首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many methods developed for calibration and validation of physically based distributed hydrological models are time consuming and computationally intensive. Only a small set of input parameters can be optimized, and the optimization often results in unrealistic values. In this study we adopted a multi‐variable and multi‐site approach to calibration and validation of the Soil Water Assessment Tool (SWAT) model for the Motueka catchment, making use of extensive field measurements. Not only were a number of hydrological processes (model components) in a catchment evaluated, but also a number of subcatchments were used in the calibration. The internal variables used were PET, annual water yield, daily streamflow, baseflow, and soil moisture. The study was conducted using an 11‐year historical flow record (1990–2000); 1990–94 was used for calibration and 1995–2000 for validation. SWAT generally predicted well the PET, water yield and daily streamflow. The predicted daily streamflow matched the observed values, with a Nash–Sutcliffe coefficient of 0·78 during calibration and 0·72 during validation. However, values for subcatchments ranged from 0·31 to 0·67 during calibration, and 0·36 to 0·52 during validation. The predicted soil moisture remained wet compared with the measurement. About 50% of the extra soil water storage predicted by the model can be ascribed to overprediction of precipitation; the remaining 50% discrepancy was likely to be a result of poor representation of soil properties. Hydrological compensations in the modelling results are derived from water balances in the various pathways and storage (evaporation, streamflow, surface runoff, soil moisture and groundwater) and the contributions to streamflow from different geographic areas (hill slopes, variable source areas, sub‐basins, and subcatchments). The use of an integrated multi‐variable and multi‐site method improved the model calibration and validation and highlighted the areas and hydrological processes requiring greater calibration effort. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Z. X. Xu  J. P. Pang  C. M. Liu  J. Y. Li 《水文研究》2009,23(25):3619-3630
The Soil and Water Assessment Tool (SWAT) was used to simulate the transport of runoff and sediment into the Miyun Reservoir, Beijing in this study. The main objective was to validate the performance of SWAT and the feasibility of using this model as a simulator of runoff and sediment transport processes at a catchment scale in arid and semi‐arid area in North China, and related processes affecting water quantity and soil erosion in the catchment were simulated. The investigation was conducted using a 6‐year historical streamflow and sediment record from 1986 to 1991; the data from 1986 to 1988 was used for calibration and that from 1989 to 1991 for validation. The SWAT generally performs well and could accurately simulate both daily and monthly runoff and sediment yield. The simulated daily and monthly runoff matched the observed values satisfactorily, with a Nash‐Sutcliffe coefficient of greater than 0·6, 0·9 and a coefficient of determination 0·75, 0·9 at two outlet stations (Xiahui and Zhangjiafen stations) during calibration. These values were 0·6, 0·85 and 0·6, 0·9 during validation. For sediment simulation, the efficiency is lower than that for runoff. Even so, the Nash‐Sutcliffe coefficient and coefficient of determination were greater than 0·48 and 0·6 for monthly sediment yield during calibration, and these values were greater than 0·84 and 0·95 during validation. Sensitivity analysis shows that sensitive parameters for the simulation of discharge and sediment yield include curve number, base flow alpha factor, soil evaporation compensation factor, soil available water capacity, soil profile depth, surface flow lag time and channel re‐entrained linear parameter, etc. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
This study was conducted under the USDA‐Conservation Effects Assessment Project (CEAP) in the Cheney Lake watershed in south‐central Kansas. The Cheney Lake watershed has been identified as ‘impaired waters’ under Section 303(d) of the Federal Clean Water Act for sediments and total phosphorus. The USDA‐CEAP seeks to quantify environmental benefits of conservation programmes on water quality by monitoring and modelling. Two of the most widely used USDA watershed‐scale models are Annualized AGricultural Non‐Point Source (AnnAGNPS) and Soil and Water Assessment Tool (SWAT). The objectives of this study were to compare hydrology, sediment, and total phosphorus simulation results from AnnAGNPS and SWAT in separate calibration and validation watersheds. Models were calibrated in Red Rock Creek watershed and validated in Goose Creek watershed, both sub‐watersheds of the Cheney Lake watershed. Forty‐five months (January 1997 to September 2000) of monthly measured flow and water quality data were used to evaluate the two models. Both models generally provided from fair to very good correlation and model efficiency for simulating surface runoff and sediment yield during calibration and validation (correlation coefficient; R2, from 0·50 to 0·89, Nash Sutcliffe efficiency index, E, from 0·47 to 0·73, root mean square error, RMSE, from 0·25 to 0·45 m3 s?1 for flow, from 158 to 312 Mg for sediment yield). Total phosphorus predictions from calibration and validation of SWAT indicated good correlation and model efficiency (R2 from 0·60 to 0·70, E from 0·63 to 0·68) while total phosphorus predictions from validation of AnnAGNPS were from unsatisfactory to very good (R2 from 0·60 to 0·77, E from ? 2·38 to 0·32). The root mean square error–observations standard deviation ratio (RSR) was estimated as excellent (from 0·08 to 0·25) for the all model simulated parameters during the calibration and validation study. The percentage bias (PBIAS) of the model simulated parameters varied from unsatisfactory to excellent (from 128 to 3). This study determined SWAT to be the most appropriate model for this watershed based on calibration and validation results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Ashok Mishra  S. Kar  V. P. Singh 《水文研究》2007,21(22):3035-3045
The Hydrologic Simulation Programme‐Fortran (HSPF), a hydrologic and water quality computer model, was employed for simulating runoff and sediment yield during the monsoon months (June–October) from a small watershed situated in a sub‐humid subtropical region of India. The model was calibrated using measured runoff and sediment yield data for the monsoon months of 1996 and was validated for the monsoon months of 2000 and 2001. During the calibration period, daily‐calibrated runoff had a Nash‐Sutcliffe efficiency (ENS) value of 0·68 and during the validation period it ranged from 0·44 to 0·67. For daily sediment yield ENS was 0·71 for the calibration period and it ranged from 0·68 to 0·90 for the validation period. Sensitivity analysis was performed to assess the impact of important watershed characteristics. The model parameters obtained in this study could serve as reference values for model application in similar climatic regions, with practical implications in watershed planning and management and designing best management practices. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
The delicate balance between human utilization and sustaining its pristine biodiversity in the Mara River basin (MRB) is being threatened because of the expansion of agriculture, deforestation, human settlement, erosion and sedimentation and extreme flow events. This study assessed the applicability of the Soil and Water Assessment Tool (SWAT) model for long‐term rainfall–runoff simulation in MRB. The possibilities of combining/extending gage rainfall data with satellite rainfall estimates were investigated. Monthly satellite rainfall estimates not only overestimated but also lacked the variability of observed rainfall to substitute gage rainfall in model simulation. Uncertainties related to the quality and availability of input data were addressed. Sensitivity and uncertainty analysis was reported for alternative model components and hydrologic parameters used in SWAT. Mean sensitivity indices of SWAT parameters in MRB varied with and without observed discharge data. The manual assessment of individual parameters indicated heterogeneous response among sub‐basins of MRB. SWAT was calibrated and validated with 10 years of discharge data at Bomet (Nyangores River), Mulot (Amala River) and Mara Mines (Mara River) stations. Model performance varied from satisfactory at Mara Mines to fair at Bomet and weak at Mulot. The (Nash–Sutcliff efficiency, coefficient of determination) results of calibration and validation at Mara Mines were (0.68, 0.69) and (0.43, 0.44), respectively. Two years of moving time window and flow frequency analysis showed that SWAT performance in MRB heavily relied on quality and abundance of discharge data. Given the 5.5% area contribution of Amala sub‐basin as well as uncertainty and scarcity of input data, SWAT has the potential to simulate the rainfall runoff process in the MRB. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Simulation of watershed scale hydrologic and water quality processes is important for watershed assessments. Proper characterization of the accuracy of these simulations, particularly in cases with limited observed data, is critical. The Soil & Water Assessment Tool (SWAT) is frequently used for watershed scale simulation. The accuracy of the model was assessed by extrapolating calibration results from a well studied Coastal Plain watershed in Southwest Georgia, USA, to watersheds within the same geographic region without further calibration. SWAT was calibrated and validated on a 16.7‐km2 subwatershed within the Little River Experimental Watershed by varying six model parameters. The optimized parameter set was then applied to a watershed of similar land use and soils, a smaller watershed with different land use and soils and three larger watersheds within the same drainage system without further calibration. Simulation results with percent bias (PB) ±15% ≤ PB < ±25% and Nash–Sutcliffe efficiency (NSE) 0.50 < NSE ≤ 0.65 were considered to be satisfactory, whereas those with PB < ±10% and 0.75 < NSE ≤ 1.00 were considered very good. With these criteria, simulation results for the five non‐calibration watersheds were satisfactory to very good. Differences across watersheds were attributed to differences in soils, land use, and surficial aquifer characteristics. These results indicate that SWAT can be a useful tool for predicting streamflow for ungauged watersheds with similar physical characteristics to the calibration watershed studied here and provide an indication of the accuracy of hydrologic simulations for ungauged watersheds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Most semi‐distributed watershed water quality models divide the watershed into hydrologic response units (HRU) with no flow among them. This is problematic when watersheds are delineated to include variable source areas (VSAs) because it is the lateral flows from upslope areas to downslope areas that generate VSAs. Although hydrologic modellers have often successfully calibrated these types of models, there can still be considerable uncertainty in model results. In this paper, a topographic‐index‐based method is described and tested to distribute effective soil water holding capacity among HRUs, which can be subsequently adjusted using the watershed baseflow coefficient. The method is tested using a version of the Soil and Water Assessment Tool (SWAT) model that simulates VSA runoff and is applied to two watersheds: a New York State (NYS) watershed, and one in the head waters of the Blue Nile Basin (BNB) in Ethiopia. Daily streamflow predicted using effective soil water storage capacities based only on the topographic index were reassuringly accurate in both the NYS watershed (daily Nash Sutcliffe (E) = 0·73) and in the BNB (E = 0·70). Using the baseflow coefficient to adjust the effective soil water storage capacity only slightly improved streamflow predictions in NYS (E = 0·75) but substantially improved the BNB predictions (E = 0·80). By comparison, the standard SWAT model, which uses the traditional look‐up tables to determine a runoff curve number, performed considerably less accurately in un‐calibrated form (E = 0·51 for NYS and E = 0·45 for BNB), but improved substantially when explicitly calibrated to streamflow measurements (E = 0·76 for NYS and E = 0·67 for the BNB). The calibration method presented here provides a parsimonious, systematic approach to using established models in VSA watersheds that reduces the ambiguity inherent in model calibration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Highland agriculture is intensifying rapidly in South‐East Asia, leading to alarmingly high applications of agrochemicals. Understanding the fate of these contaminants requires carefully planned monitoring programmes and, in most cases, accurate simulation of hydrological pathways into and through water bodies. We simulate run‐off in a steep mountainous catchment in tropical South‐East Asia. To overcome calibration difficulties related to the mountainous topography, we introduce a new calibration method, named A Nash–Sutcliffe Efficiency Likelihood Match (ANSELM), that allows the assignment of optimal parameters to different hydrological response units in simulations of stream discharge with the Soil and Water Assessment Tool (SWAT) hydrological model. ANSELM performed better than the Parasol calibration tool built into SWAT in terms of model efficiency and computation time. In our simulation, the most sensitive model parameters were those related to base flow generation, surface run‐off generation, flow routing and soil moisture change. The coupling of SWAT with ANSELM yielded reasonable simulations of both wet‐season and dry‐season storm hydrographs. Nash–Sutcliffe model efficiencies for daily stream flow during two validation years were 0.77 and 0.87. These values are in the upper range or even higher than those reported for other SWAT model applications in temperate or tropical regions. The different flow components were realistically simulated by SWAT, and showed a similar behaviour in all the study years, despite inter‐annual climatic differences. The realistic partitioning of total stream flow into its contributing components will be an important factor for using this hydrological model to simulate solute transport in the future. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Temporally weighted average curve number method for daily runoff simulation   总被引:1,自引:0,他引:1  
Nam Won Kim  Jeongwoo Lee 《水文研究》2008,22(25):4936-4948
The modified Soil Conservation Service curve number (CN) method is widely used in long‐term continuous models to predict daily surface runoff. However, it has been shown that this method gives poor results in reproducing peak flows in high rainfall periods. This is because there is an inaccuracy stemming from the model algorithm as it adjusts the daily runoff curve number as a function of soil moisture content at the end of the previous day. This paper proposes an alternative daily based curve number technique that can provide better prediction of daily runoff during the high flow season. The proposed method uses the temporally weighted average curve number (TWA‐CN) to estimate daily surface runoff, while considering the effect of rainfall during a given day as well as the antecedent soil moisture condition. To test the applicability of the TWA‐CN method, it was incorporated with the long‐term, continuous simulation watershed models SWAT and SWAT‐G. Simulations were conducted for the Miho River watershed located in the middle of South Korea. The graphical displays and statistics of the determination coefficient (R2) and the Nash–Sutcliffe model efficiency (NSE) of the observed and simulated daily runoff indicated that the modified SWAT with the TWA‐CN method may provide better runoff prediction (R2 = 0·837, NSE = 0·833) than the original SWAT (R2 = 0·815, NSE = 0·824). Likewise, the determination coefficient (R2 = 0·816) and the Nash–Sutcliffe efficiency (NSE = 0·834) for the modified SWAT‐G are also higher than the original version (R2 = 0·782, NSE = 0·825). It is expected that the improved capability in predicting surface runoff using the suggested CN estimate method will provide a sound contribution to the accurate simulations of water yield. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Understanding the impacts of land‐use changes on hydrology at the watershed scale can facilitate development of sustainable water resource strategies. This paper investigates the hydrological effects of land‐use change in Zanjanrood basin, Iran. The water balance was simulated using the Soil and Water Assessment Tool (AVSWAT2000). Model calibration and uncertainty analysis were performed with sequential uncertainty fitting (SUFI‐2). Simulation results from January 1998 to December 2002 were used for parameter calibration, and then the model was validated for the period of January 2003 to December 2004. The predicted monthly streamflow matched the observed values: during calibration the correlation coefficient was 0·86 and the Nash–Sutcliffe coefficient 0·79, compared with 0·80 and 0·79, respectively, during validation. The model was used to simulate the main components of the hydrological cycle, in order to study the effects of land‐use changes in 1967, 1994 and 2007. The study reveals that during 1967 a 34·5% decrease of grassland with concurrent increases of shrubland (13·9%), rain‐fed agriculture (12·1%), bare ground (5·5%) irrigated agriculture (2·2%), and urban area (0·7%) led to a 33% increase in the amount of surface runoff and a 22% decrease in the groundwater recharge. Furthermore, the area of sub‐basins that was influenced by high runoff (14–28 mm) increased. The results indicate that the hydrological response to overgrazing and the replacing of rangelands (grassland and shrubland) with rain‐fed agriculture and bare ground (badlands) is nonlinear and exhibits a threshold effect. The runoff rises dramatically when more than 60% of the rangeland is removed. For groundwater this threshold lies at an 80% decrease in rangeland. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
This study investigates spatial patterns and temporal dynamics of aquifer–river exchange flow at a reach of the River Leith, UK. Observations of sub‐channel vertical hydraulic gradients at the field site indicate the dominance of groundwater up‐welling into the river and the absence of groundwater recharge from surface water. However, observed hydraulic heads do not provide information on potential surface water infiltration into the top 0–15 cm of the streambed as these depths are not covered by the existing experimental infrastructure. In order to evaluate whether surface water infiltration is likely to occur outside the ‘window of detection’, i.e. the shallow streambed, a numerical groundwater model is used to simulate hydrological exchanges between the aquifer and the river. Transient simulations of the successfully validated model (Nash and Sutcliff efficiency of 0·91) suggest that surface water infiltration is marginal and that the possibility of significant volumes of surface water infiltrating into non‐monitored shallow streambed sediments can be excluded for the simulation period. Furthermore, the simulation results show that with increasing head differences between river and aquifer towards the end of the simulation period, the impact of streambed topography and hydraulic conductivity on spatial patterns of exchange flow rates decreases. A set of peak flow scenarios with altered groundwater‐surface water head gradients is simulated in order to quantify the potential for surface water infiltration during characteristic winter flow conditions following the observation period. The results indicate that, particularly at the beginning of peak flow conditions, head gradients are likely to cause substantial increase in surface water infiltration into the streambed. The study highlights the potential for the improvement of process understanding of hyporheic exchange flow patterns at the stream reach scale by simulating aquifer‐river exchange fluxes with a standard numerical groundwater model and a simple but robust model structure and parameterization. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Understanding hydrological processes at catchment scale through the use of hydrological model parameters is essential for enhancing water resource management. Given the difficulty of using lump parameters to calibrate distributed catchment hydrological models in spatially heterogeneous catchments, a multiple calibration technique was adopted to enhance model calibration in this study. Different calibration techniques were used to calibrate the Soil and Water Assessment Tool (SWAT) model at different locations along the Logone river channel. These were: single-site calibration (SSC); sequential calibration (SC); and simultaneous multi-site calibration (SMSC). Results indicate that it is possible to reveal differences in hydrological behavior between the upstream and downstream parts of the catchment using different parameter values. Using all calibration techniques, model performance indicators were mostly above the minimum threshold of 0.60 and 0.65 for Nash Sutcliff Efficiency (NSE) and coefficient of determination (R 2) respectively, at both daily and monthly time-steps. Model uncertainty analysis showed that more than 60% of observed streamflow values were bracketed within the 95% prediction uncertainty (95PPU) band after calibration and validation. Furthermore, results indicated that the SC technique out-performed the other two methods (SSC and SMSC). It was also observed that although the SMSC technique uses streamflow data from all gauging stations during calibration and validation, thereby taking into account the catchment spatial variability, the choice of each calibration method will depend on the application and spatial scale of implementation of the modelling results in the catchment.  相似文献   

13.
Integrated river basin models should provide a spatially distributed representation of basin hydrology and transport processes to allow for spatially implementing specific management and conservation measures. To accomplish this, the Soil and Water Assessment Tool (SWAT) was modified by integrating a landscape routing model to simulate water flow across discretized routing units. This paper presents a grid‐based version of the SWAT landscape model that has been developed to enhance the spatial representation of hydrology and transport processes. The modified model uses a new flow separation index that considers topographic features and soil properties to capture channel and landscape flow processes related to specific landscape positions. The resulting model is spatially fully distributed and includes surface, lateral and groundwater fluxes in each grid cell of the watershed. Furthermore, it more closely represents the spatially heterogeneous distributed flow and transport processes in a watershed. The model was calibrated and validated for the Little River Watershed (LRW) near Tifton, Georgia (USA). Water balance simulations as well as the spatial distribution of surface runoff, subsurface flow and evapotranspiration are examined. Model results indicate that groundwater flow is the dominant landscape process in the LRW. Results are promising, and satisfactory output was obtained with the presented grid‐based SWAT landscape model. Nash–Sutcliffe model efficiencies for daily stream flow were 0.59 and 0.63 for calibration and validation periods, and the model reasonably simulates the impact of the landscape position on surface runoff, subsurface flow and evapotranspiration. Additional revision of the model will likely be necessary to adequately represent temporal variations of transport and flow processes in a watershed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Abandoned underground mines (AUM) have caused dramatic environmental effects that are closely linked to regional sustainability. This paper explores the potential hydrological impact of AUM in the Monday Creek Watershed, a typically mined area in Appalachian region, using the Soil and Water Assessment Tool (SWAT 2005) model and Sequential Uncertainty Fitting (SUFI‐2), calibrated at both the global and local scales. The locally calibrated model better incorporates those key parameters relevant to AUM for specific sub‐basins and hydrologic response units. Data from the years 2003–2004 were used for calibration and 2005–2006 for validation. The results were quite satisfactory; both the coefficient of determination (R2) and the Nash–Sutcliffe efficiency statistic were over 0.80. The potential influences of AUM were assessed by modelling an alternative scenario assuming no AUM for the period 2003–2009. Results show that the hydrological process of lateral subsurface flow plays a dominant role in linking AUM to overall watershed hydrology. The potential hydrological impact of AUM is an increased annual lateral flow of 82.1%, and a decrease in annual surface flow by 15%, leading to an increase of 16.9% in annual water yield for the Monday Creek Watershed. The seasonal fluctuation of water yield has a similar trend to lateral flow, decreasing from March to August and increasing from August to January. Higher volume, higher flow peaks and higher recession constants characterized the hydrograph of daily streamflow from AUM. The results indicate that more emphasis should be put on lateral flow for further study of acid mine drainage and flooding control in those watersheds with AUM. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Uncertainty is inherent in modelling studies. However, the quantification of uncertainties associated with a model is a challenging task, and hence, such studies are somewhat limited. As distributed or semi‐distributed hydrological models are being increasingly used these days to simulate hydrological processes, it is vital that these models should be equipped with robust calibration and uncertainty analysis techniques. The goal of the present study was to calibrate and validate the Soil and Water Assessment Tool (SWAT) model for simulating streamflow in a river basin of Eastern India, and to evaluate the performance of salient optimization techniques in quantifying uncertainties. The SWAT model for the study basin was developed and calibrated using Parameter Solution (ParaSol), Sequential Uncertainty Fitting Algorithm (SUFI‐2) and Generalized Likelihood Uncertainty Estimation (GLUE) optimization techniques. The daily observed streamflow data from 1998 to 2003 were used for model calibration, and those for 2004–2005 were used for model validation. Modelling results indicated that all the three techniques invariably yield better results for the monthly time step than for the daily time step during both calibration and validation. The model performances for the daily streamflow simulation using ParaSol and SUFI‐2 during calibration are reasonably good with a Nash–Sutcliffe efficiency and mean absolute error (MAE) of 0.88 and 9.70 m3/s for ParaSol, and 0.86 and 10.07 m3/s for SUFI‐2, respectively. The simulation results of GLUE revealed that the model simulates daily streamflow during calibration with the highest accuracy in the case of GLUE (R2 = 0.88, MAE = 9.56 m3/s and root mean square error = 19.70 m3/s). The results of uncertainty analyses by SUFI‐2 and GLUE were compared in terms of parameter uncertainty. It was found that SUFI‐2 is capable of estimating uncertainties in complex hydrological models like SWAT, but it warrants sound knowledge of the parameters and their effects on the model output. On the other hand, GLUE predicts more reliable uncertainty ranges (R‐factor = 0.52 for daily calibration and 0.48 for validation) compared to SUFI‐2 (R‐factor = 0.59 for daily calibration and 0.55 for validation), though it is computationally demanding. Although both SUFI‐2 and GLUE appear to be promising techniques for the uncertainty analysis of modelling results, more and more studies in this direction are required under varying agro‐climatic conditions for assessing their generic capability. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A continuous Soil Conservation Service (SCS) curve number (CN) method that considers time‐varied SCS CN values was developed based on the original SCS CN method with a revised soil moisture accounting approach to estimate run‐off depth for long‐term discontinuous storm events. The method was applied to spatially distributed long‐term hydrologic simulation of rainfall‐run‐off flow with an underlying assumption for its spatial variability using a geographic information systems‐based spatially distributed Clark's unit hydrograph method (Distributed‐Clark; hybrid hydrologic model), which is a simple few parameter run‐off routing method for input of spatiotemporally varied run‐off depth, incorporating conditional unit hydrograph adoption for different run‐off precipitation depth‐based direct run‐off flow convolution. Case studies of spatially distributed long‐term (total of 6 years) hydrologic simulation for four river basins using daily NEXRAD quantitative precipitation estimations demonstrate overall performances of Nash–Sutcliffe efficiency (ENS) 0.62, coefficient of determination (R2) 0.64, and percent bias 0.33% in direct run‐off and ENS 0.71, R2 0.72, and percent bias 0.15% in total streamflow for model result comparison against observed streamflow. These results show better fit (improvement in ENS of 42.0% and R2 of 33.3% for total streamflow) than the same model using spatially averaged gauged rainfall. Incorporation of logic for conditional initial abstraction in a continuous SCS CN method, which can accommodate initial run‐off loss amounts based on previous rainfall, slightly enhances model simulation performance; both ENS and R2 increased by 1.4% for total streamflow in a 4‐year calibration period. A continuous SCS CN method‐based hybrid hydrologic model presented in this study is, therefore, potentially significant to improved implementation of long‐term hydrologic applications for spatially distributed rainfall‐run‐off generation and routing, as a relatively simple hydrologic modelling approach for the use of more reliable gridded types of quantitative precipitation estimations.  相似文献   

17.
18.
A cell‐based long‐term hydrological model (CELTHYM) that can be integrated with a geographical information system (GIS) was developed to predict continuous stream flow from small agricultural watersheds. The CELTHYM uses a cell‐by‐cell soil moisture balance approach. For surface runoff estimation, the curve number technique considering soil moisture on a daily basis was used, and release rate was used to estimate baseflow. Evapotranspiration was computed using the FAO modified Penman equation that considered land‐use‐based crop coefficients, soil moisture and the influence of topography on radiation. A rice paddy field water budget model was also adapted for the specific application of the model to East Asia. Model sensitivity analysis was conducted to obtain operational information about the model calibration parameters. The CELTHYM was calibrated and verified with measured runoff data from the WS#1 and WS#3 watersheds of the Seoul National University, Department of Agricultural Engineering, in Hwaseong County, Kyounggi Province, South Korea. The WS#1 watershed is comprised of about 35·4% rice paddy fields and 42·3% forest, whereas the WS#3 watershed is about 85·0% forest and 11·5% rice paddy fields. The CELTHYM was calibrated for the parameter release rate, K, and soil moisture storage coefficient, STC, and results were compared with the measured runoff data for 1986. The validation results for WS#1 considering all daily stream flow were poor with R2, E2 and RMSE having values of 0·40, ?6·63 and 9·69 (mm), respectively, but validation results for days without rainfall were statistically significant (R2 = 0·66). Results for WS#3 showed good agreement with observed data for all days, and R2, E2 and RMSE were 0·92, 0·91 and 2·23 (mm), respectively, suggesting potential for CELTHYM application to other watersheds. The direct runoff and water balance components for watershed WS#1 with significant areas of paddy fields did not perform well, suggesting that additional study of these components is needed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
Southeastern Brazil is characterized by seasonal rainfall variability. This can have a great social, economic, and environmental impact due to both excessive and deficient water availability. During 2014 and 2015, the region experienced one of the most severe droughts since 1960. The resulting water crisis has seriously affected water supply to the metropolitan region of São Paulo and hydroelectric power generation throughout the entire country. This research considered the upstream basins of the southeastern Brazilian reservoirs Cantareira (2,279 km2; water supply) and Emborcação (29,076 km2), Três Marias (51,576 km2), Furnas (52,197 km2), and Mascarenhas (71,649 km2; hydropower) for hydrological modelling. It made the first attempt at configuring a season‐based probability‐distributed model (PDM‐CEMADEN) for simulating different hydrological processes during wet and dry seasons. The model successfully reproduced the intra‐annual and interannual variability of the upstream inflows during 1985–2015. The performance of the model was very satisfactory not only during the wet, dry, and transitional seasons separately but also during the whole period. The best performance was obtained for the upstream basin of Furnas, as it had the highest quality daily precipitation and potential evapotranspiration data. The Nash–Sutcliffe efficiency and logarithmic Nash–Sutcliffe efficiency were 0.92 and 0.93 for the calibration period 1984–2001, 0.87 and 0.88 for the validation period 2001–2010, and 0.93 and 0.90 for the validation period 2010–2015, respectively. Results indicated that during the wet season, the upstream basins have a larger capacity and variation of soil water storage, a larger soil water conductivity, and quicker surface water flow than during the dry season. The added complexity of configuring a season‐based PDM‐CEMADEN relative to the traditional model is well justified by its capacity to better reproduce initial conditions for hydrological forecasting and prediction. The PDM‐CEMADEN is a simple, efficient, and easy‐to‐use model, and it will facilitate early decision making and implement adaptation measures relating to disaster prevention for reservoirs with large‐sized upstream basins.  相似文献   

20.
The Soil and Water Assessment Tool (SWAT) is a physically‐based hydrologic model developed for agricultural watersheds, which has been infrequently validated for forested watersheds, particularly those with deep overwinter snow accumulation and abundant lakes and wetlands. The goal of this study was to determine the applicability of SWAT for modelling streamflow in two watersheds of the Ontonagon River basin of northern Michigan which differ in proportion of wetland and lake area. The forest‐dominated East Branch watershed contains 17% wetland and lake area, whereas the wetland/lake‐dominated Middle Branch watershed contains 26% wetland and lake area. The specific objectives were to: (1) calibrate and validate SWAT models for the East Branch and Middle Branch watersheds to simulate monthly stream flow, and (2) compare the effects of wetland and lake abundance on the magnitude and timing of streamflow. Model calibration and validation was satisfactory, as determined by deviation of discharge D and Nash and Sutcliffe coefficient values E that compared simulated monthly mean discharge versus measured monthly mean discharge. Streamflow simulation discrepancies occurred during summer and fall months and dry years. Several snow melting parameters were found to be critical for the SWAT simulation: TIMP (snow temperature lag factor) and SMFMX and SMFMN (melting factors). Snow melting parameters were not transferable between adjacent watersheds. Differences in seasonal pattern of long‐term monthly streamflow were found, with the forest‐dominated watershed having a higher peak flow during April but a lower flow during the remainder of the year in comparison to the wetland and lake‐dominated watershed. The results suggested that a greater proportion of wetland and lake area increases the capacity of a watershed to impound surface runoff and to delay storm and snow melting events. Representation of wetlands and lakes in a watershed model is required to simulate monthly stream flow in a wetland/lake‐dominated watershed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号