首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
杨迪雄  赵岩 《地震学报》2010,32(5):579-587
选择台湾集集地震和美国北岭地震的近断层地震动记录作为输入,考察了近断层地震动破裂向前方向性与滑冲效应引起的两种不同速度脉冲运动对单自由度体系和长周期橡胶支座隔震建筑结构抗震性能的影响.反应谱分析表明,破裂向前方向性与滑冲效应对工程结构地震响应的影响是随结构周期变化的.在中短周期段,含破裂向前方向性效应地震动的谱加速度值大于含滑冲效应地震动的谱加速度值;而在长周期段,含滑冲效应地震动的谱加速度大于含破裂向前方向性效应的谱加速度值.并且,与无脉冲地震动作用相比,含破裂向前方向性与滑冲效应脉冲的近断层地震动作用下隔震建筑的地震响应显著增大.滑冲效应引起的速度脉冲使隔震建筑底部的层间变形和楼层剪力明显增大,这意味着滑冲效应脉冲比向前方向性效应脉冲对长周期建筑结构的破坏更具危害性.  相似文献   

2.
The response of multi-degree-of-freedom (MDOF) structures with sliding supports is studied. The problem of sliding structures is a discontinuous one in that different numbers of equations of motion with varying forcing functions are required for the sliding and non-sliding phases. The numerical difficulties involved in this regard in an incremental finite element analysis can be circumvented through the introduction of a fictitious spring for the sliding support. Such a treatment enables one to study the higher mode effects on MDOF sliding structures under the excitation of harmonic or earthquake motions. The dynamic characteristics of MDOF sliding structures will be highlighted in the analysis of a four-storey shear building with sliding support.  相似文献   

3.
The dynamic behaviour of a single degree-of-freedom (DOF) equipment mounted on a sliding primary structures subjected to harmonic and earthquake ground motions is studied numerically. To deal with the discontinuity nature of sliding structural systems, in this work the fictitious spring model is adopted. With the problem formulated in a state space form, an incremental numerical scheme capable of dealing with multi-DOF sliding structural systems is proposed for solving the time history responses. Numerical examples excited by harmonic and real earthquake ground motions are considered in order to study the following three effects: (1)the variation of the frictional coefficient of the sliding support, (2)subharmonic resonance and (3)effect of tuning (i.e. when the frequency of the equipment is coincident with or close to the fundamental frequency of the primary structure) on the mounted equipment. The dynamic characteristics of the mounted equipment are highlighted in the analysis of the numerical examples. © 1997 by John Wiley & Sons, Ltd.  相似文献   

4.
Floor isolation is an alternative to base isolation for protecting a specific group of equipment installed on a single floor or room in a fixed‐base structure. The acceleration of the isolated floor should be mitigated to protect the equipment, and the displacement needs to be suppressed, especially under long‐period motions, to save more space for the floor to place equipment. To design floor isolation systems that reduce acceleration and displacement for both short‐period and long‐period motions, semi‐active control with a newly proposed method using the linear quadratic regulator (LQR) control with frequency‐dependent scheduled gain (LQRSG) is adopted. The LQRSG method is developed to account for the frequency characteristics of the input motion. It updates the control gain calculated by the LQR control based on the relationship between the control gain and dominant frequency of the input motion. The dominant frequency is detected in real time using a window method. To verify the effectiveness of the LQRSG method, a series of shake table tests is performed for a semi‐active floor isolation system with rolling pendulum isolators and a magnetic‐rheological damper. The test results show that the LQRSG method is significantly more effective than the LQR control over a range of short‐period and long‐period motions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents the results of an experimental investigation carried out to investigate the seismic performance of a two storey brick masonry house with one room in each floor. A half‐scale building constructed using single wythe clay brick masonry laid in cement sand mortar and a conventional timber floor and timber roof clad with clay tiles was tested under earthquake ground motions on a shaking table, first in the longitudinal direction and then in the transverse direction. In each direction, the building was subjected to different ground motions with gradually increasing intensity. Dynamic properties of the system were assessed through white‐noise tests after each ground motion. The building suffered increasing levels of damage as the excitations became more severe. The damage ranged from cracking to global/local rocking of different piers and partial out‐of‐plane failure of the walls. Nevertheless, the building did not collapse under base excitations with peak ground acceleration up to 0.8g. General behaviour of the tested building model during the tests is discussed, and fragility curves are developed for unreinforced masonry buildings based on the experimental results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The purpose of this paper is to investigate the ground motion characteristics of the Chi‐Chi earthquake (21 September 1999) as well as the interpretation of structural damage due to this earthquake. Over 300 strong motion records were collected from the strong motion network of Taiwan for this earthquake. A lot of near‐field ground motion data were collected. They provide valuable information on the study of ground motion characteristics of pulse‐like near‐field ground motions as well as fault displacement. This study includes: attenuation of ground motion both in PGA and spectral amplitude, principal direction, elastic and inelastic response analysis of a SDOF system subjected to near‐field ground motion collected from this event. The distribution of spectral acceleration and spectral velocity along the Chelungpu fault is discussed. Based on the mode decomposition method the intrinsic mode function of ground acceleration of this earthquake is examined. A long‐period wave with large amplitude was observed in most of the near‐source ground acceleration. The seismic demand from the recorded near‐field ground motion is also investigated with an evaluation of seismic design criteria of Taiwan Building Code. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
A series of full‐scale shaking table tests are conducted using the E‐Defense shaking table facility on a base‐isolated four‐story RC hospital structure. A variety of furniture items, medical appliances, and service utilities are placed on the hospital specimen in as realistic a manner as possible. Four ground motions are adopted, including recorded near‐fault ground motions and synthesized long‐period, long‐duration ground motions. The test results show that the base‐isolated system performed very effectively against near‐fault ground motions due to significant reduction in the floor acceleration response, and operability and functionality of the hospital service is improved significantly as compared with the case observed for the corresponding base‐fixed system. Against the long‐period ground motion, however, the hospital service is difficult to maintain, primarily because of the significant motion of furniture items and medical appliances supported by casters. Resonance accentuated large displacements and velocities on the floors of the base‐isolated system, which causes such furniture items and medical appliances to slide, sometimes more than 3 m, resulting in occasional collision with other furnitures or against the surrounding partition walls. It is notable that a key to maintaining the function of the medical facilities is to securely lock the casters of furniture and medical appliances. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
对一幢具有转换层的复杂退台式框架剪力墙高层建筑的1/35缩尺模型进行了模拟地震振动台试验,深入研究该结构的动力特性和地震反应特征.试验及理论分析表明:该结构的抗震性能基本满足现行规范要求;由于结构上部逐渐退台,因而结构顶部有较明显的鞭端效应;结构首层和结构转换层及其相邻层的剪力墙、转换层上下层柱是受力较大的区域,应当局...  相似文献   

9.
This paper evaluates the ability of simplified superstructure models, including two shear frame models and a single-story model, in predicting global responses of a full-scale five-story steel moment-frame buildings isolated by triple friction pendulum bearings subjected to earthquake motions. The investigated responses include displacement of the isolation system, roof drift, story drift, and floor acceleration. Mechanical properties of the simplified superstructure models were derived from the modal information of a verified full 3-D model. The comparison between the analytical responses and experimental responses shows that the simplified models can well predict the displacement of the isolation system. Furthermore, the shear-frame models are adequate for predicting floor acceleration when the specimen is subjected to horizontal ground motions. However, when the specimen is subjected to 3-D motions, the shear-frame models un-conservatively predict floor acceleration. The full 3-D model improves the prediction of story drift compared with the simplified models for both horizontal and 3-D motions.  相似文献   

10.
本文给出了唐山地区强震动记录应用研究的两个实例,提出了建筑结构采用时程分析时选用强震动记录的原则和方法,通过对唐山地区强震动记录的分析处理,得到了其峰值加速度及加速度反应谱,确定了本地区进行弹性时程分析时选用的强震动记录;研究了局部场地条件对地震动影响的唐山响堂三维强震动观测台阵,以唐山响堂台阵2号测井(地下32m)的基岩强震动作为输入,通过2号测井的土层剖面,利用2个一维土层地震反应分析程序,分别计算得到地表的峰值加速度和加速度反应谱,并把计算结果与同次地震相应的地表强震动记录峰值加速度与加速度反应谱进行了对比分析。  相似文献   

11.
现阶段基于性能的抗震设计思想不仅关注结构自身体系的安全,而且保护非结构构件在地震作用下使用功能完好.对于工业建筑结构,生产设备在地震作用下受损会影响震后功能恢复.加速度敏感型非结构构件一般采用楼层加速度指标来量化其地震损伤程度.以三个不同高度的钢抗弯框架规则结构体系为研究对象,采用与竖向目标谱匹配的近断层非脉冲和脉冲地...  相似文献   

12.
Vibration isolation is well recognized as an effective mitigation strategy for acceleration‐sensitive equipment subjected to earthquake. In the present paper, an equipment isolation system with nonlinear hysteretic behaviour is proposed and a methodology for the optimal design is developed. An integrable constitutive model, derived from the mathematical Duhem hysteresis operator, is adopted for the isolation system. The optimization procedure is defined through a dual‐criteria approach that involves a transmissibility criterion combined with an energy performance criterion: the former consists in limiting the absolute acceleration of the isolated equipment below an allowable threshold value; the latter, in maximizing the ratio between the energy dissipation due to hysteresis and the input energy to reduce the isolator displacements. The seismic effectiveness of the nonlinear hysteretic isolation system is numerically investigated under natural accelerograms with different frequency content and increasing levels of excitation. Both ground‐mounted and floor‐mounted equipment items are considered in the analyses; in the second case, the dynamic interaction between the equipment and its supporting structure is taken into account in the design of the isolation system, and its effects on the isolation performance and the structural response are discussed. Comparisons in terms of effectiveness and robustness with a linear isolation system with viscoelastic behaviour are eventually provided. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
A method for parametric system identification of classically damped linear system in frequency domain is adopted and extended for non‐classically damped linear systems subjected up to six components of earthquake ground motions. This method is able to work in multi‐input/multi‐output (MIMO) case. The response of a two‐degree‐of‐freedom model with non‐classical damping, excited by one‐component earthquake ground motion, is simulated and used to verify the proposed system identification method in the single‐input/multi‐output case. Also, the records of a 10 storey real building during the Northridge earthquake is used to verify the proposed system identification method in the MIMO case. In this case, at first, a single‐input/multi‐output assumption is considered for the system and modal parameters are identified, then other components of earthquake ground motions are added, respectively, and the modal parameters are identified again. This procedure is repeated until all four components of earthquake ground motions which are measured at the base level of the building are included in the identification process. The results of identification of real building show that consideration of non‐classical damping and inclusion of the multi‐components effect of earthquake ground motions can improve the least‐squares match between the finite Fourier transforms of recorded and calculated acceleration responses. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
大型储液罐摩擦摆基底隔震控制分析   总被引:2,自引:1,他引:1  
针对弹性钢制圆柱储液罐,基于Haroun-Housner模型,将连续流体质量等效为3种集中质量,分别为:对流质量、脉冲质量和刚性质量,与这些集中质量连接的相应刚度取值依赖于储罐壁和流体质量.在水平地震激励下,在储罐底部加摩擦单摆支座,给出了简化的液体 - 储罐-隔震支座的力学分析模型,建立了摩擦摆支座基底隔震体系的振动控制方程,并利用Newmark逐步积分法对控制方程进行了数值求解,研究了摩擦摆支座基底隔震的储液罐地震反应,验证了FPB隔震的有效性.  相似文献   

15.
Coulomb damping can be utilized effectively to reduce the dynamic response of structures subjected to seismic ground motions. To activate this damping, some parts of a vibrating structure are allowed to slide at rough interfaces. The dynamic response of structures provided with sliding interfaces at the base, between a floor slab and frame and in the cross bracings of a frame has been examined recently. In this paper, a simple slab sliding system provided with a spring to introduce a recovery mechanism and to reduce the sliding displacement requirement for low frequency structures has been examined. The equations of motion for this system are developed. An approach is presented to solve these coupled equations for earthquake induced ground motions. Structures with varying frequency and friction characterisics are considered and the numerical results are presented in response spectrum form. It is observed that, in low frequency structures, provision of a rather weak spring can reduce the sliding displacement requirements without significantly increasing the forces in the supporting frame and the acceleration input to supported secondary systems.  相似文献   

16.
The seismic demand parameters including the floor acceleration amplification (FAA) factors and the interstory drift ratios (IDRs) were acquired from the floor response in time history analysis of a tall building subjected to selected ground motions. The FAA factors determined in this way are larger than those given in most current code provisions, but the obtained IDRs are close to the values given in some code provisions. Imposing a series of in‐plane pre‐deformations to two glass curtain wall (CW) specimens mounted on a shaking table, the IDRs were reproduced and the FAA factors were satisfied through applications of computed floor spectra compatible motion time histories, whose peak accelerations corresponded to the FAA factors. The CW specimens performed well during the whole experimental program with almost no change in the fundamental frequencies. No visible damage was observed in the glass panels. The maximum stresses detected in each component of the CW system were smaller than the design strengths. The obtained component acceleration amplification factor approached 3.35, which is larger than the value given in the current code provisions. In conclusion, the performance of the studied CW system is seismically safe. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, response spectral characteristics of one-, two-, and three-lobe sinusoidal acceleration pulses are investigated, and some of their basic properties are derived. Furthermore, the empirical mode decomposition (EMD) method is utilized as an adaptive filter to decompose the near-fault pulse-like ground motions, which were recorded during the September 20, 1999, Chi-Chi earthquake. These ground motions contain distinct velocity pulses, and were decomposed into high-frequency (HF) and low-frequency (LF) components, from which the corresponding HF acceleration pulse (if existing) and LF acceleration pulse could be easily identified and detected. Finally, the identified acceleration pulses are modeled by simplified sinusoidal approximations, whose dynamic behaviors are compared to those of the original acceleration pulses as well as to those of the original HF and LF acceleration components in the context of elastic response spectra. It was demonstrated that it is just the acceleration pulses contained in the near-fault pulse-like ground motion that fundamentally dominate the special impulsive dynamic behaviors of such motion in an engineering sense. The motion thus has a greater potential to cause severe damage than the far-field ground motions, i.e. they impose high base shear demands on engineering structures as well as placing very high deformation demands on long-period structures.  相似文献   

18.
建立设备-结构耦合隔震体系模型,选取近断层脉冲型和非脉冲型地震波各50条,计算耦合隔震体系的动力响应。分析表明,近断层脉冲型地震动对耦合隔震体系的影响大于非脉冲型地震动,且对主体结构的影响大于对设备的影响;近断层脉冲型地震作用下的隔震层位移、层间位移、楼层加速度、设备加速度和设备位移的平均响应分别达到非脉冲型地震作用的2.25倍、2.17倍、2.24倍、1.17倍和1.20倍。进行设备-结构耦合隔震体系设计时,需考虑近断层地震动脉冲作用的影响,同时需注意引起主体结构和设备最大响应的地震动不一定相同。  相似文献   

19.
近断层地震动脉冲特性在2个水平分量上具有差异,采用平方和开方法分析了近断层脉冲地震动双向地震作用下基础隔震结构和组合隔震结构的隔震层位移,并与近断层脉冲单向地震作用进行了对比分析,结果表明:若仅地震动加速度峰值大的分量或2个方向分量均存在明显速度脉冲,则产生的隔震层位移大于单向地震动;若仅地震动加速度峰值小的分量存在明...  相似文献   

20.
High‐tech equipments engaged in the production of ultra‐precision products have very stringent vibration criteria for their functionality in normal operation conditions and their safety during an earthquake. Most previous investigations were based on simplified planar models of building structures, despite the fact that real ground motions and structures are always three‐dimensional. This paper hence presents a three‐dimensional analytical study of a hybrid platform on which high‐tech equipments are mounted for their vibration mitigation. The design methodology of the hybrid platform proposed in this study is based on dual‐level performance objectives for high‐tech equipments: safety against seismic hazard and functionality against traffic‐induced microvibration. The passive devices (represented by springs and viscous dampers) and the active actuators are designed, respectively, to meet vibration criteria corresponding to safety level and functionality level. A prototype three‐story building with high‐tech equipments installed on the second floor is selected in the case study to evaluate the effectiveness of the hybrid platform. The optimal location of the platform on the second building floor is determined during the design procedure in terms of the minimal H 2 cost function of absolute velocity response. The simulation of the coupled actuator‐platform‐building system subjected to three‐dimensional ground motions indicates that the optimally designed hybrid platform can well achieve the dual target performance and effectively mitigate vibration at both ground motion levels. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号