首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrology and nitrogen biogeochemistry of a riparian zone were compared before and after the construction of beaver dams along an agricultural stream in southern Ontario, Canada. The beaver dams increased surface flooding and raised the riparian water table by up to 1·0 m. Increased hydraulic gradients inland from the stream limited the entry of oxic nitrate‐rich subsurface water from adjacent cropland. Permeable riparian sediments overlying dense till remained saturated during the summer and autumn months, whereas before dam construction a large area of the riparian zone was unsaturated in these seasons each year. Beaver dam construction produced significant changes in riparian groundwater chemistry. Median dissolved oxygen concentrations were lower in riparian groundwater after dam construction (0·9–2·1 mg L?1) than in the pre‐dam period (2·3–3·9 mg L?1). Median NO3‐N concentrations in autumn and spring were also lower in the post‐dam (0·03–0·07 mg L?1) versus the pre‐dam period (0·1–0·3 mg L?1). In contrast, median NH4‐N concentrations in autumn and spring months were higher after dam construction (0·3–0·4 mg L?1) than before construction (0·13–0·14 mg L?1). Results suggest that beaver dams can increase stream inflow to riparian areas that limit water table declines and increase depths of saturated riparian soils which become more anaerobic. These changes in subsurface hydrology and chemistry have the potential to affect the transport and transformation of nitrate fluxes from adjacent cropland in agricultural landscapes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Little is known about how active stream network expansion during rainstorms influences the ability of riparian buffers to improve water quality. We used aerial photographs to quantify stream network expansion during the wet winter season in five agricultural catchments in western Oregon, USA. Winter stream drainage densities were nearly two orders of magnitude greater than summer stream densities, and agricultural land use was much more abundant along transient portions (e.g. swales, road ditches) of stream networks. Water moving from agricultural fields into expanded stream networks during large hydrologic events has the opportunity to bypass downstream riparian buffers along perennial streams and contribute nonpoint‐source pollutants directly into perennial stream channels. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Jens Flster 《水文研究》2001,15(2):201-217
The near‐stream zone has received increasing attention owing to its influence on stream water chemistry in general and acidity in particular. Possible processes in this zone include cation exchange, leaching of organic matter and redox reactions of sulphur compounds. In this study the influences of processes in the near‐stream zone on the acidity in runoff from a small, acidified catchment in central southern Sweden were investigated. The study included sampling of groundwater, soil water and stream water along with hydrological measurements. An input–output budget for the catchment was established based on data from the International Co‐operative Programme on Integrated Monitoring at this site. The catchment was heavily acidified by deposition of anthropogenic sulphur, with pH in stream water between 4·4 and 4·6. There was also no relationship between stream flow and pH, which is indicative of chronic acidification. Indications of microbial reduction of sulphate were found in some places near the stream, but the near‐stream zone did not have a general impact on the sulphate concentration in discharging groundwater. The near‐stream zone was a source of dissolved organic carbon (DOC) in the stream, which had a median DOC of 6·8 mg L1. The influence on stream acidity from organic anions was overshadowed by the effect of sulphate, however, except during a spring flow episode, when additional organic matter was flushed out and the sulphate‐rich ground water was mixed with more diluted event water. Ion exchange was not an important process in the near‐stream zone of the Kindla catchment. Different functions of the near‐stream zone relating to discharge acidity are reported in the literature. In this study there was even a variation within the site. There is therefore a need for more case studies to provide a more detailed understanding of the net effects that the near‐stream zone can have on stream chemistry under different circumstances. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
Groundwater that bypasses the riparian zone by travelling along deep flow paths may deliver high concentrations of fertilizer‐derived NO3? to streams, or it may be impacted by the NO3? removal process of denitrification in streambed sediments. In a study of a small agricultural catchment on the Atlantic coastal plain of Virginia's eastern shore, we used seepage meters deployed in the streambed to measure specific discharge of groundwater and its solute concentrations for various locations and dates. We used values of Cl? concentration to discriminate between bypass water recharged distal to the stream and that contained high NO3? but low Cl? concentrations and riparian‐influenced water recharged proximal to the stream that contained low NO3? and high Cl? concentrations. The travel time required for bypass water to transit the 30‐cm‐thick, microbially active denitrifying zone in the streambed determined the extent of NO3? removal, and hydraulic conductivity determined travel time through the streambed sediments. At all travel times greater than 2 days, NO3? removal was virtually complete. Comparison of the timescales for reaction and transport through the streambed sediments in this system confirmed that the predominant control on nitrate flux was travel time rather than denitrification rate coefficients. We conclude that extensive denitrification can occur in groundwater that bypasses the riparian zone, but a residence time in biologically active streambed sediments sufficient to remove a large fraction of the NO3? is only achieved in relatively low‐conductivity porous media. Instead of viewing them as separate, the streambed and riparian zone should be considered an integrated NO3? removal unit. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Riparian vegetation is frequently used for stream bank stabilization, but the effects of vegetation on subaerial processes have not been quantified. Subaerial processes, such as soil desiccation and freeze–thaw cycling, are climate‐related phenomena that deliver soil directly to the stream and make the banks more vulnerable to fluvial erosion by reducing soil strength. This study compares the impact of woody and herbaceous vegetation on subaerial processes by examining soil temperature and moisture regimes in vegetated stream banks. Soil temperature and water tension were measured at six paired field sites in southwestern Virginia, USA, for one year. Results showed that stream banks with herbaceous vegetation had higher soil temperatures and a greater diurnal temperature range during the summer compared to forested stream banks. Daily average summer soil water tension was 13 to 57 per cent higher under herbaceous vegetation than under woody vegetation, probably due to evapotranspiration from the shallow herbaceous root system on the bank. In contrast to summer conditions, the deciduous forest buffers provided little protection for stream banks during the winter: the forested stream banks experienced diurnal temperature ranges two to three times greater than stream banks under dense herbaceous cover and underwent as many as eight times the number of freeze–thaw cycles. During the winter, the stream banks under the deciduous forests were exposed to solar heating and night time cooling, which increased the diurnal soil temperature range and the occurrence of freeze–thaw cycling. Study results also indicated that freeze–thaw cycling and soil desiccation were greater on the upper stream bank due to thermal and moisture regulation of the lower bank by the stream. Therefore, subaerial erosion and soil weakening may be greater on the upper stream banks. Additional research is needed on the influence of subaerial processes on both subaerial and fluvial erosion. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Alan R. Hill 《水文研究》2012,26(20):3135-3146
The effect of preferential flow in soil pipes on nitrate retention in riparian zones is poorly understood. The characteristics of soil pipes and their influence on patterns of groundwater transport and nitrate dynamics were studied along four transects in a 1‐ to >3‐m deep layer of peat and marl overlying an oxic sand aquifer in a riparian zone in southern Ontario, Canada. The peat‐marl deposit, which consisted of several horizontal layers with large differences in bulk density, contained soil pipes that were generally 0.1 to 0.2 m in diameter and often extended vertically for 1 to >2 m. Springs that produced overland flow across the riparian area occurred at some sites where pipes extended to the peat surface. Concentrations of NO3?–N (20–30 mg L?1) and dissolved oxygen (DO) (4–6 mg L?1) observed in peat pipe systems and surface springs were similar to values in the underlying sand aquifer, indicating that preferential flow transported groundwater with limited nitrate depletion. Low NO3?–N concentrations of <5 mg L?1 and enriched δ15N values indicated that denitrification was restricted to small areas of the peat where pipes were absent. Groundwater DO concentrations declined rapidly to <2 mg L?1 in the peat matrix adjacent to pipes, whereas high NO3?–N concentrations of >15 mg L?1 extended over a larger zone. Low dissolved organic carbon values at these locations suggest that supplies of organic carbon were not sufficient to support high rates of denitrification, despite low DO conditions. These data indicate that it is important to develop a greater understanding of pipes in peat deposits, which function as sites where the transport of large fluxes of water with low biogeochemical reaction rates can limit the nitrate removal capacity of riparian zones. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Philippe Vidon 《水文研究》2012,26(21):3207-3215
Determining how riparian zone hydrological conditions may change in response to precipitation in various geomorphic settings is critical to determine the occurrence of hot moments of biogeochemical transformations for phosphorus, nitrogen, sulfate, mercury and greenhouse gases in these systems. The author investigate water table response to precipitation at a high temporal resolution (15 min) in a riparian zone located in a deeply incised glacial till valley (20 m) with approximately 2 m of alluvium over a confining layer, in Indiana, USA. During storms, larger water table fluctuations (approximately 100 cm) occurred near the stream than near the toe slope (10–25 cm). A quick rise in water table near the stream occurred for all storms, with partial flow reversals occurring for three of seven storms. The quick rise of the water table near the stream was associated with a decrease in hillslope water contributions to the stream during storms and the development of a water table down valley gradient for most storms. Water table fluctuations, groundwater flow velocities and electrical conductivity data indicated that riparian zone water table response to precipitation was primarily regulated by pressure wave processes. Regardless of the storm, high water tables persisted for at least 2 days after the cessation of precipitation. Although this suggests that high‐resolution precipitation data may be useful to quantify hot moments of biogeochemical transformation associated with high water tables in riparian zones, precipitation data alone are not sufficient to correctly estimate the magnitude of riparian water table level changes during storms. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Turbidity monitoring and rainfall and runoff simulation experiments were conducted at a newly constructed unsealed road stream crossing to determine the quantity and sources of sediment entering the stream. Continuous measurements of turbidity and estimation of total suspended solids (TSS) concentration upstream and downstream of the stream culvert were taken over a 5 month period. There was a statistically significant difference in turbidity and TSS downstream of the crossing during baseflow conditions, but the quality of the water column remained good during non‐rain periods. Rainfall events comprised around 20% of the observation period and led to decreases in water quality downstream of the crossing. Water quality could be considered as degraded for 10% of the observations. This was during a period when the rainfall was 65% of the long‐term average. Calculated suspended sediment loads were 0·78 t upstream and 2·77 t downstream, an increase of 3·5. It was estimated that at least 2–3 t of bedload material was also added to the stream during the crossing construction and from subsequent erosion. This material is a deposit on the cobble stream bed, and is most likely to degrade aquatic ecosystem values. Rainfall and runoff simulation revealed the principal sediment sources to be a fillslope that contributed coarse bedload material through rill erosion and unprotected toe scour, and the unmetalled road verge that provided fines. Although the quality of water column was good for the majority of the observations, the new Australian and New Zealand Water Quality Guidelines for Fresh and Marine Waters suggest this site exceeded ‘trigger levels’ that would warrant further investigation for both the water column and the bed deposits. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
Rainfall takes many flowpaths to reach a stream, and the success of riparian buffers in water quality management is significantly influenced by riparian hydrology. This paper presents results from hydrometric monitoring of riparian buffer hydrology in a pasture catchment. Runoff processes and riparian flowpaths were investigated on two planar hillslopes with regenerating grass and E. globulus buffers. Surface runoff and subsurface flows (A‐ and B‐horizons) were measured for 3 years using surface runoff collectors, subsurface troughs and piezometers. Water volumes moving through the riparian buffers via the measured flowpaths were ranked B‐horizon ? surface runoff ≈ A‐horizon. Runoff volumes through the B‐horizon troughs were an order of magnitude greater than those recorded for the most productive surface runoff plots or the A‐horizon troughs. Subsurface runoff and saturation‐excess overland flow (SOF) were limited to the winter months, whereas infiltration‐excess overland flow (IEOF) can occur all year round during intense storms. Surface runoff was recorded on 33 occasions, mostly during winter (late May–early October), and total annual surface runoff volumes collected by the 20 unconfined (2 m wide) runoff plots varied between > 80 and < 20 m3. Subsurface flow only occurred in winter, and the 6 m wide B‐horizon subsurface troughs flowed above 1 l s?1 continuously, whereas the A‐horizon troughs flowed infrequently (<6 days per year). In summer, surface runoff occurred as IEOF during intense storms in the E. globulus buffer, but not in the grass buffer. Observations suggest that surface crusting reduced the soil's infiltration capacity in the E. globulus buffer. During winter, SOF and seepage were observed in both buffers, but subsurface flow through the B‐horizon was the dominant flowpath. Key hydrologic differences between the grass and tree buffers are the generation of IEOF in the E. globulus buffer during intense summer storms, and the smaller subsurface runoff volumes and fewer flow days in the E. globulus buffer. Low surface runoff volumes are likely to limit the potential of these buffers to filter pollutants from surface runoff. High subsurface flow volumes and saturated conductivities are also likely to limit the residence time of water in the subsurface domain. Based on their hydrologic performance, the key roles of riparian buffers in this landscape are likely to be displacing sediment and nutrient‐generating activities away from streams and stabilizing channel morphology. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Evapotranspiration (ET) can cause diel fluctuations in the elevation of the water table and the stage in adjacent streams. The diel fluctuations of water levels change head gradients throughout the day, causing specific discharge through near‐stream sediment to fluctuate at the same time scale. In a previous study, we showed that specific discharge controls the residence time of groundwater in streambed sediment that, in turn, exerted the primary control on removal from groundwater passing through the streambed. In this study, we examine the magnitude of diel specific discharge patterns through the streambed driven by ET in the riparian zone with a transient numerical saturated–unsaturated groundwater flow model. On the basis of a first‐order kinetic model for removal, we predicted diel fluctuations in stream concentrations. Model results indicated that ET drove a diel pattern in specific discharge through the streambed and riparian zone (the removal zones). Because specific discharge is inversely proportional to groundwater travel time through the removal zones and travel time determines the extent of removal, diel changes in ET can result in a diel pattern in concentration in the stream. The model predictions generally matched observations made during summertime base‐flow conditions in a small coastal plain stream in Virginia. A more complicated pattern was observed following a seasonal drawdown period, where source components to the stream changed during the receding limb of the hydrograph and resulted in diel fluctuations being superimposed over a multi‐day trend in concentrations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Norman E. Peters 《水文研究》2009,23(20):2860-2878
A long‐term stream water quality monitoring network was established in the city of Atlanta, Georgia during 2003 to assess baseline water quality conditions and the effects of urbanization on stream water quality. Routine hydrologically based manual stream sampling, including several concurrent manual point and equal width increment sampling, was conducted ~12 times annually at 21 stations, with drainage areas ranging from 3·7 to 232 km2. Eleven of the stations are real‐time (RT) stations having continuous measures of stream stage/discharge, pH, dissolved oxygen, specific conductance, water temperature and turbidity, and automatic samplers for stormwater collection. Samples were analyzed for field parameters, and a broad suite of water quality and sediment‐related constituents. Field parameters and concentrations of major ions, metals, nutrient species and coliform bacteria among stations were evaluated and with respect to watershed characteristics and plausible sources from 2003 through September 2007. Most constituent concentrations are much higher than nearby reference streams. Concentrations are statistically different among stations for several constituents, despite high variability both within and among stations. Routine manual sampling, automatic sampling during stormflows and RT water quality monitoring provided sufficient information about urban stream water quality variability to evaluate causes of water quality differences among streams. Fecal coliform bacteria concentrations of most samples exceeded Georgia's water quality standard for any water‐usage class. High chloride concentrations occur at three stations and are hypothesized to be associated with discharges of chlorinated combined sewer overflows, drainage of swimming pool(s) and dissolution and transport during rainstorms of CaCl2, a deicing salt applied to roads during winter storms. One stream was affected by dissolution and transport of ammonium alum [NH4Al(SO4)2] from an alum‐manufacturing plant; streamwater has low pH (<5), low alkalinity and high metals concentrations. Several trace metals exceed acute and chronic water quality standards and high concentrations are attributed to washoff from impervious surfaces. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

12.
滇池新运粮河水质季节变化及河岸带生态修复的影响   总被引:2,自引:1,他引:2  
新运粮河作为一条重要的滇池入湖河流,其水质直接影响滇池的生态健康与环境安全.运用单因子水质标识指数法探讨新运粮河下游水质季节变化规律及影响因子,并分析河岸带修复方式(护岸改造)对河流水质的影响.结果表明:铵氮,总氮,总磷,化学需氧量随时间变化明显.在5-10月的雨季,各指标浓度呈下降趋势,11月至次年4月的旱季,降水量少,各指标浓度呈上升趋势,且显著高于雨季时浓度,监测河段全年水质为劣Ⅴ类.木桩护岸河段营养盐去除率明显高于直立混凝土堤岸河段的去除率,同一护岸类型河段夏季去除率显著高于冬季.  相似文献   

13.
Declining water quality on the south coast of Western Australia has been linked to current agricultural practices. Riparian buffers were identified as a tool available to farmers and catchment managers to achieve water quality improvements. This study compares 10 m wide regenerating grass and Eucalyptus globulus buffer performance. Surface and subsurface water quality were monitored over a 3‐year period. Nutrient and sediment transport were both dominated by subsurface flow, in particular through the B‐horizon, and this may seriously limit the surface‐runoff‐related functions of the riparian buffers. Riparian buffer trapping efficiencies were variable on an event basis and annual basis. The grass buffer reduced total phosphorus, filterable reactive phosphorus, total nitrogen and suspended sediment loads from surface runoff by 50 to 60%. The E. globulus buffer was not as effective, and total load reductions in surface runoff ranged between 10 and 40%. A key difference between the grass and E. globulus buffers was the seasonality of sediment and nutrient transport. Surface runoff, and therefore sediment and nutrient transport, occurred throughout the year in the E. globulus buffer, but only during the winter in the grass buffer. As a consequence of high summer nutrient and sediment concentrations, half the annual loads moving via surface runoff pathways through the E. globulus buffer were transported during intense summer storms. This study demonstrates that grass and E. globulus riparian buffers receiving runoff from pasture under natural rainfall can reduce sediment and nutrient loads from surface runoff. However, in this environment the B‐horizon subsurface flow is the dominant flowpath for nutrient transport through the riparian buffers, and this subsurface flow pathway carries contaminant loads at least three times greater than surface runoff. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Stream solute monitoring has produced many insights into ecosystem and Earth system functions. Although new sensors have provided novel information about the fine-scale temporal variation of some stream water solutes, we lack adequate sensor technology to gain the same insights for many other solutes. We used two machine learning algorithms – Support Vector Machine and Random Forest – to predict concentrations at 15-min resolution for 10 solutes, of which eight lack specific sensors. The algorithms were trained with data from intensive stream sensing and manual stream sampling (weekly) for four full years in a hydrologic reference stream within the Hubbard Brook Experimental Forest in New Hampshire, USA. The Random Forest algorithm was slightly better at predicting solute concentrations than the Support Vector Machine algorithm (Nash-Sutcliffe efficiencies ranged from 0.35 to 0.78 for Random Forest compared to 0.29 to 0.79 for Support Vector Machine). Solute predictions were most sensitive to the removal of fluorescent dissolved organic matter, pH and specific conductance as independent variables for both algorithms, and least sensitive to dissolved oxygen and turbidity. The predicted concentrations of calcium and monomeric aluminium were used to estimate catchment solute yield, which changed most dramatically for aluminium because it concentrates with stream discharge. These results show great promise for using a combined approach of stream sensing and intensive stream discrete sampling to build information about the high-frequency variation of solutes for which an appropriate sensor or proxy is not available.  相似文献   

15.
In the northern glaciated plain of North America, the duration of surface water in seasonal wetlands is strongly influenced by the rate of infiltration and evaporation. Infiltration also plays important roles in nutrient exchange at the sediment–water interface and groundwater recharge under wetlands. A whole‐wetland bromide tracer experiment was conducted in Saskatchewan, Canada to evaluate infiltration and solute transport processes. Bromide concentrations of surface water, groundwater, sediment pore water and plant tissues were monitored as the pond water‐level gradually dropped until there was no surface water. Hydraulic head gradients showed strong lateral flow from under the wetland to the treed riparian zone during the growing season. The bromide mass balance analysis showed that in early spring, almost 50% of water loss from the wetland was by infiltration, and it increased to about 70% in summer as plants in and around the wetland started to transpire more actively. The infiltration contributed to recharging the shallow, local groundwater under the wetland, but much of it was taken up by trees without recharging the deeper groundwater system. Emergent plants growing in the wetlands incorporated some bromide, but overall uptake of bromide by vegetation was less than 10% of the amount initially released. After one summer, most of the subsurface bromide was found within 40–80 cm of the soil surface. However, some bromide penetrated as deep as 2–3 m, presumably owing to preferential flow pathways provided by root holes or fractures. Copyright © 2004 Crown in the Right of Canada. Published by John Wiley & Sons, Ltd.  相似文献   

16.
The influence of riparian woodland on stream temperature, micro‐climate and energy exchange was investigated over seven calendar years. Continuous data were collected from two reaches of the Girnock Burn (a tributary of the Aberdeenshire Dee, Scotland) with contrasting land use characteristics: (1) semi‐natural riparian forest and (2) open moorland. In the moorland reach, wind speed and energy fluxes (especially net radiation, latent heat and sensible heat) varied considerably between years because of variable riparian micro‐climate coupled strongly to prevailing meteorological conditions. In the forested reach, riparian vegetation sheltered the stream from meteorological conditions that produced a moderated micro‐climate and thus energy exchange conditions, which were relatively stable between years. Net energy gains (losses) in spring and summer (autumn and winter) were typically greater in the moorland than the forest. However, when particularly high latent heat loss or low net radiation gain occurred in the moorland, net energy gain (loss) was less than that in the forest during the spring and summer (autumn and winter) months. Spring and summer water temperature was typically cooler in the forest and characterised by less inter‐annual variability due to reduced, more inter‐annually stable energy gain in the forested reach. The effect of riparian vegetation on autumn and winter water temperature dynamics was less clear because of the confounding effects of reach‐scale inflows of thermally stable groundwater in the moorland reach, which strongly influenced the local heat budget. These findings provide new insights as to the hydrometeorological conditions under which semi‐natural riparian forest may be effective in mitigating river thermal variability, notably peaks, under present and future climates. © 2014 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   

17.
Methane concentrations and selected chemical parameters in interstitial water were examined along subsurface flowpath in two subsystems (hyporheic and parafluvial sediments) in the Sitka stream, Czech Republic. Interstitial methane concentrations exhibited a distinct spatial pattern. In the hyporheic downwelling zone where the sediments are relatively well oxygenated due to high hydrologic exchange with the surface water, low interstitial methane concentrations, averaging 9.3 μg CH4/l, were found. In contrast, upwelling sediments and parafluvial sediments (active channel sediments lateral to the wetted channel) had significantly higher methane concentrations (p < 0.05, and p < 0.01, respectively), averaging 43.2 μg CH4/l and 160.5 μg CH4/l, respectively. Dissolved oxygen was the highest where surface water entered hyporheic/parafluvial sediments and decreased with water residence time in the sediments (p < 0.01). Nitrate concentrations decreased along the flowpath and were significantly lower at downstream end of the riffle (p < 0.001). Sulfate concentrations also show a slight decline with the water residence time, but differences were not significant. Effect of both nitrate and sulfate on methanogenesis is also discussed. The interstitial methane concentration significantly increased with surface water temperature (p < 0.001) and was negatively correlated with redox potential (p < 0.01) and dissolved oxygen (p < 0.05).  相似文献   

18.
Little Kickapoo Creek (LKC), a low‐gradient stream, mobilizes its streambed–fundamentally altering its near‐surface hyporheic zone–more frequently than do higher‐gradient mountain and karst streams. LKC streambed mobility was assessed through streambed surveys, sediment sampling, and theoretical calculations comparing basal shear stress (τb) with critical shear stress (τc). Baseflow τb is capable of entraining a d50 particle; bankfull flow could entrain a 51·2 mm particle. No particle that large occurs in the top 30 cm of the substrate, suggesting that the top 30 cm of the substrate is mobilized and redistributed during bankfull events. Bankfull events occur on average every 7·6 months; flows capable of entraining d50 and d85 particles occur on average every 0·85 and 2·1 months, respectively. Streambed surveys verify streambed mobility at conditions below bankfull. While higher gradient streams have higher potential energy than LKC, they achieve streambed‐mobilization thresholds less frequently. Heterogeneous sediment redistribution creates an environment where substrate hydraulic conductivity (K) varies over four orders of magnitude. The frequency and magnitude of the substrate entrainment has implications on hyporheic zone function in fluid, solute and thermal transport models, interpretations of hyporheic zone stability, and understanding of LKC's aquatic ecosystem. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Wildfires are landscape scale disturbances that can significantly affect hydrologic processes such as runoff generation and sediment and nutrient transport to streams. In Fall 2016, multiple large drought-related wildfires burned forests across the southern Appalachian Mountains. Immediately after the fires, we identified and instrumented eight 28.4–344 ha watersheds (four burned and four unburned) to measure vegetation, soil, water quantity, and water quality responses over the following two years. Within burned watersheds, plots varied in burn severity with up to 100% tree mortality and soil O-horizon loss. Watershed scale high burn severity extent ranged from 5% to 65% of total watershed area. Water quantity and quality responses among burned watersheds were closely related to the high burn severity extent. Total water yield (Q) was up to 39% greater in burned watersheds than unburned reference watersheds. Total suspended solids (TSS) concentration during storm events were up to 168 times greater in samples collected from the most severely burned watershed than from a corresponding unburned reference watershed, suggesting that there was elevated risk of localized erosion and sedimentation of streams. NO3-N concentration, export, and concentration dependence on streamflow were greater in burned watersheds and increased with increasing high burn severity extent. Mean NO3-N concentration in the most severely burned watershed increased from 0.087 mg L−1 in the first year to 0.363 mg L−1 (+317%) in the second year. These results suggest that the 2016 wildfires degraded forest condition, increased Q, and had negative effects on water quality particularly during storm events.  相似文献   

20.
三峡水库长江干流及其支流枯水期浮游植物多样性与水质   总被引:7,自引:0,他引:7  
2010年4月对长江干流和26条支流未淹没区与回水区的浮游植物进行调查.结果表明,硅藻、绿藻和蓝藻共占浮游植物种类的93.33%~93.88%.干流优势种类有1门1种、未淹没区有3门6种、回水区有5门6种,出现率分别为15.38%、9.23%和25.00%.回水区现存量平均值最高、未淹没区其次、干流最低.现存量组成在干流、未淹没区和回水区之间有差异,绿藻所占比例干流最高,硅藻所占比例未淹没区最高,隐藻、蓝藻和甲藻所占比例均在回水区最高.Shannon-Wiener多样性指数(H’)和Pielou均匀性指数(J),未淹没区最高、干流次之、回水区最低.17条支流回水区H’和8条支流回水区J均低于未淹没区.水质评价显示,轻或无污染断面(采样点)的比例,干流为76.92%,未淹没区为84.62%,回水区为47.06%.19条(73.08%)支流回水区出现中污染或重污染,7条(26.92%)支流未淹没区出现中污染或重污染.三峡工程蓄水对回水区浮游植物与水质影响比长江干流更大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号