首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We compare two approaches to modelling floodplain inundation: a raster‐based approach, which uses a relatively simple process representation, with channel flows being resolved separately from the floodplain using either a kinematic or diffusive wave approximation, and a finite‐element hydraulic model aiming to solve the full two‐dimensional shallow‐water equations. A flood event on a short (c. 4 km) reach of the upper River Thames in the UK is simulated, the models being validated against inundation extent as determined from satellite synthetic aperture radar (SAR) imagery. The unconstrained friction parameters are found through a calibration procedure, where a measure of fit between predicted and observed shorelines is maximized. The raster and finite‐element models offer similar levels of performance, both classifying approximately 84% of the model domain correctly, compared with 65% for a simple planar prediction of water surface elevation. Further discrimination between models is not possible given the errors in the validation data. The simple raster‐based model is shown to have considerable advantages in terms of producing a straightforward calibration process, and being robust with respect to channel specification. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
Remotely sensed land cover was used to generate spatially‐distributed friction coefficients for use in a two‐dimensional model of flood inundation. Such models are at the forefront of research into the prediction of river flooding. Standard practice, however, is to use single (static) friction coefficients on both the channel and floodplain, which are varied in a calibration procedure to provide a “best fit” to a known inundation extent. Spatially‐distributed friction provides a physically grounded estimate of friction that does not require fitting to a known inundation extent, but which can be fitted if desired. Remote sensing offers the opportunity to map these friction coefficients relatively straightforwardly and for low cost. Inundation was predicted using the LISFLOOD‐FP model for a reach on the River Nene, UK. Friction coefficients were produced from land cover predicted from Landsat TM imagery using both ML and fuzzy c‐means classifiction. The elevetion data used were from combined contour and differential global positioning system (GPS) elevation data. Predicted inundation using spatially‐distributed and static friction were compared. Spatially‐distributed friction had the greatest effect on the timing of flood inundation, but a small effect on predicted inundation extent. The results indicate that spatially‐distributed friction should be considered where the timing of initial flooding (e.g. for early warning) is important. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
A prototype two-dimensional finite element flow model for depth-averaged free surface flows was developed for floodplain environments. Limited refinement of the model's physical representation was undertaken and the enhanced scheme applied to an 11 km river channel/floodplain reach in the U.K. Preliminary model results indicate that this modelling approach can be used to identify dynamic variations in the flow field parameters over length scales of the order of 10-100 m. Potentially, such data have the ability to permit detailed analysis of short-term floodplain sedimentary dynamics.  相似文献   

4.
Recent years have been marked by a continuous availability of spatial SAR data since the launch of the European remote sensing satellite (ERS-1) in 1991. Consequently, remote sensing techniques now offer an opportunity to map flood inundation fields caused by river overflow or waterlogging in environments characterized by frequent cloud cover. Indeed, inundation fields can clearly be seen on ERS-1 SAR images taken during flooding periods. However, such an identification can be constrained by the similarity in behaviour between water surfaces and other features of the landscape such as extended asphalt areas, permanent water bodies and less illuminated slopes. For consistent flood inundation extent mapping a more robust approach is required. This is provided by a conceptual flood inundation index that is physically sound in relation to radar imaging. Moreover, this index has proved to be useful for highlighting soils located within inundation fields and having significantly different internal drainage. The results achieved in the framework of the research must be seen in the context of intensive use of remote sensing data to support decision methods for sustainable management of land and water resources. Such decision support methods could be provided by river hydraulic models aimed at assessing environmental effects of inundation floods and at early flood warning systems. © 1997 John Wiley & Sons, Ltd.  相似文献   

5.
Remote sensing of discharge and river stage from space provides us with a promising alternative approach to monitor watersheds, no matter if they are ungauged, poorly gauged, or fully gauged. One approach is to estimate river stage from satellite measured inundation area based on the inundation area – river stage relationship (IARSR). However, this approach is not easy to implement because of a lack of data for constructing the IARSR. In this study, an innovative and robust approach to construct the IARSR from digital elevation model (DEM) data was developed and tested. It was shown that the constructed IARSR from DEM data could be used to retrieve water level or river stage from satellite‐measured inundation area. To reduce the uncertainty in the estimated inundation area, a dual‐thresholding method was proposed. The first threshold is the lower limit of pixel value for classifying water body pixels with a relatively high‐level certainty. The second threshold is the upper limit of pixel value for classifying potentially flooded pixels. All pixels with values between the first threshold and the second threshold and adjacent to the classified water body pixels may be partially flooded. A linear interpolation method was used to estimate the wetted area of each partially flooded pixel. In applying the constructed IARSR to the estimated inundation areas from 11 Landsat TM images, 11 water levels were obtained. The root mean square error (RMSE) of the estimated water levels compared with the observed water levels at the US Geological Survey (USGS) gauging station on the Trinity River at Liberty in Liberty County, Texas, is about 0.38 m. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
A need for more accurate flood inundation maps has recently arisen because of the increasing frequency and extremity of flood events. The accuracy of flood inundation maps is determined by the uncertainty propagated from all of the variables involved in the overall process of flood inundation modelling. Despite our advanced understanding of flood progression, it is impossible to eliminate the uncertainty because of the constraints involving cost, time, knowledge, and technology. Nevertheless, uncertainty analysis in flood inundation mapping can provide useful information for flood risk management. The twin objectives of this study were firstly to estimate the propagated uncertainty rates of key variables in flood inundation mapping by using the first‐order approximation method and secondly to evaluate the relative sensitivities of the model variables by using the Hornberger–Spear–Young (HSY) method. Monte Carlo simulations using the Hydrologic Engineering Center's River Analysis System and triangle‐based interpolation were performed to investigate the uncertainty arising from discharge, topography, and Manning's n in the East Fork of the White River near Seymour, Indiana, and in Strouds Creek in Orange County, North Carolina. We found that the uncertainty of a single variable is propagated differently to the flood inundation area depending on the effects of other variables in the overall process. The uncertainty was linearly/nonlinearly propagated corresponding to valley shapes of the reaches. In addition, the HSY sensitivity analysis revealed the topography of Seymour reach and the discharge of Strouds Creek to be major contributors to the change of flood inundation area. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The finite‐difference method on rectangular meshes is widely used for time‐domain modelling of the wave equation. It is relatively easy to implement high‐order spatial discretization schemes and parallelization. Also, the method is computationally efficient. However, the use of finite elements on tetrahedral unstructured meshes is more accurate in complex geometries near sharp interfaces. We compared the standard eighth‐order finite‐difference method to fourth‐order continuous mass‐lumped finite elements in terms of accuracy and computational cost. The results show that, for simple models like a cube with constant density and velocity, the finite‐difference method outperforms the finite‐element method by at least an order of magnitude. Outside the application area of rectangular meshes, i.e., for a model with interior complexity and topography well described by tetrahedra, however, finite‐element methods are about two orders of magnitude faster than finite‐difference methods, for a given accuracy.  相似文献   

8.
9.
Climate change and sea‐level rise will have severe impacts on coastal water resources around the world. However, whereas the influence of marine inundation is well documented in the literature, the impact of groundwater inundation on coastal communities is not well known. Here, core analysis, groundwater monitoring, and ground penetrating radar are utilized to assess the groundwater regime of the surficial aquifer on Bogue Banks Barrier Island (USA). Then, geospatial techniques are used to assess the relative roles and extents of groundwater and marine inundation on the dune‐dominated barrier island under sea‐level rise scenarios of 0.2, 0.5, and 1.0 m above current conditions by 2100. Additionally, the effects of rising water tables on onsite wastewater treatment systems (OWTS) are modelled using the projected sea‐level rise scenarios. The results indicate that the surficial aquifer comprising fine to medium sands responds quickly to precipitation. Water‐level measurements reveal varying thicknesses of the vadose zone (>3 to 0 m) and several groundwater mounds with radial flow patterns. Results from projected sea‐level rise scenarios suggest that owing to aquifer properties and morphology of the island, groundwater inundation may occur at the same rate as marine inundation. Furthermore, the area inundated by groundwater may be as significant as that affected by marine inundation. The results also show that the proportion of land in the study area where OWTS may be perpetually compromised by rising water tables under worst case scenarios may range from ~43 to ~54% over an 86‐year‐period. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
FLATModel is a 2D finite volume code that contains several original approaches to improve debris-flow simulation. Firstly, FLATModel incorporates a "stop-and-go" technique in each cell to allow continuous collapses and remobilizations of the debris-flow mass. Secondly, flow velocity and consequently yield stress is directly associated with the type of rheology to improve boundary accuracy. Thirdly, a simple approach for entrainment is also included in the model to analyse the effect of basal erosion of debris flows. FLATMODEL was tested at several events that occurred in the Eastern Pyrenees and simulation results indicated that the model can represent rather well the different characteristics observed in the field.  相似文献   

11.
ABSTRACT

This study evaluates and compares two-dimensional (2D) numerical models of different complexities by testing them on a floodplain inundation event that occurred on the Secchia River (Italy). We test 2D capabilities of LISFLOOD-FP and HEC-RAS (5.0.3), implemented using various grid sizes (25–100 m) based on 1-m DEM resolution. As expected, the best results were shown by the higher-resolution grids (25 m) for both models, which is justified by the complex terrain of the area. However, the coarser resolution simulations (50 and 100 m) performed virtually identically compared to the high-resolution simulations. Nevertheless, the spatial distribution of flood characteristics varies: the 50 and 100 m results of LISFLOOD-FP and HEC-RAS misestimated flood extent and water depth in selected control areas (built-up zones). We suggest that the specific terrain of the area can cause ambiguities in large-scale modelling, while providing plausible results in terms of the overall model performance.  相似文献   

12.
LAURENCE C. SMITH 《水文研究》1997,11(10):1427-1439
The growing availability of multi-temporal satellite data has increased opportunities for monitoring large rivers from space. A variety of passive and active sensors operating in the visible and microwave range are currently operating, or planned, which can estimate inundation area and delineate flood boundaries. Radar altimeters show great promise for directly measuring stage variation in large rivers. It also appears to be possible to obtain estimates of river discharge from space, using ground measurements and satellite data to construct empirical curves that relate water surface area to discharge. Extrapolation of these curves to ungauged sites may be possible for the special case of braided rivers. Where clouds, trees and floating vegetation do not obscure the water surface, high-resolution visible/infrared sensors provide good delineation of inundated areas. Synthetic aperture radar (SAR) sensors can penetrate clouds and can also detect standing water through emergent aquatic plants and forest canopies. However, multiple frequencies and polarizations are required for optimal discrimination of various inundated vegetation cover types. Existing single-polarization, fixed-frequency SARs are not sufficient for mapping inundation area in all riverine environments. In the absence of a space-borne multi-parameter SAR, a synergistic approach using single-frequency, fixed-polarization SAR and visible/infrared data will provide the best results over densely vegetated river floodplains. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
The Di Wang Tower located in Shenzhen has 79 storeys and is about 325 m high. Field measurements have been conducted to investigate the dynamic characteristics of the super‐tall building. In parallel with the field measurements, seven finite element models have been established to model the multi‐outrigger‐braced tall building and to analyse the effects of various arrangements of outrigger belts and vertical bracings on the dynamic characteristics and responses of the Di Wang Tower under the design wind load and earthquake action. The distributions of shear forces in vertical structural components along the building height are also presented and discussed. The results from detailed modelling of group shear walls with several types of finite elements are addressed and compared to investigate various modelling assumptions. Finally, the performance of the finite element models is evaluated by correlating the natural frequencies and mode shapes from the numerical analysis with the finite element models and the field measurements. The results generated from this study are expected to be of interest to professionals and researchers involved with the design of tall buildings. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
V. Tayefi  S. N. Lane  R. J. Hardy  D. Yu 《水文研究》2007,21(23):3190-3202
A much understudied aspect of flood inundation is examined, i.e. upland environments with topographically complex floodplains. Although the presence of high‐resolution topographic data (e.g. lidar) has improved the quality of river flood inundation predictions, the optimum dimensionality of hydraulic models for this purpose has yet to be fully evaluated for situations of both topographic and topological (i.e. the connectivity of floodplain features) complexity. In this paper, we present the comparison of three treatments of upland flood inundation using: (a) a one‐dimensional (1D) model (HEC‐RAS v. 3·1·2) with the domain defined as series of extended cross‐sections; (b) the same 1D model, but with the floodplain defined by a series of storage cells, hydraulically connected to the main river channel and other storage cells on the floodplain according to floodplain topological characteristics; (c) a two‐dimensional (2D) diffusion wave treatment, again with explicit representation of floodplain structural features. The necessary topographic and topological data were derived using lidar and Ordnance Survey Landline data. The three models were tested on a 6 km upland reach of the River Wharfe, UK. The models were assessed by comparison with measured inundation extent. The results showed that both the extended cross‐section and the storage cell 1D modes were conceptually problematic. They also resulted in poorer model predictions, requiring incorrect parameterization of the main river to floodplain flux in order to approach anything like the level of agreement observed when the 2D diffusion wave treatment was assessed. We conclude that a coupled 1D–2D treatment is likely to provide the best modelling approach, with currently available technology, for complex floodplain configurations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
In a previous study a spatially distributed hydrological model, based on the MIKE SHE code, was constructed and validated for the 375 000 km2 Senegal River basin in West Africa. The model was constructed using spatial data on topography, soil types and vegetation characteristics together with time‐series of precipitation from 112 stations in the basin. The model was calibrated and validated based on river discharge data from nine stations in the basin for 11 years. Calibration and validation results suggested that the spatial resolution of the input data in parts of the area was not sufficient for a satisfactory evaluation of the modelling performance. The study further examined the spatial patterns in the model input and output, and it was found that particularly the spatial resolution of the precipitation input had a major impact on the model response. In an attempt to improve the model performance, this study examines a remotely sensed dryness index for its relationship to simulated soil moisture and evaporation for six days in the wet season 1990. The index is derived from observations of surface temperature and vegetation index as measured by the NOAA Advanced Very High Resolution Radiometer (AVHRR) sensor. The correlation results between the index and the simulation results are of mixed quality. A sensitivity analysis, conducted on both estimates, reveals significant uncertainties in both. The study suggests that the remotely sensed dryness index with its current use of NOAA AVHRR data does not offer information that leads to a better calibration or validation of the simulation model in a spatial sense. The method potentially may become more suitable with the use of the upcoming high‐resolution temporal Meteosat Second Generation data. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Steel well casings in or near a hydrocarbon reservoir can be used as source electrodes in time‐lapse monitoring using grounded line electromagnetic methods. A requisite component of carrying out such monitoring is the capability to numerically model the electromagnetic response of a set of source electrodes of finite length. We present a modelling algorithm using the finite‐element method for calculating the electromagnetic response of a three‐dimensional conductivity model excited using a vertical steel‐cased borehole as a source. The method is based on a combination of the method of moments and the Coulomb‐gauged primary–secondary potential formulation. Using the method of moments, we obtain the primary field in a half‐space due to an energized vertical steel casing by dividing the casing into a set of segments, each assumed to carry a piecewise constant alternating current density. The primary field is then substituted into the primary–secondary potential finite‐element formulation of the three‐dimensional problem to obtain the secondary field. To validate the algorithm, we compare our numerical results with: (i) the analytical solution for an infinite length casing in a whole space, excited by a line source, and (ii) a three‐layered Earth model without a casing. The agreement between the numerical and analytical solutions demonstrates the effectiveness of our algorithm. As an illustration, we also present the time‐lapse electromagnetic response of a synthetic model representing a gas reservoir undergoing water flooding.  相似文献   

17.
For large‐scale sites, difficulties for applying coupled one‐dimensional (1D)/2D models for simulating floodplain inundation may be encountered related to data scarcity, complexity for establishing channel–floodplain connections, computational cost, long duration of floods and the need to represent precipitation and evapotranspiration processes. This paper presents a hydrologic simulation system, named SIRIPLAN, developed to accomplish this aim. This system is composed by a 1D hydrodynamic model coupled to a 2D raster‐based model, and by two modules to compute the vertical water balance over floodplain and the water exchanges between channel and floodplain. Results are presented for the Upper Paraguay River Basin (UPRB), including the Pantanal, one of the world's largest wetlands. A total of 3965 km of river channels and 140 000 km2 of floodplains are simulated for a period of 11 years. Comparison of observed and calculated hydrographs at 15 gauging stations showed that the model was capable to simulate distinct, complex flow regimes along main channels, including channel‐floodplain interactions. The proposed system was also able to reproduce the Pantanal seasonal flood pulse, with estimated inundated areas ranging from 35 000 km2 (dry period) to more than 120 000 km2 (wet period). Floodplain inundation maps obtained with SIRIPLAN were consistent with previous knowledge of Pantanal dynamics, but comparison with inundation extent provided by a previous satellite‐based study indicates that permanently flooded areas may have been underestimated. The results obtained are promising, and further work will focus on improving vertical processes representation over floodplains and analysing model sensitivity to floodplain parameters, time step and precipitation estimates uncertainty. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Mapping groundwater discharge zones at broad spatial scales remains a challenge, particularly in data sparse regions. We applied a regional scale mapping approach based on thermal remote sensing to map discharge zones in a complex watershed with a broad diversity of geological materials, land cover and topographic variation situated within the Prairie Parkland of northern Alberta, Canada. We acquired winter thermal imagery from the USGS Landsat archive to demonstrate the utility of this data source for applications that can complement both scientific and management programs. We showed that the thermally determined potential discharge areas were corroborated with hydrological (spring locations) and chemical (conservative tracers of groundwater) data. This study demonstrates how thermal remote sensing can form part of a comprehensive mapping framework to investigate groundwater resources over broad spatial scales. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents three-dimensional fi nite element (FE) analyses of an all-frame model of a three-story reinforced concrete (RC) building damaged in the 1999 Taiwan Chi-Chi Earthquake. Non-structural brick walls of the building acted as a seismic resistant element although their contributions were neglected in the design. Hence, the entire structure of a typical frame was modeled and static and dynamic nonlinear analyses were conducted to evaluate the contributions of the brick walls. However, the results of the analyses were considerably overestimated due to coarse mesh discretizations, which were unavoidable due to limited computer resources. This study corrects the overestimations by modifying (1) the tensile strengths and (2) shear stiffness reduction factors of concrete and brick. The results indicate that brick walls improve frame strength although shear failures are caused in columns shortened by spandrel walls. Then, the effectiveness of three types of seismic retrofi ts is evaluated. The maximum drift of the firstoor is reduced by 89.3%, 94.8%, and 27.5% by Steel-confi ned, Full-RC, and Full-brick models, respectively. Finally, feasibility analyses of models with soils were conducted. The analyses indicated that the soils elongate the natural period of building models although no signifi cant differences were observed.  相似文献   

20.
One of the most famous and studied cases of dams subjected to earthquake loading is the Koyna Dam in India. In this study, a two‐dimensional model of Koyna Dam at 1/50 scale was used on a shake table to simulate effects and serve as data for non‐linear computer model calibration. A new concrete mix was designed for the non‐linear similitude modelling. This new mix provided the correct kinematic failure of concrete at scale. Two models were tested to failure: one with an initial shrinkage crack and one monolith. Reservoir effects were not modelled. The results of both models are discussed and compared. The ability to model non‐linear effects is discussed. Published in 2000 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号