共查询到20条相似文献,搜索用时 15 毫秒
1.
Over the past centuries, the agricultural use of wetlands in Central Europe has required interference with the natural wetland water balance. Often this has consisted of drainage measures alone. In low‐precipitation areas, it has also involved the operation of combined drainage and sub‐irrigation systems. Model studies conducted as part of planning processes, or with a view to finding out the impact of changing climate conditions on the water balance of wetlands, must take these facts into account. For this reason, a water balance model has been devised for wetlands whose water balance is governed by water resources management systems. It is based on the WBalMo model system. Special modules were integrated into WBalMo to calculate the water balance of wetland areas (WABI module) and to regulate inflow partitioning within the wetland (REGINF module). When calculating the water balance, the WABI module takes into account precipitation and potential evapotranspiration, groundwater levels below surface, soil types, land‐use classes, inflows via the running water system, and data for target water levels. It provides actual evapotranspiration, discharge into the running water system, and groundwater levels in the area. The example of the Spreewald, a major wetland area in north‐eastern Germany, was used to design and test the WBalMo Spreewald model. The comparison of measured and calculated water balance parameters of the wetland area confirms the suitability of the model for water balance studies in wetlands with complex water resources management systems. The results reveal the strong influence of water management on the water balance of such areas. The model system has proved to be excellently suited for planning and carrying out water management measures aimed at the sustainable development of wetlands. Furthermore, scenario analyses can be used to assess the impact of global change on the water balance of wetlands. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
2.
The objective of this study was to quantify components of the water balance related to root‐water uptake in the soil below a hedgerow. At this local scale, a two‐dimensional (2D) flow domain in the x–z plane 6 m long and 1·55 m deep was considered. An attempt was made to estimate transpiration using a simulation model. The SWMS‐2D model was modified and used to simulate temporally and spatially heterogeneous boundary conditions. A function with a variable spatial distribution of root‐water uptake was considered, and model calibration was performed by adjusting this root‐water uptake distribution. Observed data from a previous field study were compared against model predictions. During the validation step, satisfactory agreement was obtained, as the difference between observed and modelled pressure head values was less than 50 cm for 80% of the study data. Hedge transpiration capacity is a significant component of soil‐water balance in the summer, when predicted transpiration reaches about 5·6 mm day?1. One of the most important findings is that hedge transpiration is nearly twice that of a forest canopy. In addition, soil‐water content is significantly different whether downslope or upslope depending on the root‐water uptake. The high transpiration rate was mainly due to the presence of a shallow water table below the hedgerow trees. Soil‐water content was not a limiting factor for transpiration in this context, as it could be in one with a much deeper water table. Hedgerow tree transpiration exerts a strong impact not only on water content within the vadose zone but also on the water‐table profile along the transect. Results obtained at the local scale reveal that the global impact of hedges at the catchment scale has been underestimated in the past. Transpiration rate exerts a major influence on water balance at both the seasonal and annual scales for watersheds with a dense network of hedgerows. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
3.
Michael A. Rawlins Richard B. Lammers Steve Frolking Balzs M. Fekete Charles J. Vorosmarty 《水文研究》2003,17(13):2521-2539
A terrestrial hydrological model, developed to simulate the high‐latitude water cycle, is described, along with comparisons with observed data across the pan‐Arctic drainage basin. Gridded fields of plant rooting depth, soil characteristics (texture, organic content), vegetation, and daily time series of precipitation and air temperature provide the primary inputs used to derive simulated runoff at a grid resolution of 25 km across the pan‐Arctic. The pan‐Arctic water balance model (P/WBM) includes a simple scheme for simulating daily changes in soil frozen and liquid water amounts, with the thaw–freeze model (TFM) driven by air temperature, modelled soil moisture content, and physiographic data. Climate time series (precipitation and air temperature) are from the National Centers for Environmental Prediction (NCEP) reanalysis project for the period 1980–2001. P/WBM‐generated maximum summer active‐layer thickness estimates differ from a set of observed data by an average of 12 cm at 27 sites in Alaska, with many of the differences within the variability (1σ) seen in field samples. Simulated long‐term annual runoffs are in the range 100 to 400 mm year?1. The highest runoffs are found across northeastern Canada, southern Alaska, and Norway, and lower estimates are noted along the highest latitudes of the terrestrial Arctic in North America and Asia. Good agreement exists between simulated and observed long‐term seasonal (winter, spring, summer–fall) runoff to the ten Arctic sea basins (r = 0·84). Model water budgets are most sensitive to changes in precipitation and air temperature, whereas less affect is noted when other model parameters are altered. Increasing daily precipitation by 25% amplifies annual runoff by 50 to 80% for the largest Arctic drainage basins. Ignoring soil ice by eliminating the TFM sub‐model leads to runoffs that are 7 to 27% lower than the control run. The results of these model sensitivity experiments, along with other uncertainties in both observed validation data and model inputs, emphasize the need to develop improved spatial data sets of key geophysical quantities (particularly climate time series) to estimate terrestrial Arctic hydrological budgets better. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
4.
Climate change and its impact on hydrological processes are overarching issues that have brought challenges for sustainable water resources management. In this study, surface water resources in typical regions of China are projected in the context of climate change. A water balance model based on the Fu rational function equation is established to quantify future natural runoff. The model is calibrated using data from 13 hydrological stations in 10 first-class water resources zones of China. The future precipitation and temperature series come from the ISI-MIP (Inter-Sectoral Impact Model Intercomparison Project) climate dataset. Taking natural runoff for 1961–1990 as a baseline, the impacts of climate change on natural runoff are studied under three emissions scenarios: RCP2.6, RCP4.5 and RCP8.5. Simulated results indicate that the arid and semi-arid region in the northern part of China is more sensitive to climate change compared to the humid and semi-humid region in the south. In the near future (2011–2050), surface water resources will decrease in most parts of China (except for the Liaozhong and Daojieba catchments), especially in the Haihe River Basin and the middle reaches of the Yangtze River Basin. The decrement of surface water resources in the northern part of China is more than that in the southern part. For the periods 2011–2030 and 2031–2050, surface water resources are expected to decrease by 12–13% in the northern part of China, while those in the southern part will decrease by 7–10%.
EDITOR D. KoutsoyiannisASSOCIATE EDITOR R. Hirsch 相似文献
5.
Because of the human exploitation and utilization of water resources in the Tarim Basin,the water resources consumption has changed from mainly natural ecosystem to artificial oasisecosystem, and the environment has changed correspondingly. The basic changes are: desertifi-cation and oasis development coexist, both "the human being advance and the desert retreat" and"the desert advance and the human being retreat" coexist, but the latter is dominant. In the upperreaches, water volume drawing to irrigated agricultural areas has increased, artificial oases havebeen enlarging and moving from the deltas in the lower reaches of many rivers to the piedmontplains. In the middle and lower reaches of the Tarim River, the stream flow has decreased, old oa-ses have declined, natural vegetations have been degenerating, desertification has been enlarging,and the environment has deteriorated. The transition regions, which consist of forestlands, grass-lands and waters between the desert and the oases, have been decreasing continuously, theirshelter function to the oases has been weakened, and the desert is threatening the oases seri-ously. 相似文献
6.
Climate warming and human disturbance in north‐western Canada have been accompanied by degradation of permafrost, which introduces considerable uncertainty to the future availability of northern freshwater resources. This study demonstrates the rate and spatial pattern of permafrost loss in a region that typifies the southern boundary of permafrost. Remote‐sensing analysis of a 1·0 km2 area indicates that permafrost occupied 0·70 km2 in 1947 and decreased with time to 0·43 km2 by 2008. Ground‐based measurements demonstrate the importance of horizontal heat flows in thawing discontinuous permafrost, and show that such thaw produces dramatic land‐cover changes that can alter basin runoff production in this region. A major challenge to northern water resources management in the twenty‐first century therefore lies in predicting stream flows dynamically in the context of widely occurring permafrost thaw. The need for appropriate water resource planning, mitigation, and adaptation strategies is explained. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
7.
Water availability is the primary constraint on the improvement of food security in rural areas in northwestern Cambodia. A 4-year study was carried out in the upper Stung Sreng watershed to assess water resources. Four sub-watersheds with different land cover types, ranging in size from 1.5 to 185 km2, were monitored using dedicated weather stations and rain- and streamgauges. Geophysics and observation boreholes were used to characterize aquifers. Rainwater is mostly split into evapotranspiration (annual mean of 54% rainfall) and streamflow components (49%), because groundwater recharge is low (1%). Thus, rainwater and streamflow are the main sources for irrigation development. Groundwater can be used only in specific locations for low water-demand crops. A total of 186 household ponds and three village-scale dams were built and 31 wells were installed. The household pond was determined to be the best solution for irrigation development because of its simple management.
EDITOR A. Castellarin ASSOCIATE EDITOR M. Piniewski 相似文献
8.
Fei Tian Yi He Lü Bo Jie Fu Lu Zhang Chuan fu Zang Yong Hui Yang Guo Yu Qiu 《水文研究》2017,31(7):1469-1478
Forest restoration policies are often implemented without the assessment of their full environmental impact. In this study, we investigated the challenges of vegetation greening resulted from forest restoration on water resource sustainability, using a model‐based simulation in northwestern China. Four different vegetation scenarios and 25 future climate scenarios were employed using the Soil and Water Assessment Tool model. Results suggest that (a) the mean annual evapotranspiration changes from only 7.2% in the barren case to 100% in the forest case; however, it produced a 35.2% reduction in average annual streamflow and a 157% increase in soil water storage. The upstream vegetation greening caused the enhancement of water retention, while also creating great challenges for future downstream water resource sustainability; (b) seasonal effect was significant in that 100% forest case increased evapotranspiration (+40%) but it also reduced the streamflow (?73%) compared to the barren case in growing season, which may exacerbate spring and summer drought; (c) changes of evapotranspiration and streamflow were only 0.3% and ?0.9% at T + 3.9 °C when compared to the historic scenario in barren cases, while for all forest cases, variations were 3% and ?21.8%, respectively; (d) vegetation greening induced more remarkable changes in hydrological components than those resulting from climate change. Our “what if” research provides new insights for promoting sustainable management of water resources and ecosystems in mountainous water source areas. 相似文献
9.
Samuel Teissier Sabine Sauvage Philippe Vervier Frédéric Garabétian José‐Miguel Sánchez‐Pérez 《水文研究》2008,22(3):420-428
A mass‐balance approach was used to estimate in‐stream processes related to inorganic nitrogen species (NH4+, NO2? and NO3?) in a large river characterized by highly variable hydrological conditions, the Garonne River (south‐west France). Studies were conducted in two consecutive reaches of 30 km located downstream of the Toulouse agglomeration (population 760 000, seventh order), impacted by modification of discharge regime and high nitrogen concentrations. The mass‐balance was calculated by two methods: the first is based on a variable residence time (VRT) simulated by a one‐dimensional (1‐D) hydraulic model; the second is a based on a calculation using constant residence time (CRT) evaluated according to hydrographic peaks. In the context of the study, removal of dissolved inorganic nitrogen (DIN) for a reach of 30 km is underestimated by 11% with the CRT method. In sub‐reaches, the discrepancy between the two methods led to a 50% overestimation of DIN removal in the upper reach (13 km) and a 43% underestimation in the lower reach (17 km) using the CRT method. The study highlights the importance of residence time determination when using modelling approaches in the assessment of whole stream processes in short‐duration mass‐balance for a large river under variable hydrological conditions. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
10.
Simulation of energy and water balance in Soil-Vegetation-Atmosphere Transfer system in the mountain area of Heihe River Basin at Hexi Corridor of northwest China 总被引:15,自引:2,他引:15
KANG Ersi CHENG Guodong SONG Kechao JIN Bowen LIU Xiande & WANG Jinye . Cold Arid Regions Environmental Engineering Research Institute Chinese Academy of Sciences Lanzhou China . State Key Laboratory of Frozen Soil Engineering Chinese Academy of Sciences Lanzhou China . Academy of Water Resources Conservation Forest of Qilian Mountains Gansu Province Zhangye China 《中国科学D辑(英文版)》2005,48(4):538-548
Under the background of global water cycle, theregional water cycle systems of the arid inland regionsof northwest China are characterized by the fact thatthe area is composed of various relatively independentinland river basins, each of which is a system of inter-related climate, hydrology, water resources, ecologyand environment. An inland river basin consists of amountain area and the plain and basin area in front ofthe mountains. The vertical landscape zonality of aninland river basin can … 相似文献
11.
Javier Tomasella Martin G. Hodnett Luz Adriana Cuartas Antonio D. Nobre Maarten J. Waterloo Sylvia M. Oliveira 《水文研究》2008,22(13):2133-2147
In humid tropical systems, the large intraseasonal and interannual variability of rainfall can significantly affect all components of the water balance. This variability and the lack of detailed hydrological and meteorological data in both temporal and spatial scales have created uncertainties regarding the closure of the water balance for the Amazon basin. Previous studies in Amazonian micro‐catchments suggested that both the unsaturated and groundwater system, which are not taken into consideration in basin‐wide water budgets published in the literature, play an important role in controlling the timing of runoff generation. In this paper, the components of the water balance and the variations in different storages within the system were examined using 3 years' data from a 6·58 km2 micro‐catchment in central Amazonia. The role and relative importance of the various stores were examined. The results show a strong memory effect in the groundwater system that carries over seasonal climate anomalies from one year to the next and affects the hydrological response well beyond the time span of the anomaly. In addition, the deep unsaturated zone was found to play a key role in reducing most of the intraseasonal variability and also affected the groundwater recharge. This memory effect is crucial for sustaining streamflow and evaporation in years with rainfall deficiency. The memory effect caused by storage in the groundwater and unsaturated systems may also prevent the closure of annual large‐scale water balances, which assume that storage returns to a standard state each year. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
12.
Data collected in 4 years of field observations were used in conjunction with continuous simulation models to study, at the small‐basin scale, the water balance of a closed catchment‐lake system in a semi‐arid Mediterranean environment. The open water evaporation was computed with the Penman equation, using the data set collected in the middle of the lake. The surface runoff was partly measured at the main tributary and partly simulated using a distributed, catchment, hydrological model, calibrated with the observed discharge. The simplified structure of the developed modelling mainly concerns soil moisture dynamics and bedrock hydraulics, whereas the flow components are physically based. The calibration produced high efficiency coefficients and showed that surface runoff is greatly affected by soil water percolation into fractured bedrock. The bedrock reduces the storm‐flow peaks and the interflow and has important multi‐year effects on the annual runoff coefficients. The net subsurface outflow from the lake was calculated as the residual of the lake water balance. It was almost constant in the dry seasons and increased in the wet seasons, because of the moistening of the unsaturated soil. During the years of observation, rainfall 30% higher than average caused abundant runoff and a continuous rise in the lake water levels. The analysis allows to predict that, in years with lower than the average rainfall, runoff will be drastically reduced and will not be able to compensate for negative balance between precipitation and lake evaporation. Such highly unsteady situations, with great fluctuations in lake levels, are typical of closed catchment‐lake systems in the semi‐arid Mediterranean environment. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
13.
Yoshinobu Sato Xieyao Ma Jianqing Xu Masayuki Matsuoka Hongxing Zheng Changming Liu Yoshihiro Fukushima 《水文研究》2008,22(11):1618-1629
To analyse the long‐term water balance of the Yellow River basin, a new hydrological model was developed and applied to the source area of the basin. The analysis involved 41 years (1960–2000) of daily observation data from 16 meteorological stations. The model is composed of the following three sub‐models: a heat balance model, a runoff formation model and a river‐routing network model. To understand the heat and water balances more precisely, the original model was modified as follows. First, the land surface was classified into five types (bare, grassland, forest, irrigation area and water surface) using a high‐resolution land‐use map. Potential evaporation was then calculated using land‐surface temperatures estimated by the heat balance model. The maximum evapotranspiration of each land surface was calculated from potential evaporation using functions of the leaf area index (LAI). Finally, actual evapotranspiration was estimated by regulating the maximum evapotranspiration using functions of soil moisture content. The river discharge estimated by the model agreed well with the observed data in most years. However, relatively large errors, which may have been caused by the overestimation of surface flow, appeared in some summer periods. The rapid decrease of river discharge in recent years in the source area of the Yellow River basin depended primarily on the decrease in precipitation. Furthermore, the results suggested that the long‐term water balance in the source area of the Yellow River basin is influenced by land‐use changes. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
14.
Lide Tian Zhongfang Liu Tongliang Gong Changliang Yin Wusheng Yu Tandong Yao 《水文研究》2008,22(17):3386-3392
The use of stable isotopes is a practical tool in the study of the lake water budget. This is an one way to study the hydrological cycle in the large numbers of inland lakes on the Tibetan Plateau, in which the isotope record of the sediment is believed to reflect the climatic and environmental changes. The monitoring of stable isotopes of the precipitation, river and lake waters during 2004 in the inland Yamdruk‐tso basin, southern Tibetan Plateau, reveals the lake water δ18O is over 10‰ higher than the local precipitation. This high difference indicates strong isotope enrichment due to lake water evaporation. The simulation results based on the isotope technique show that the present lake water δ18O level corresponds to an average relative humidity of around 54–58% during evaporation, which is very close to the instrumental observation. The simulation results also show that the inland lakes on the Tibetan Plateau have a strong adjustability to the isotope shift of input water δ18O. On average, the isotope component in the inland lake water is to a large extent controlled by the local relative humidity, and can also be impacted by a shift of the local precipitation isotope component. This is probably responsible for the large consistence in the isotope component in the extensive inland lakes on the Tibetan Plateau. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
15.
The Budyko formula for estimating the long‐term average annual evaporation is applied to calculate the long‐term water balance in 29 humid watersheds of southern China. As a result of overestimation of evaporation, the long‐term average annual runoff is underestimated, with the Nash‐Sutcliffe efficiency (NSE) at just ? 17%. A one‐variable linear regression model is employed to find that the Budyko scatter and the relative errors of Budyko runoff and evaporation estimates are all closely related to the long‐term aridity index. Through combining the original Budyko formula with the different linear regression models for estimating the Budyko estimation errors, three forms of revised Budyko equation for estimating the long‐term average annual runoff are derived, with all their NSE values to be around 66%. After calibration, both one‐parameter Turc‐Pike and one‐parameter Fu equations lead to the NSE value of 60% in estimating long‐term average annual runoff. Two conclusions are made, with the first one being that, the nonparametric Budyko formula, although very intuitive and very simple, does not apply well in calculating long‐term water balance in 29 humid watersheds in southern China. The second one is that, the parametric evaporation formulae, with locally optimized parameter values, can achieve better accuracy in estimating long‐term average annual evaporation and runoff than the nonparametric Budyko evaporation formula. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
16.
The internal riverine processes acting upon phosphorus and dissolved silicon were investigated along a 55 km stretch of the River Swale during four monitoring campaigns. Samples of river water were taken at 3 h intervals at sites on the main river and the three major tributaries. Samples were analysed for soluble reactive phosphorus, total dissolved phosphorus, total phosphorus, dissolved silicon and suspended solid concentration. Mass‐balances for each determinand were calculated by comparing the total load entering the river with the total load measured at the downstream site. The difference, i.e. the residual load, showed that there was a large retention of phosphorus and silicon within the system during the March 1998 flood event, but the other three campaigns produced net‐exports. Cumulative residual loads were calculated for each determinand at 6 h intervals throughout each campaign. This incremental approach showed that the mass‐balance residuals followed relatively consistent patterns under various river discharges. During stable low‐flow, there was a retention of particulate phosphorus within the system and also a retention of total dissolved phosphorus and soluble reactive phosphorus, most likely caused by the sorption of soluble phosphorus by bed‐sediments. In times of high river‐discharge, there was a mobilization and export of stored bed‐sediment phosphorus. During overbank flooding, there was a large retention (58% of total input) of particulate phosphorus within the system, due to the mass deposition of phosphorus‐rich sediment onto the floodplain. Soluble phosphorus was also retained within the system by sequestration from the water column by the high concentration of suspended solids. The dissolved silicon mass‐balance residuals had a less consistent pattern in relation to river discharge. There was a large retention of dissolved silicon during overbank flooding, possibly due to sorption onto floodplain soil, and net‐exports during periods of both stable low‐flow and rising limbs of hydrographs, due to release of dissolved silicon from pore‐waters. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
17.
Enrique Muñoz José Luis Arumí Thorsten Wagener Ricardo Oyarzún Victor Parra 《水文研究》2016,30(26):4934-4943
Groundwater storage, drainage, and interbasin water exchange are common hydrological processes but often difficult to quantify due to a lack of local observations. We present a study of three volcanic mountainous watersheds located in south‐central Chile (~36.9 ° S) in the Chillán volcanic complex (Chillán, Renegado, and Diguillín river basins). These are neighboring basins that are similar with respect to the metrics normally available for characterization everywhere (e.g., precipitation, temperature, and land cover). In a hydrological sense, similar (proportional) behavior would be expected if these catchments would be characterized with this general information. However, these watersheds show dissimilar behavior when analyzed in detail. The surface water balance does not fit for any of these watersheds individually; however, the water balance of the whole system can be explained by likely interbasin water exchanges. The Renegado river basin has an average annual runoff per unit of area on the order of 60–65% less than those of the Diguillín and Chillán rivers, which is contradictory to the hydrological similarity among the basins. To understand the main processes that control streamflow generation, two analyses were performed: (a) basin metrics (land cover, geologic, topographic, and climatological maps) and hydro‐meteorological data analyses and (b) a water balance model approach. The analyses contribute to a plausible explanation for the hydrogeological processes in the system. The soils, topography, and geology of the Chillán–Renegado–Diguillín system favor the infiltration and groundwater movements from the Renegado river basin, mainly to the neighboring Diguillín basin. The interbasin water exchanges affect hydrological similarity and explain the differences observed in the hydrological processes of these three apparently similar volcanic basins. The results highlight the complexity of hydrological processes in volcanic mountainous systems and suggest that a simple watershed classification approach based on widely available data is insufficient. Simple local analyses such as specific flow analysis with a review of the geology and morphology can contribute to a better understanding of the hydrology of volcanic mountainous areas. 相似文献
18.
Spatial and temporal variability of groundwater dynamics in a sub‐Mediterranean mountain catchment 下载免费PDF全文
The temporal and spatial dynamics of groundwater was investigated in a small catchment in the Spanish Pyrenees, which was extensively used for agriculture in the past. Analysis of the water table fluctuations at five locations over a 6‐year period demonstrated that the groundwater dynamics had a marked seasonal cycle involving a wetting‐up period that commenced with the first autumn rainfall events, a saturation period during winter and spring and a drying‐down period from the end of spring until the end of the summer. The length of the saturation period showed great interannual variability, which was mainly influenced by the rainfall and evapotranspiration characteristics. There was marked spatial variability in the water table, especially during the wetting‐up period, which could be related to differences in slope and drainage area, geomorphology, soil properties and local topography. Areas contributing to runoff generation were identified within the catchment by field mapping of moisture conditions. Areas contributing to infiltration excess runoff were correlated with former cultivated fields affected by severe sheetwash erosion. Areas contributing to saturation excess runoff were characterized by a marked spatial dynamics associated with catchment wetness conditions. The saturation spatial pattern, which was partially related to the topographic index, was very patchy throughout the catchment, suggesting the influence of other factors associated with past agricultural activities, including changes in local topography and soil properties. The relationship between water table levels and stream flow was weak, especially during the wetting‐up period, suggesting little connection between ground water and the hydrological response, at least at some locations. The results suggest that in drier and human‐disturbed environments, such as sub‐Mediterranean mountains, saturation patterns cannot be represented only by the general topography of the catchment. They also suggest that groundwater storage and runoff is not a succession of steady‐state flow conditions, as assumed in most hydrological models. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
19.
Eloise Kendy Pierre Grard‐Marchant M. Todd Walter Yongqiang Zhang Changming Liu Tammo S. Steenhuis 《水文研究》2003,17(10):2011-2031
Rapidly depleting unconfined aquifers are the primary source of water for irrigation on the North China Plain. Yet, despite its critical importance, groundwater recharge to the Plain remains an enigma. We introduce a one‐dimensional soil‐water‐balance model to estimate precipitation‐ and irrigation‐generated areal recharge from commonly available crop and soil characteristics and climate data. To limit input data needs and to simplify calculations, the model assumes that water flows vertically downward under a unit gradient; infiltration and evapotranspiration are separate, sequential processes; evapotranspiration is allocated to evaporation and transpiration as a function of leaf‐area index and is limited by soil‐moisture content; and evaporation and transpiration are distributed through the soil profile as exponential functions of soil and root depth, respectively. For calibration, model‐calculated water contents of 11 soil‐depth intervals from 0 to 200 cm were compared with measured water contents of loam soil at four sites in Luancheng County, Hebei Province, over 3 years (1998–2001). Each 50‐m2 site was identically cropped with winter wheat and summer maize, but received a different irrigation treatment. Average root mean‐squared error between measured and model‐calculated water content of the top 180 cm was 4·2 cm, or 9·3% of average total water content. In addition, model‐calculated evapotranspiration compared well with that measured by a large‐scale lysimeter. To test the model, 12 additional sites were simulated successfully. Model results demonstrate that drainage from the soil profile is not a constant fraction of precipitation and irrigation inputs, but rather the fraction increases as the inputs increase. Because this drainage recharges the underlying aquifer, improving irrigation efficiency by reducing seepage will not reverse water‐table declines. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
20.
The numerous lakes on the Tibetan Plateau play an important role in the regional hydrological cycle and water resources, but systematic observations of the lake water balance are scarce on the Tibetan Plateau. Here, we present a detailed study on the water cycle of Cona Lake, at the headwaters of the Nujiang‐Salween River, based on 3 years (2011–2013) of observations of δ18O and δ2H, including samples from precipitation, lake water, and outlet surface water. Short‐term atmospheric water vapor was also sampled for isotope analyses. The δ2H–δ18O relationship in lake water (δ2H = 6.67δ18O ? 20.37) differed from that of local precipitation (δ2H = 8.29δ18O + 12.50), and the deuterium excess (d‐excess) in the lake water (?7.5‰) was significantly lower than in local precipitation (10.7‰), indicating an evaporative isotope enrichment in lake water. The ratio of evaporation to inflow (E /I ) of the lake water was calculated using both d‐excess and δ18O. The E /I ratios of Cona lake ranged from 0.24 to 0.27 during the 3 years. Observations of atmospheric water vapor isotopic composition (δ A ) improved the accuracy in E /I ratio estimate over a simple precipitation equilibrium model, though a correction factor method provided nearly identical estimates of E /I ratio. The work demonstrates the feasibility of d‐excess in the study of the water cycle for lakes in other regions of the world and provides recommendations on sampling strategies for accurate calculations of E /I ratio. 相似文献