured in streams/channels. The performance of the predictive equations has been evaluated using different error estimation, namely standard error (SE), normal mean error (NME), mean multiplicative error (MME) and coefficient of determination (r2). The results show that the reaeration rate equation developed by Parkhurst and Pomeroy yielded the best agreement, with the values of SE, NME, MME and r2 as 33·387, 4·62, 3·58 and 0·95, respectively, for literature data sets (case 1) and 37·567, 3·57, 2·6 and 0·95, respectively, for all the data sets (literature data sets and River Kali data sets) (case 2). Further, to minimize error estimates and improve correlation between measured and computed reaeration rate coefficients, supplementary predictive equations have been developed based on Froude number criteria and a least‐squares algorithm. The supplementary predictive equations have been verified using different error estimates and by comparing measured and computed reaeration rate coefficients for data sets not used in the development of the equations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
The accurate estimation of evapotranspiration (ET) is essential for assessing water availability and requirements of regional-scale terrestrial ecosystems, and for understanding the hydrological cycle in alpine ecosystems. In this study, two large-scale weighing lysimeters were employed to estimate the magnitude and dynamics of actual evapotranspiration in a humid alpine Kobresia meadow from January 2018 to December 2019 on the northeastern Qinghai-Tibetan Plateau (QTP). The results showed that daily ETa averaged 2.24 ± 0.10 mm day −1 throughout the study period, with values of 3.89 ± 0.14 and 0.81 ± 0.06 mm day−1 during the growing season and non-growing season, respectively. The cumulative ETa during the study period was 937.39 mm, exceeding precipitation (684.20 mm) received at the site during the same period by 37%, suggesting that almost all precipitation in the lysimeters was returned to the atmosphere by evapotranspiration. Furthermore, the cumulative ETa (805.04 mm) was almost equal to the maximum potential evapotranspiration estimated by the FAO-56 reference evapotranspiration (ET0) (801.94 mm) during the growing season, but the cumulative ETa (132.25 mm) was 113.72% less than the minimum equilibrium ETeq) (282.86 mm) during the non-growing season due to the limited surface moisture in frozen soil. The crop coefficient (Kc) also showed a distinct seasonal pattern, with a monthly average of 1.01 during the growing season. Structural equation model (SEM) and boosted regression tree (BRT) show that net radiation and air temperature were the most important factors affecting daily ETa during the whole study period and growing season, but that non-growing season ETa was dominated by soil water content and net radiation. The daily Kc was dominated by net radiation. Furthermore, both ETa and Kc were also affected by aboveground biomass.  相似文献   

18.
Information about seasonal crop water consumption is useful to develop the appropriate irrigation scheme. Measurements of energy balance components using the Bowen ratio method were made for a complete growing season at a vineyard in the arid region of northwest China. Vine in the experiment was furrow‐irrigated using a trellis system. The measured evapotranspiration was compared with estimates using the soil water balance method. It is shown that the Bowen ratio method provided accurate estimates of evapotranspiration from the vineyard and this requires that the Bowen ratio system is appropriately installed. The energy balance components showed typical diurnal pattern with peaks that occurred around the midday, except for the ground heat flux which delayed its peak by 2–3 h. The sensible heat flux was greater than the latent heat flux and followed the net radiation closely. The ratio of the latent heat flux to net radiation was low in the early growing season and increased over time. Under the limited irrigation experienced in the vineyard, the latent heat flux was controlled by available soil moisture and the total evapotranspiration in the growing season was 253 mm. The seasonal progression of the crop coefficient is similar to that reported in the literature, with the maximum occurring during the month of September. The crop coefficient can be estimated as a non‐linear function of day of year (DOY) and used to estimate evapotranspiration from vineyards in the region. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Empirical prediction of soil erosion has both scientific and practical importance. This investigation tested USLE and USLE‐based procedures to predict bare plot soil loss at the Sparacia area, in Sicily. Event soil loss per unit area, Ae, did not vary appreciably with plot length, λ, because the decrease in runoff with λ was offset by an increase in sediment concentration. Slope steepness, s, had a positive effective on Ae, and this result was associated with a runoff coefficient that did not vary appreciably with s and a sediment concentration generally increasing with s. Plot steepness did not have a statistically detectable effect on the calculations of the soil erodibility factor of both the USLE, K, and the USLE‐M, KUM, models, but a soil‐independent relationship between KUM and K was not found. The erosivity index of the USLE‐MM model performed better than the erosivity index of the Central and Southern Italy model. In conclusion, the importance of an approach allowing soil loss predictions that do not necessarily increase with λ was confirmed together with the usability of already established and largely applied relationships to predict steepness effects. Soil erodibility has to be determined with reference to the specific mathematical scheme and conversion between different schemes seems to need taking into account the soil characteristics. The USLE‐MM shows promise for further developments. The evolutionary concept applied in the development of the USLE should probably be rediscovered to improve development of soil erosion prediction tools. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Hydrologic variability during 2005–2011 was observed and analyzed at an upland oak/pine forest in the New Jersey Pinelands. The forest experienced defoliation by Gypsy moth (Lymantria dispar L.) in 2007, drought conditions in 2006 and a more severe drought in 2010. By using sap flux and eddy covariance measurements, stream discharge data from USGS, soil water changes, precipitation (P) and precipitation throughfall, a local water balance was derived. Average annual canopy transpiration (EC) during 2005–2011 was 201 mm a?1 ± 47 mm a?1. A defoliation event reduced EC by 20% in 2007 compared with the 2005–2011 mean. During drought years in 2006 and 2010, stand transpiration was reduced by 8% in July 2006 and by 18% in 2010, respectively, compared with the overall July average. During July 2007, after the defoliation and subsequent reflushing of half of the leaves, EC was reduced by 25%. This stand may experience higher sensitivity to drought when recovering from a defoliation event as evidenced by the higher reduction of EC in 2010 (post‐defoliation) compared with 2006 (pre‐defoliation). Stream water discharge was normalized to the watershed area by dividing outflow with the watershed area. It showed the greatest correlation with transpiration for time lags of 24 days and 219 days, suggesting hydrological connectivity on the watershed scale; stream water discharge increases when transpiration decreases, coinciding with leaf‐on and leaf‐off conditions. Thus, any changes in transpiration or precipitation will also alter stream water discharge and therefore water availability. Under future climate change, frequency and intensity of precipitation and episodic defoliation events may alter local water balance components in this upland oak/pine forest. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号