共查询到20条相似文献,搜索用时 19 毫秒
1.
Arjun M. Heimsath Oliver A. Chadwick Josh J. Roering Shaun R. Levick 《地球表面变化过程与地形》2020,45(3):499-510
The textbook concept of an equilibrium landscape, which posits that soil production and erosion are balanced and equal channel incision, is rarely quantified for natural systems. In contrast to mountainous, rapidly eroding terrain, low relief and slow-eroding landscapes are poorly studied despite being widespread and densely inhabited. We use three field sites along a climosequence in South Africa to quantify very slow (2-5 m/My) soil production rates that do not vary across hillslopes or with climate. We show these rates to be indistinguishable from spatially invariant catchment-average erosion rates while soil depth and chemical weathering increase strongly with rainfall across our sites. Our analyses imply landscape-scale equilibrium although the dominant means of denudation varies from physical weathering in dry climates to chemical weathering in wet climates. In the two wetter sites, chemical weathering is so significant that clay translocates both vertically in soil columns and horizontally down hillslope catenas, resulting in particle size variation and the accumulation of buried stone lines at the clay-rich depth. We infer hundred-thousand-year residence times of these stone lines and suggest that bioturbation by termites plays a key role in exhuming sediment into the mobile soil layer from significant depths below the clay layer. Our results suggest how tradeoffs in physical and chemical weathering, potentially modulated by biological processes, shape slowly eroding, equilibrium landscapes. © 2019 John Wiley & Sons, Ltd. 相似文献
2.
The interaction between particle weathering and surface armouring and its effect on erosion has been investigated. The effect of soil armouring is to decrease sediment transport with time by preferentially stripping away fine particles. On the other hand the effect of weathering, which breaks down the particles in the armour, is generally believed to increase erosion. By extending an existing armouring model, ARMOUR, and using a variety of published weathering mechanisms this interaction has been explored. The model predicts that while this is generally true, in some cases erosion can be decreased by weathering. When the particles generated by weathering were approximately of equal diameter, erosion increased while armouring decreased. When weathering produced very fine particles by spalling, erosion increased and armouring also increased. When weathering produced a range of particles from fine to coarse, the armour layer broke down and erosion decreased relative to the no‐weathering case. This latter decrease in erosion was due to the high entrainment of coarser transportable materials from the bed decreasing the sediment transport capacity of the flow. In these studies clear regimes could be identified where erosion was limited by either the energy of the flow alone (i.e. ‘transport‐limited’), or the rate of weathering (‘weathering‐limited’); however, for some mechanisms there was an interaction between the two, which we called ‘weathering/transport limited’. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
3.
Soil-covered upland landscapes comprise a critical part of the habitable world and our understanding of their evolution as a function of different climatic, tectonic, and geologic regimes is important across a wide range of disciplines. Soil production and transport play essential roles in controlling the spatial variation of soil depth and therefore hillslope hydrological processes, distribution of vegetation, and soil biological activity. Field-based confirmation of the hypothesized relationship between soil thickness and soil production is relatively recent, however, and here we quantify a direct, material strength-based influence on variable soil production across landscapes. We report clear empirical linkages between the shear strength of the parent material (its erodibility) and the overlying soil thickness. Specifically, we use a cone penetrometer and a shear vane to determine saprolite resistance to shear. We find that saprolite shear strength increases systematically with overlying soil thickness across three very different field sites where we previously quantified soil production rates. At these sites, soil production rates, determined from in situ produced beryllium-10 (10Be) and aluminum-26 (26Al), decrease with overlying soil thickness and we therefore infer that the efficiency of soil production must decrease with increasing parent material shear strength. We use our field-based data to help explain the linkages between biogenic processes, chemical weathering, hillslope hydrology, and the evolution of the Earth's surface. © 2019 John Wiley & Sons, Ltd. 相似文献
4.
This is the first of a two‐part paper exploring the coevolution of bedrock weathering and lateral flow in hillslopes using a simple low‐dimensional model based on hydraulic groundwater theory (also known as Dupuit or Boussinesq theory). Here, we examine the effect of lateral flow on the downward fluxes of water and solutes through perched groundwater at steady state. We derive analytical expressions describing the decline in the downward flux rate with depth. Using these, we obtain analytical expressions for water age in a number of cases. The results show that when the permeability field is homogeneous, the spatial structure of water age depends qualitatively on a single dimensionless number, Hi. This number captures the relative contributions to the lateral hydraulic potential gradient of the relief of the lower‐most impermeable boundary (which may be below the weathering front within permeable or incipiently weathered bedrock) and the water table. A “scaled lateral symmetry” exists when Hi is low: age varies primarily in the vertical dimension, and variations in the horizontal dimension x almost disappear when the vertical dimension z is expressed as a fraction z/H(x) of the laterally flowing system thickness H(x). Taking advantage of this symmetry, we show how the lateral dimension of the advection–diffusion‐reaction equation can be collapsed, yielding a 1‐D vertical equation in which the advective flux downward declines with depth. The equation holds even when the permeability field is not homogeneous, as long as the variations in permeability have the same scaled lateral symmetry structure. This new 1‐D approximation is used in the accompanying paper to extend chemical weathering models derived for 1‐D columns to hillslope domains. 相似文献
5.
Evolution of sandstone peak‐forest landscapes – insights from quantifying erosional processes with cosmogenic nuclides 下载免费PDF全文
Jan‐Hendrik May He‐Qing Huang Toshiyuki Fujioka David Fink Alexandru Codilean Guo‐An Yu Yuanxu Ma Gerwin Wulf Jing Gu 《地球表面变化过程与地形》2018,43(3):639-653
The sandstone peak‐forest landscape in Zhangjiajie UNESCO Global Geopark of Hunan Province, China, is characterized by >3000 vertical pillars and peak walls of up to 350 m height, representing a spectacular example of sandstone landform variety. Few studies have addressed the mechanisms and timescales of the longer‐term evolution of this landscape, and have focused on fluvial incision. We use in situ cosmogenic nuclides combined with GIS analysis to investigate the erosional processes contributing to the formation of pillars and peak‐forests, and discuss their relative roles in the formation and decay of the landscape. Model maximum‐limiting bedrock erosion rates are the highest along the narrow fluvial channels and valleys at the base of the sandstone pillars (~83–122 mm kyr?1), and lowest on the peak wall tops (~2.5 mm kyr?1). Erosion rates are highly variable and intermediate along vertical sandstone peak walls and pillars (~30 to 84 mm kyr?1). Catchment‐wide denudation rates from river sediment vary between ~26 and 96 mm kyr?1 and are generally consistent with vertical wall retreat rates. This highlights the importance of wall retreat for overall erosion in the sandstone peak‐forest. In combination with GIS‐derived erosional volumes, our results suggest that the peak‐forest formation in Zhangjiajie commenced in the Pliocene, and that the general evolution of the landscape followed our sequential refined model: (i) slow lowering rates following initial uplift; (ii) fast plateau dissection by headward knickpoint propagation along joints and faults followed by; (iii) increasing contribution of wall retreat in the well‐developed pillars and peak‐forests and a gradual decrease in overall denudation rates, leading to; (iv) the final consumption of pillars and peak‐forests. Our study provides an approach for quantifying the complex interplay between multiple geomorphic processes as required to assess the evolutionary pathways of other sandstone peak‐forest landscapes across the globe. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
6.
Benjamin C. Burke Arjun M. Heimsath Jean L. Dixon John Chappell Kyungsoo Yoo 《地球表面变化过程与地形》2009,34(6):768-785
Differences in chemical weathering extent and character are expected to exist across topographic escarpments due to spatial gradients of climatic and/or tectonic forcing. The passive margin escarpment of south‐eastern Australia has a debated but generally accepted model of propagation in which it retreated (within 40 Ma) to near its current position following rifting between Australia and New Zealand 85–100 Ma before present. We focus on this escarpment to quantify chemical weathering rates and processes and how they may provide insight into scarp evolution and retreat. We compare chemical weathering extents and rates above and below the escarpment using a mass balance approach coupling major and trace element analyses with previous measurements of denudation rates using cosmogenic nuclides (10Be and 26Al). We find a slight gradient in saprolite chemical weathering rate as a percentage of total weathering rate across the escarpment. The lowlands area, encompassing the region extending from the base of the escarpment to the coast, experiences a greater extent of chemical weathering than the highland region above the escarpment. Percents of denudation attributable to saprolite weathering average 57 ± 6% and 47 ± 7% at low and high sites respectively. Furthermore, the chemical index of alteration (CIA), a ratio of immobile to mobile oxides in granitic material that increases with weathering extent, have corresponding average values of 73·7 ± 3·9 and 65·5 ± 3·4, indicating lower extents of weathering above the escarpment. Finally, we quantify variations in the rates and extent of chemical weathering at the hillslope scale across the escarpment to suggest new insight into how climate differences and hillslope topography help drive landscape evolution, potentially overprinting longer term tectonic forcing. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
7.
The growing availability of digital topographic data and the increased reliability of precipitation forecasts invite modelling efforts to predict the timing and location of shallow landslides in hilly and mountainous areas in order to reduce risk to an ever‐expanding human population. Here, we exploit a rare data set to develop and test such a model. In a 1·7 km2 catchment a near‐annual aerial photographic coverage records just three single storm events over a 45 year period that produced multiple landslides. Such data enable us to test model performance by running the entire rainfall time series and determine whether just those three storms are correctly detected. To do this, we link a dynamic and spatially distributed shallow subsurface runoff model (similar to TOPMODEL) to an in?nite slope model to predict the spatial distribution of shallow landsliding. The spatial distribution of soil depth, a strong control on local landsliding, is predicted from a process‐based model. Because of its common availability, daily rainfall data were used to drive the model. Topographic data were derived from digitized 1 : 24 000 US Geological Survey contour maps. Analysis of the landslides shows that 97 occurred in 1955, 37 in 1982 and ?ve in 1998, although the heaviest rainfall was in 1982. Furthermore, intensity–duration analysis of available daily and hourly rainfall from the closest raingauges does not discriminate those three storms from others that did not generate failures. We explore the question of whether a mechanistic modelling approach is better able to identify landslide‐producing storms. Landslide and soil production parameters were ?xed from studies elsewhere. Four hydrologic parameters characterizing the saturated hydraulic conductivity of the soil and underlying bedrock and its decline with depth were ?rst calibrated on the 1955 landslide record. Success was characterized as the most number of actual landslides predicted with the least amount of total area predicted to be unstable. Because landslide area was consistently overpredicted, a threshold catchment area of predicted slope instability was used to de?ne whether a rainstorm was a signi?cant landslide producer. Many combinations of the four hydrological parameters performed equally well for the 1955 event, but only one combination successfully identi?ed the 1982 storm as the only landslide‐producing storm during the period 1980–86. Application of this parameter combination to the entire 45 year record successfully identi?ed the three events, but also predicted that two other landslide‐producing events should have occurred. This performance is signi?cantly better than the empirical intensity–duration threshold approach, but requires considerable calibration effort. Overprediction of instability, both for storms that produced landslides and for non‐producing storms, appears to arise from at least four causes: (1) coarse rainfall data time scale and inability to document short rainfall bursts and predict pressure wave response; (2) absence of local rainfall data; (3) legacy effect of previous landslides; and (4) inaccurate topographic and soil property data. Greater resolution of spatial and rainfall data, as well as topographic data, coupled with systematic documentation of landslides to create time series to test models, should lead to signi?cant improvements in shallow landslides forecasting. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
8.
S. T. Trudgill H. A. Viles R. Inkpen C. Moses W. Gosling T. Yates P. Collier D. I. Smith R. U. Cooke 《地球表面变化过程与地形》2001,26(10):1129-1142
Microerosion meter (MEM) measurements of the surface height of the balustrade of St Paul's Cathedral, London, have been repeated in the year 2000 following earlier measurements in 1980, 1981, 1985 and 1990. Methodological sources of error mean that while the measurements were made to 0·0001 mm, the data are reliable to two decimal places. There was a reduction in the mean erosion rate on horizontal sites from 0·045 mm a?1 in the period 1980–1990 to 0·025 mm a?1 in 1990–2000. Decreases in atmospheric SO2 levels from 20–25 ppb in 1980–1982 to around 10 ppb in 1990–2000, offer a causal explanation. The surface topography evolved more erratically in 1990–2000 than before, with much, but not all, of the more microelevated areas showing greater, and often more variable erosion. There are also indications of less erosion and more surface rises in low‐lying microareas on horizontal sites which is interpreted as possible deposition and/or microfloral growth in wetter depressions, the pattern being largely absent on a well drained vertical site. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
9.
Reconstructing rates and patterns of colluvial soil redistribution in agrarian (hummocky) landscapes
W.M. van der Meij T. Reimann V.K. Vornehm A.J.A.M. Temme J. Wallinga R. van Beek M. Sommer 《地球表面变化过程与地形》2019,44(12):2408-2422
Humans have triggered or accelerated erosion processes since prehistoric times through agricultural practices. Optically stimulated luminescence (OSL) is widely used to quantify phases and rates of the corresponding landscape change, by measuring the last moment of daylight exposure of sediments. However, natural and anthropogenic mixing processes, such as bioturbation and tillage, complicate the use of OSL as grains of different depositional ages become mixed, and grains become exposed to light even long after the depositional event of interest. Instead, OSL determines the stabilization age, indicating when sediments were buried below the active mixing zone. These stabilization ages can cause systematic underestimation when calculating deposition rates. Our focus is on colluvial deposition in a kettle hole in the Uckermark region, northeastern Germany. We took 32 samples from five locations in the colluvium filling the kettle hole to study both spatial and temporal patterns in colluviation. We combined OSL dating with advanced age modelling to determine the stabilization age of colluvial sediments. These ages were combined with an archaeological reconstruction of historical ploughing depths to derive the levels of the soil surface at the moment of stabilization; the deposition depths, which were then used to calculate unbiased deposition rates. We identified two phases of colluvial deposition. The oldest deposits (~5 ka) were located at the fringe of the kettle hole and accumulated relatively slowly, whereas the youngest deposits (<0.3 ka) rapidly filled the central kettle hole with rates of two orders of magnitude higher. We suggest that the latter phase is related to artificial drainage, facilitating accessibility in the central depression for agricultural practices. Our results show the need for numerical dating techniques that take archaeological and soil-geomorphological information into account to identify spatiotemporal patterns of landscape change, and to correctly interpret landscape dynamics in anthropogenically influenced hilly landscapes. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd. 相似文献
10.
The measurement and prediction of soil erosion is important for understanding both natural and disturbed landscape systems. In particular numerical models of soil erosion are important tools for managing landscapes as well as understanding how they have evolved over time. Over the last 40 years a variety of methods have been used to determine rates of soil loss from a landscape and these can be loosely categorized into empirical and physically based models. Alternatively, physically based landscape evolution models (LEMs) have been developed that provide information on soil erosion rates at much longer decadal or centennial scales, over large spatial scales and examine how they may respond to environmental and climatic changes. Both soil erosion LEMs are interested in similar outcomes (landscape development and sediment delivery) yet have quite different methodologies and parameterizations. This paper applies a LEM (the CAESAR model) for the first time at time and space scales where soil erosion models have largely been used. It tests the ability of the LEM to predict soil erosion on a 30 m experimental plot on a trial rehabilitated landform in the Northern Territory, Australia. It then continues to discuss the synergies and differences between soil erosion and LEMs. The results demonstrate that once calibrated for the site hydrology, predicted suspended sediment and bedload yields from CAESAR show a close correspondence in both volume and timing of field measured data. The model also predicts, at decadal scales, sediment loads close to that of field measured data. Findings indicate that the small‐scale drainage network that forms within these erosion plots is an important control on the timing and magnitude of sediment delivery. Therefore, it is important to use models that can alter the DEM to reflect changing topography and drainage network as well as having a greater emphasis on channel processes. Copyright © 2012 John Wiley & Sons, Ltd. and Commonwealth of Australia 相似文献
11.
We report erosion rates and processes, determined from in situ‐produced beryllium‐10 (10Be) and aluminum‐26 (26Al), across a soil‐mantled landscape of Arnhem Land, northern Australia. Soil production rates peak under a soil thickness of about 35 cm and we observe no soil thicknesses between exposed bedrock and this thickness. These results thus quantify a well‐defined ‘humped’ soil‐production function, in contrast to functions reported for other landscapes. We compare this function to a previously reported exponential decline of soil production rates with increasing soil thickness across the passive margin exposed in the Bega Valley, south‐eastern Australia, and found remarkable similarities in rates. The critical difference in this work was that the Arnhem Land landscapes were either bedrock or mantled with soils greater than about 35 cm deep, with peak soil production rates of about 20 m/Ma under 35–40 cm of soil, thus supporting previous theory and modeling results for a humped soil production function. We also show how coupling point‐specific with catchment‐averaged erosion rate measurements lead to a better understanding of landscape denudation. Specifically, we report a nested sampling scheme where we quantify average erosion rates from the first‐order, upland catchments to the main, sixth‐order channel of Tin Camp Creek. The low (~5 m/Ma) rates from the main channel sediments reflect contributions from the slowly eroding stony highlands, while the channels draining our study area reflect local soil production rates (~10 m/Ma off the rocky ridge; ~20 m/Ma from the soil mantled regions). Quantifying such rates and processes help determine spatial variations of soil thickness as well as helping to predict the sustainability of the Earth's soil resource under different erosional regimes. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
12.
Cosmogenic nuclides in rock, soil, and sediment are routinely used to measure denudation rates of catchments and hillslopes. Although it has been shown that these measurements are prone to biases due to chemical erosion in regolith, most studies of cosmogenic nuclides have ignored this potential source of error. Here we quantify the extent to which overlooking effects of chemical erosion introduces bias in interpreting denudation rates from cosmogenic nuclides. We consider two end‐member effects: one due to weathering near the surface and the other due to weathering at depth. Near the surface, chemical erosion influences nuclide concentrations in host minerals by enriching (or depleting) them relative to other more (or less) soluble minerals. This increases (or decreases) their residence times relative to the regolith as a whole. At depth, where minerals are shielded from cosmic radiation, chemical erosion causes denudation without influencing cosmogenic nuclide buildup. If this effect is ignored, denudation rates inferred from cosmogenic nuclides will be too low. We derive a general expression, termed the ‘chemical erosion factor’, or CEF, which corrects for biases introduced by both deep and near‐surface chemical erosion in regolith. The CEF differs from the ‘quartz enrichment factor’ of previous work in that it can also be applied to relatively soluble minerals, such as olivine. Using data from diverse climatic settings, we calculate CEFs ranging from 1.03 to 1.87 for cosmogenic nuclides in quartz. This implies that ignoring chemical erosion can lead to errors of close to 100% in intensely weathered regolith. CEF is strongly correlated with mean annual precipitation across our sites, reflecting climatic influence on chemical weathering. Our results indicate that quantifying CEFs is crucial in cosmogenic nuclide studies of landscapes where chemical erosion accounts for a significant fraction of the overall denudation. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
13.
Soil production and hillslope transport in mid‐latitudes during the last glacial–interglacial cycle: a combined data and modelling approach in northern Ardennes 下载免费PDF全文
The relative efficiency of various hillslope processes through Quaternary glacial–interglacial cycles in the mid‐latitudes is not yet well constrained. Based on a unique set of topographic and soil thickness data in the Ardennes (Belgium), we combine the new CLICHE model of climate‐dependent hillslope evolution with an inversion algorithm in order to get deeper insight into the ways and timing of hillslope dynamics under one such climatic cycle. We simulate the evolution of a synthetic hill reproducing the slope, curvature, and contributing area distributions of the hillslopes of a ~ 2500 km2 real area under a simple two‐stage 120‐kyr‐long climatic scenario with linear transitions between cold and warm stages. The inversion method samples a misfit function in the model parameter space, based on estimates of the fit of topographic derivative distributions in classes of soil thickness and of the relative frequencies of the predicted soil thickness classes. Though the inversion results show remarkable convergence patterns for most parameters, no unique solution emerges. We obtain five clusters of good fits, whose centroids are taken as acceptable model solutions. Based on the predicted time series of average denudation rate and soil thickness, plus snapshots of the soil distribution at characteristic times, we discuss these solutions and, comparing them with independent data not involved in the misfit function, we identify the most realistic scenario. Beyond providing first‐order estimates of several parameters that compare well with published data, our results show that denudation rates increase dramatically for a short time at both warm–cold and cold–warm transitions, when the mean annual temperature passes through the [0, ?5 °C] range. We also point to the overwhelming importance of solifluction in shaping hillslopes and transporting soil, and the role of depth‐dependent creep (including frost creep) throughout the climatic cycle, whereas the contributions of simple creep and overland flow are minor. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
14.
This paper examines the weathering processes that have combined to produce the distribution of soil‐regolith (SR) thickness across the Triassic Sherwood Sandstone Group outcrop (750 km2) in Nottinghamshire, UK. Archive borehole logs (n = 282) taken across the outcrop showed that SR thickness had mean and median depths of ~1·8 and 1·5 m, respectively. Cores were taken from a forested site to depths ~3 m for geochemical analysis. At this site the SR thickness was ~1·7 m. Analysis of the loss of elements, compared to bedrock using mass balance calculations (τ) showed that all the calcite and gypsum cement had been removed to depths of >3 m. Thus the major difference between the SR and the underlying saprolite was that the former exists as loose sand as opposed to a semi‐durable rock. Scanning electron microscopy (SEM) analysis of core samples suggested that the non‐durable rock or saprolite had greater cementation of clay particles. We propose that the mechanism through which the clay cement (and other interlocking grain bonds) was eased apart was through freeze–thaw processes associated with the summer ‘active layer development (ALD)’ during the last glacial activity in the UK. We tested this theory by developing a Monte Carlo simulation based on a simplified version of the Stefan equation. Current Arctic datasets of air and ground temperatures were obtained to provide reasonable starting conditions for input variables. These were combined with known data for thermal conductivity, bulk density and moisture content of the Sherwood Sandstone regolith. Model predictions (n = 1000) of the distribution of SR thickness accurately reflect the observed distribution thickness from the borehole logs. This is strong evidence that freeze–thaw and ‘ALD’ processes are major factors in determining the thickness of SR across this outcrop. British Geological Survey © NERC 2012 相似文献
15.
Using field observations and geochemical and digital terrain analyses, we describe the structure and thickness of the regolith across a climosequence on the island of Hawai‘i to gain insight into the relative roles of precipitation and the near‐surface hydrologic structure in determining weathering patterns. In the wet portion of the climosequence, where the long‐term water balance is positive, the regolith thickness reaches an observed maximum of ~40 m and appears limited by the geomorphic base‐level of the landscape. However, even within this thick regolith, distinct units of varying weathering intensity occur; the vertical ordering of which largely reflects differences in the initial permeability structure of the basalt flows rather than a systematic decrease in weathering intensity downwards from the ground surface. In the dry portion of the climosequence, where the long‐term water balance is negative, the regolith thickness is confined to ~1 m, is highly dependent on the inferred permeability structure of the basalt flows, and is independent of geomorphic base‐level. Weathering intensity also varies according to permeability structure and decreases in this thin regolith with distance beneath the ground surface. The abrupt change in regolith depth and character that coincides with the transition from net‐positive to net‐negative long‐term water balance implies that small changes in precipitation rates around a neutral water balance result in large changes in the distribution and depth of weathering. Together our observations indicate that the distribution and depth of weathering in basalts (and probably other lithologies) might be best understood by considering how precipitation interacts with the complicated near‐surface permeability structure over regolith‐forming timescales to weather rock in the vadose zone. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
16.
It has been hypothesized that many soil profiles reach a steady‐state thickness. In this work, such profiles were simulated using a one‐dimensional model of reaction with advective and diffusive solute transport. A model ‘rock’ is considered, consisting of albite that weathers to kaolinite in the presence of chemically inert quartz. The model yields three different steady‐state regimes of weathering. At the lowest erosion rates, a local‐equilibrium regime is established where albite is completely depleted in the weathering zone. This regime is equivalent to the transport‐limited regime described in the literature. With an increase in erosion rate, transition and kinetic regimes are established. In the transition regime, both albite and kaolinite are present in the weathering zone, but albite does not persist to the soil–air interface. In the weathering‐limited regime, here called the kinetic regime, albite persists to the soil–air interface. The steady‐state thickness of regolith decreases with increasing erosion rate in the local equilibrium and transition regimes, but in the kinetic regime, this thickness is independent of erosion rate. Analytical expressions derived from the model are used to show that regolith production rates decrease exponentially with regolith thickness. The steady‐state regolith thickness increases with the Darcy velocity of the pore fluid, and in the local equilibrium regime may vary markedly with small variations in this velocity and erosion rate. In the weathering‐limited regime, the temperature dependences for chemical weathering rates are related to the activation energy for the rate constant for mineral reaction and to the ΔH of dissolution, while for local equilibrium regimes they are related to the ΔH only. The model illustrates how geochemical and geomorphological observations are related for a simple compositional system. The insights provided will be useful in interpreting natural regolith profiles. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
17.
The variability of hillslope form and function is examined experimentally using a simple model catchment in which most landscape development parameters are either known or controlled. It is demonstrated that there is considerable variability in sediment output from similar catchments, subjected to the same hydrological processes, and for which the initial hillslope profiles are the same. The results demonstrate that, in the case of catchments with a linear initial hillslope profile, the sediment output is initially high but reduces through time, whereas for a concave initial profile the sediment output was smaller and relatively constant. Concave hillslope profiles also displayed reduced sediment output when compared with linear slopes with the same overall slope. Using this experimental model catchment data, the SIBERIA landscape evolution model was tested for its ability to predict temporal sediment transport. When calibrated for the rainfall and erodible material, SIBERIA is able to simulate mean temporal sediment output for the experimental catchment over a range of hillslope profiles and rainfall intensities. SIBERIA is also able to match the hillslope profile of the experimental catchments. The results of the study provide confidence in the ability of SIBERIA to predict temporal sediment output. The experimental and modelling data also demonstrate that, even with all geomorphic and hydrological variables being known and/or controlled, there is still a need for long‐term stream gauging to obtain reliable assessments of field catchment hydrology and sediment transport. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
18.
Spheroidal weathering of granite porphyry with well‐developed columnar joints by oxidation,iron precipitation,and rindlet exfoliation 下载免费PDF全文
Spheroidal weathering, one of the important rock weathering styles, has been attributed to chemical weathering by the water from joint surfaces, and mechanical aspects of the weathering have not been well addressed. We made an investigation on spheroidal weathering of Miocene granite porphyry with well‐developed columnar joints and found that this spheroidal weathering proceeds through chemical processes and accompanying mechanical processes. The investigation of the textures, physical properties, mineralogy, and chemistry of the porphyry revealed the presence of a brown band on the surface margins of corestones, representing the oxidation of pyrite and chlorite, and the precipitation of iron hydroxides, and the consequent generation of micro‐cracks within the band. During weathering, oxidation progresses inwards from joints that surround the rindlets, including both high‐angle columnar and low‐angle planar joints, and causes rounding of the unweathered interior portion of the rock. Microscopic observations of the brown band embedded with fluorescent resin show that pores are first filled with iron hydroxides, and that micro‐cracks then form parallel to the oxidation front in the outer portion of the brown band. Iron hydroxide precipitation increases the P‐wave velocity in the brown band, while micro‐crack formation decreases the tensile strength of the rock. Where the brown band has thickened to ~6 cm, the micro‐cracks are connected to one another to create continuous cracks, which separate the rindlets from the corestone. Micro‐crack formation parallel to the corestone surface may be attributed to compressive stresses generated by small amounts of volumetric expansion due to the precipitation of iron hydroxides in the brown band. Earth surface is under oxidizing environments so that precipitation of iron hydroxides commonly occurs; the spheroidal weathering in this paper is a typical example of the combination of chemical and mechanical processes under such environments. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
19.
Measuring the imprint of orographic rainfall gradients on the morphology of steady‐state numerical fluvial landscapes 下载免费PDF全文
We explore the imprint of spatial rainfall patterns on steady‐state landscapes with uniform rock uplift rate. A two‐dimensional (2D) orographic precipitation module is incorporated into the CHILD numerical landscape evolution model to provide a quantitative tool for exploring the co‐evolution of rainfall patterns and fluvial topography. Our results suggest that network organization and planform morphology are strongly impacted by rainfall patterns. Rainfall gradients that are perpendicular to a mountain range front produce narrower watersheds because channels show a tendency to flow along the rainfall gradient, rather than across it. The change in watershed shape is evidenced by smaller values of the exponent on distance in Hack's law and a less peaked width function. Narrower watersheds also lead to an increase in the valley spacing ratio and constrain trunk channels to follow a more direct path to the mountain front. Rainfall gradients also influence the distribution of topography across a watershed. Channel profiles record rainfall patterns in both the channel concavity and the channel steepness index (ksn). Across short tributaries along which rainfall rate changes little, ksn decreases systematically with tributary‐averaged rainfall rate. The hypsometric integral (HI), which increases with the amount of topography that is at relatively high elevations within a watershed, is negatively correlated with the profile concavity of the trunk channel. High rainfall rates at the ridge top lead to mainstem channels that have relatively low concavity, and watersheds with relatively higher HI in comparison with landscapes that have uniform rainfall. Finally, we contrast the impacts of rainfall patterns on landscape morphology with those resulting from a linear rock uplift gradient and uniform rainfall. Uplift patterns may have a similar impact on landscape morphology as rainfall gradients, making it challenging to decipher the relative roles of climate and tectonics on landscape evolution without a quantitative assessment of morphologic parameters. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
20.
Model‐based evaluation of impact of soil redistribution on soil organic carbon stocks in a temperate hedgerow landscape 下载免费PDF全文
Agroforestry systems are promoted for providing a number of ecosystem services and environmental benefits, including soil protection and carbon sequestration. This study proposes a modelling approach to quantify the impact of soil redistribution on soil organic carbon (SOC) storage in a temperate hedgerow landscape. Evolution of SOC stocks at the landscape scale was examined by simulating vertical and horizontal SOC transfers in the 0–105 cm soil layer due to soil redistribution by tillage and water processes. A spatially explicit SOC dynamics model (adapted from RothC‐26.3) was used, coupled with a soil‐redistribution model (LandSoil). SOC dynamics were simulated over 90 years in an agricultural hedgerow landscape dedicated to dairy farming, with a mix of cropping and grasslands. Climate and land use were simulated considering business‐as‐usual scenarios derived from existing information on the study area. A net decrease in SOC stocks was predicted at the end of the simulation period. Soil redistribution induced a net SOC loss equivalent to 2 kg C ha?1 yr?1 because of soil exportation out of the study site and an increase in SOC mineralization. Hedgerows and woods were the only land use in which soil redistribution induced net SOC storage. Soil tillage was the main process that induced soil redistribution within cultivated fields. Soil exportation out of the study area was due to erosion by water, but remained low because of the protective role of the hedgerow network. These soil transfers redistributed SOC stocks in the landscape, mostly within cultivated fields. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献