首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 312 毫秒
1.
研究采用SBAS-InSAR技术,结合Sentinel-1A升降轨道数据对青海省西宁市市区进行了地表沉降监测。实验结果发现西宁市市区中沉降速率大、下沉现象明显的4个沉降区域,这些沉降区域漏斗主要发生于新建城市居民楼小区、道路、高速公路和山区区域附近。其中,Ⅲ号区域在监测时间内地面点下沉速率最高值可超过-27 mm/a,累积沉降量甚至超过了50mm。经过研究分析,区域的大范围性沉降效应主要是由于近几年大规模的城市化建设和交通轨道建设损坏了地表的土层地质平衡状态,从而引起了地表土层不可逆转的下沉现象。同时,通过对两组数据的沉降速率值作地理同名点的线性函数分析可以得到相关系数高达0.9854,这很好地验证了数据成果的可靠性和精准性。  相似文献   

2.
采用SBAS-InSAR技术对菏泽市65景Sentinel-1A SAR数据进行处理,获取菏泽市2017-05-20~2021-05-23的沉降结果,并结合地下煤矿工作面的开采对各成像时期的地面沉降情况进行精细化分析,最后利用实际水准数据对SBAS-InSAR监测结果进行精度验证。结果表明,研究时段内,菏泽市地面沉降不断加速,郓城地区沉降较为严重,最大年平均沉降速率达-311 mm/a,最大累积沉降量达-1 269 mm。SBAS-InSAR监测到的沉降位置和沉降变化趋势与水准测量结果相符,但在沉降严重区域,SBAS-InSAR监测到的沉降量与实际水准测量结果有一定差异。  相似文献   

3.
采用PS-InSAR技术处理44景COSMO-SkyMed卫星影像,获取南宁市建成区2013~2016年地表沉降形变信息;选取典型沉降突变区域进行实地调查,分析地表变形特征及原因,验证PS-InSAR技术监测结果的准确性。结果表明,研究区年平均形变速率范围为-7~5 mm/a;沉降突变点大多分布在青秀区、西乡塘区及兴宁区的绕城高速以内,其中青秀区新竹路与思贤路交叉区域、民族大道高速出入口区域地面沉降明显,平均形变速率超过-9 mm/a;结合工程建设资料、光学历史影像进行实地调查,结果与PS-InSAR监测数据反映的问题吻合较好。该研究可为地质灾害预测和防治工作提供新思路。  相似文献   

4.
将SBAS-InSAR技术应用于昆明主城区地面沉降监测,单独处理同一地区2014~2017年的29景升轨和32景降轨Sentinel-1A、1B数据。在升降轨模式下进行数据处理与精度验证,结果表明两种模式下所得到研究区域的平均沉降速率和时序分析基本保持一致。研究发现昆明市沉降漏斗主要位于居民区、地铁、道路、高速公路、以及滇池区域,最大年均沉降速率可达-38.975 mm/a,累积沉降量达到89 mm。研究表明,昆明市地面沉降主要由于近几年城市化建设和轨道交通建设的飞跃发展,导致居民区和交通网络密集,地面载荷增加,地下隧道开挖与地下水开采等问题引起地面软土地层下沉而产生明显的沉降现象。  相似文献   

5.
利用合成孔径雷达干涉测量(InSAR)技术对2017-06~2020-06期间获取的Sentinel-1数据集进行处理和分析,获取北京近几年地面沉降区域的时空分布特征。结果表明,北京地表形变呈现5处沉降区,最大年形变速率为-111.3 mm/a。将InSAR结果与GPS观测资料进行对比,验证了时序InSAR的有效性。对比2018年和2019年的年形变速率可知,各个沉降范围内的沉降面积均在减小,且沉降减缓的面积远大于沉降加速的面积。局部调查后发现,5处沉降区除1处仍在加速沉降外,其他4处的沉降速度均在减缓。  相似文献   

6.
采用2019-01~2022-03共90景Sentinel-1A卫星影像,基于PS-InSAR技术对天津市及其周边地区(下文简称“天津区域”)地表形变进行监测分析。结果表明,沉降主要发生在天津市外围,其中邻近天津市的河北省胜芳镇最大地面沉降速率达80 mm/a。为探究天津区域沉降内因,结合随机森林土地分类结果分析地表形变的地理分布特征,为地质灾害综合治理和地下水资源开发利用提供参考依据。  相似文献   

7.
为了有效预防地面沉降带来的地质灾害,基于ENVI Sarscape平台,通过对2020年湘澧盐矿地区4-6月份的Sentinel-1A数据进行干涉测量处理,通过形变结果分析盐矿地区各区域的沉降情况,结合土地利用类型、水文、地质和交通等数据,总结各处沉降地区的特征和形成原因,并通过对各矿井沉降速率的获取与分析,验证了InSAR技术在矿区沉降监测应用上的可行性,为该研究区后期的监测工作奠定了实践基础。  相似文献   

8.
基于以往研究,使用12景影像形成67个干涉图,并利用stacking技术获取临汾盆地2015~2016年形变速率。结果显示,沉降区域主要分布在罗云山断裂带和峨眉-紫金山断裂带之间,中心区域沉降速率超过40 mm/a,与地下水的等高线分布较为相似,地表形变是地下水抽取和断裂带的联合作用。  相似文献   

9.
20世纪60年代以来,北京市地面沉降不断发展,目前已经形成了东郊八里庄-大郊亭、东北郊-来广营、昌平沙河-八仙庄、大兴榆垡-礼贤和顺义平各庄5个沉降区。本文选取目前地面沉降较为严重的北京市朝阳区、顺义区和通州区作为研究区,利用2003-2010年的47景ASAR影像数据,采用SBAS-InSAR技术获取了研究区的地面沉降监测结果,并分别以SFP点年均沉降速率和各年沉降量作为权重,计算SFP点空间分布中心与方向特征椭圆,定量分析了研究区地面沉降时空特征。结果表明:2004-2010年,北京市地面沉降表现为严重的不均匀沉降,年沉降量最大值由104.04 mm增加到178.83 mm;标准差椭圆长轴与南北方向平行,反映出地面沉降空间发展方向性在南北方向较东西方向明显,椭圆面积由592.25 km2减小到 503.84 km2,表明2004-2010年研究区内发生地面沉降的区域范围变化呈减小趋势,但从沉降量可以发现,北京地面沉降一直处于加重趋势。  相似文献   

10.
针对传统形变监测难以在短时间内进行大面积形变监测的问题,结合基于时间序列的雷达差分干涉测量(PS-InSAR)技术,以TerraSAR-X数据为例,重点研究了高分辨率SAR数据在城市地表形变监测中的应用,并对石家庄市、沧州市城区进行了监测,使用了2013年和2014年间各37景数据,采用了SARPROZ软件进行数据处理。实验结果显示,在石家庄市和沧州市各有三处较大形变区域。根据历史水文地质数据资料对比显示,产生形变的区域主要为地下水漏斗区域和大型建筑施工区域。在对石家庄市的分析结果中还发现,由于建筑施工造成了高铁沿线周边区域的较大沉降。此外,经过与沧州市历史沉降资料对比发现,传统沉降区已得到了有效的控制。总体而言,高分辨率SAR影像差分干涉技术为城市大面积地表形变分析提供了一种行之有效的监测手段,对传统沉降区的持续监测、高铁运行、地铁施工建设等具有重要参考意义。  相似文献   

11.
目前,我国许多经济发达地区都面临着地面沉降灾害的困扰,沉降范围扩大,程度日益加剧,逐渐成为城市发展中亟待解决的问题。永久散射体合成孔径雷达干涉测量(Persistent Scatterer Interferometric Synthetic Aperture Radar,PS-InSAR)作为地表形变测量的主要手段之一,在地面沉降监测中发挥着重要作用。而单轨星载SAR影像成像幅宽有限,在开展大范围地面沉降调查时需要将多轨道PS-InSAR沉降速率图进行拼接。本文重点讨论了入射角效应和参考点差异对PS-InSAR沉降结果的影响,分析了相邻轨道PS-InSAR沉降速率拼接中存在的PS点位置差异和沉降量偏移,鉴此,提出了采用区块法和插值法对异轨重叠区的形变结果求差的思路,以及基于现有软件PS-InSAR地面沉降速率的跨轨拼接处理流程,利用广东珠三角地区ENVISAT ASAR数据进行了实验分析。结果表明,相邻轨道入射角不同会造成沉降量的差异,在多轨道情况下对沉降量影响增大,因此,在拼接过程中需要进行入射角纠正。本文提出的区块法和插值法能有效地求解异轨重叠区的形变差,结果表明区块法优于插值法;相邻轨道参考点差异会造成沉降量偏移,通过区块法或插值法求差可以消除该偏移量。本文提出的拼接流程可将多轨道PS-InSAR地面沉降速率统一到同一基准下,从而获得大范围一致的地面沉降速率。  相似文献   

12.
北京从20世纪50、60年代发现地面沉降以来,其一直呈快速发展的态势。在过去的几十年里,北京市地面沉降的范围和速度逐年增加。本文以北京市典型地面沉降区为研究区,选择永久散射体合成孔径雷达干涉测量技术所获取的2004-2010年间北京地面沉降信息作为主要数据源,补充水准测量数据(1955-2010年),从空间分布和时序变化2个角度,分析北京市平原典型区地面沉降演化特征。结合地下水动态监测网数据、土地利用数据,采用GIS空间分析,研究各因素和地面沉降之间的时空响应关系。结果表明,北京地区地面沉降严重区域面积不断扩大,且局部不均匀程度逐渐增加。在研究期内,地下水水位变化在时间和空间上与地面沉降有较高的一致性,地下水超量开采是影响北京地区地面沉降的最主要因素,而城市发展过程中的工程活动也是影响地面沉降时空分布特征的因素之一。研究结果可为北京市地面沉降防控提供一定的科学依据。  相似文献   

13.
京津高铁是中国第一条高速运行的城际铁路,其安全运行对轨道的平顺性有着严格的要求。地面沉降,尤其是不均匀地面沉降会引起部分路基和桥梁变形,威胁着高速铁路的运营安全。合成孔径雷达干涉测量技术可以大范围监测地表形变,对高速铁路沿线地面沉降具有较好的监测能力。本文以45景高分辨率TerraSAR-X 数据为基础,采用 PS-InSAR技术监测京津高铁北京段沿线地面沉降,获取京津高铁北京段沿线地面沉降的分布信息,从动静载荷视角结合北京地区地下水、断裂带、地质条件和含水层系统介质等数据,综合分析高铁沿线不均匀地面沉降的原因,为京津高铁的安全运营提供技术支撑。研究结果表明:京津高铁北京段沿线地面沉降发展在空间上存在一定差异性,北京南站至十里河区间,年沉降速率小于10 mm/a; 至十八里店区间,年沉降速率在10~40 mm/a范围内浮动;过亦庄站至东石村以东区间,最大年沉降速率达到90 mm/a;至永隆村以西,年沉降有所缓解,往东至坨堤村,沉降较为稳定,年沉降速率小于10 mm/a。地下水超采是沿线区域地面沉降的主要因素,动静载荷共同作用下对地面沉降产生一定的影响,沿线地面沉降一定程度上受到南苑—通县断裂带和旧宫断裂带构造控制,沉降量较大的路段位于粘土层较厚的大兴迭隆起。  相似文献   

14.
采用PS-InSAR时序技术对常州市2018-01~2019-12的24期Sentinel-1A影像数据进行处理,获取常州市地面形变信息。所得结果与同期水准监测数据有较好的一致性,两者较差最大值为6.1 mm、平均值为2.7 mm、均方根误差(RMSE)为1.7 mm。结果显示,抬升区域主要位于城镇,累积抬升量平均值约为7.3 mm;沉降区域主要位于农村,累积沉降量平均值约为7.6 mm;武进区南部等地局部沉降严重,累积沉降量平均值超过15 mm。分析第Ⅱ承压水水位变化对地面沉降的影响显示,两者相关系数为0.55;同时分析某分层基岩标各地层回弹情况发现,深部地层多数处于反弹阶段,而浅部地层是目前土层压缩(沉降)的主要层段。说明近2 a第Ⅱ承压水对常州市地面沉降具有一定的影响,但已不是主要影响因素,浅部地层土层压缩已成为常州市地面沉降的主要影响因素。  相似文献   

15.
针对黄河三角洲地区湿地及农田多、范围大,导致PS-InSAR技术难以获取高密度地表形变信息的问题,提出一种基于分布式目标InSAR(DS-InSAR)的黄河三角洲地表形变监测方法。该方法通过置信区间估计选取同质像元点,利用特征值分解方法计算主散射体对应相位值以达到相位优化的目的,再根据时空相干性确定分布式目标,最后建模解算时序地表形变信息。以26景Sentinel-1A影像为数据源,提取2019-12~2020-12期间黄河三角洲地区的地表沉降信息,与PS-InSAR方法结果相比,点位密度提高5.56倍;两种方法获取的同名点对形变速率的相关系数为0.727,说明两者具有很好的一致性。实验结果表明,研究区内存在4处明显沉降区域,最大沉降速率达-238 mm/a,经分析及实地调查验证,其主要影响因素为地下卤水及油气开采。  相似文献   

16.
基于覆盖合肥地区的24景Sentinel-1A数据,采用PS-InSAR和SBAS-InSAR时序处理方法获取2017-11~2019-10合肥市城区及周边地面形变分布信息,分析主城区地面沉降的时空演化规律,获取地铁网络沿线地表形变空间分布图。结果表明,合肥市地铁线路沿线发生不同程度形变,形变严重区域主要集中在西部及西南部,最大沉降速率达到35 mm/a。对池河-西山驿断裂形变场进行宏观分析,并结合时空同步的跨断层水准数据进行对比验证,认为2种数据的垂直形变监测结果具有一致性,推测数据的垂直升降变化可能受断层拉张和挤压交替控制。  相似文献   

17.
以鄂尔多斯市的红庆河煤矿为实验对象,对Sentinel-1A卫星影像进行干涉处理和时序分析。通过分析时间维样本统计属性的相似程度,选取散射特性相同的像素进行同质滤波,并在复数域根据相位闭合原理对其相位进行平差,实现该地区的DS-InSAR处理,得到煤矿累积沉降面积约为32.3 km2,沉降结果与煤矿的空间分布一致。对比PS-InSAR结果发现,沉降监测中DS-InSAR效果更好。  相似文献   

18.
本文基于2016-01~2018-07的Sentinel-1A数据,采用PS-InSAR和SBAS-InSAR时序处理方法获取南昌市主城区地面形变信息,对比2种监测结果,分析产生不均匀地面形变的原因。结果表明,2种时序技术的监测结果相关性较高,南昌市主城区的形变趋势为西北抬升、东南下沉。形变区空间分布存在梅岭抬升区、南昌西火车站沉降区、赣江东岸沉降区、邓家埠沉降区和南钢沉降区,主要受地质构造、含水层介质、地下水开采和城市建设等因素影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号