首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seismic assessment of existing unreinforced masonry buildings represents a current challenge in structural engineering. Many historical masonry buildings in earthquake regions were not designed to withstand seismic loading; thus, these structures often do not meet the basic safety requirements recommended by current seismic codes and need to be strengthened considering the results from realistic structural analysis. This paper presents an efficient modelling strategy for representing the nonlinear response of unreinforced masonry components under in‐plane cyclic loading, which can be used for practical and accurate seismic assessment of masonry buildings. According to the proposed strategy, generic masonry perforated walls are modelled using an equivalent frame approach, where each masonry component is described utilising multi‐spring nonlinear elements connected by rigid links. When modelling piers and spandrels, nonlinear springs are placed at the two ends of the masonry element for describing the flexural behaviour and in the middle for representing the response in shear. Specific hysteretic rules allowing for degradation of stiffness and strength are then used for modelling the member response under cyclic loading. The accuracy and the significant potential of the proposed modelling approach are shown in several numerical examples, including comparisons against experimental results and the nonlinear dynamic analysis of a building structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
A computational model for evaluating the dynamical response and the damage of large masonry walls subjected to out‐of‐plane seismic actions is presented. During earthquakes, these actions are often the main cause of damage for the front wall and lateral walls of old masonry‐built churches and monuments. Since the crack patterns often tend to subdivide the plane walls into a number of blocks, the model assumes such walls as a series of quadrilateral plane rigid elements connected to each other in the middle of their adjoining sides. Only the out‐of‐plane displacements are considered, and the connections are regarded as spherical elasto‐plastic joints which allow rotations whose axis is in the plane of the undeformed wall. The hysteretic characteristics of these joints are defined so as to approximate the brittle behaviour of masonry material and the degradation due to cyclic loadings. The numerical results obtained using a limited number of elements show that the global out‐of‐plane response of the masonry walls and the mechanical degradation at each connection are in accord with the observed behaviour of real churches hit by strong earthquakes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
采用SAP程序中的Link单元进行了密肋壁板结构非线性时程反应分析。推导了Link单元的刚度矩阵,确定了相对转动中心高度。并结合钢筋混凝土柱轴向恢复力模型和密肋复合墙体水平抗侧恢复力模型,给出了Link单元竖向和水平连接弹簧非线性力-位移关系的计算公式。采用Link单元建立了密肋壁板结构宏观有限元分析模型,并对1/10比例振动台模型试验进行了非线性时程反应分析。结果表明:计算结果与试验结果吻合良好,这说明采用Link单元可以较好的模拟密肋壁板结构的动力非线性行为。  相似文献   

4.
A simple constitutive model is proposed for an in‐plane numerical analysis of unreinforced masonry structures, which are subject to cyclic loading, by using explicit dynamic procedures. The proposed model is implemented by using two‐dimensional plane‐stress finite elements. Three different constitutive relations that are based on the total strain in the global material system are used. Cracking and crushing are controlled through normal strains, whereas shear is controlled through shear strain. Separate hysteretic rules are adopted for each mode of damage. A numerical analysis of masonry walls that are subject to cyclic loading has demonstrated that the use of explicit procedures in conjunction with the proposed model results in an acceptable accuracy when compared with the experimental results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Damage caused by devastating earthquakes has occurred in many developing countries. In order to mitigate such damage by promoting the study of adequate seismic design strategies, the authors conducted a dynamic collapse test on 3 m × 3 m × 3 m brick masonry house constructed with Pakistani bricks, using a one-direction horizontal large-scale shaking table. In order to analyze and simulate seismic performance of the masonry structures, the authors applied a new numerical simulating method based on the Extended Distinct Element Method (EDEM) and conducted collapse simulations of the brick masonry house behavior during the shaking table tests. In the numerical simulation model, bricks were assumed to be rigid bodies, and mortar was modeled using a mortar spring that consists of a normal spring and a shear spring. The parameters of each mortar spring were defined based on the results of material tests. Simulated results showed various collapsing processes, and the simulated aspects were found to be similar to the results of the shaking table tests.  相似文献   

6.
7.
The response of calcium silicate unreinforced masonry construction to horizontal cyclic loading has recently become the focus of experimental and numerical research, given its extensive use in some areas of the world that are now exposed to induced earthquakes (eg, north of the Netherlands). To assess the seismic behaviour of such construction, a relatively wide range of modelling methodologies are available, amongst which the discrete elements approach, which takes into account the intrinsic heterogeneity of a brick‐mortar assembly, can probably be deemed as the most appropriate computational procedure. On the other hand, however, since discrete elements numerical methods are based on a discontinuum domain, often they are not able to model every stage of the structural response adequately, and because of the high computational burden required, the analysis scale should be chosen carefully. The applied element method is a relatively recent addition to the discrete elements family, with a high potential for overcoming the aforementioned limitations or difficulties. Initially conceived to model blast events and concrete structures, its use in the earthquake engineering field is, of late, increasing noticeably. In this paper, the use of the applied element method to model the in‐plane cyclic response of calcium silicate masonry walls is discussed and scrutinised, also through the comparison with experimental results of in‐plane cyclic shear‐compression tests on unreinforced masonry walls.  相似文献   

8.
This paper presents a masonry panel model for the nonlinear static and dynamic analysis of masonry buildings suitable for the seismic assessment of new and existing structures. The model is based on an equivalent frame idealization of the structure and stems from previous research on force‐based frame elements. The element formulation considers axial, bending, and shear deformations within the framework of the Timoshenko beam theory. A phenomenological cyclic section law that accounts for the shear panel response is coupled, through equilibrium between shear and bending forces along the element, with a fiber‐section model that accounts for the axial and bending responses. The proposed panel model traces with a low computational burden and numerical stability the main aspects of the structural behavior of masonry panels and is suitable for analyses of multi‐floor buildings with a relatively regular distribution of openings and with walls and floors organized to grant a box‐like behavior under seismic loads. The model capabilities are validated though analyses of simple unreinforced masonry panels and comparisons with published experimental results. The model accuracy is strongly dependent on the fiber and shear constitutive laws used. However, the formulation is general, and laws different from those employed in this study are easily introduced without affecting the model formulation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
To improve the seismic performance of masonry structures, confined masonry that improves the seismic resistance of masonry structures by the confining effect of surrounding bond beams and tie columns is constructed. This study investigated the earthquake resisting behaviour of confined masonry structures that are being studied and constructed in China. The structural system consists of unreinforced block masonry walls with surrounding reinforced concrete bond beams and tie columns. The characteristics of the structure include: (1) damage to blocks is reduced and brittle failure is avoided by the comparatively lower strength of the joint mortar than that of the blocks, (2) the masonry walls and surrounding reinforced concrete bond beams and tie columns are securely jointed by the shear keys of the tie columns. In this study, wall specimens made of concrete blocks were tested under a cyclic lateral load and simulated by a rigid body spring model that models non‐linear behaviour by rigid bodies and boundary springs. The results of studies outline the resisting mechanism, indicating that a rigid body spring model is considered appropriate for analysing this type of structure. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Reinforced concrete (R/C) frame buildings designed according to older seismic codes represent a large part of the existing building stock worldwide. Their structural elements are often vulnerable to shear or flexure‐shear failure, which can eventually lead to loss of axial load resistance of vertical elements and initiate vertical progressive collapse of a building. In this study, a computationally efficient member‐type finite element model for the hysteretic response of shear critical R/C frame elements up to the onset of axial failure is presented; it accounts for shear‐flexure interaction and considers, for the first time, the localisation of shear strains, after the onset of shear failure, in a critical length defined by the diagonal failure plane. Its predictive capabilities are verified against experimental results of column and frame specimens and are shown to be accurate not only in terms of total response, but also with regard to individual deformation components. The accuracy, versatility, and simplicity of this finite element model make it a valuable tool in seismic analysis of complex R/C buildings with shear deficient structural elements.  相似文献   

11.
This paper presents an experimental and numerical study to investigate the hysteretic performance of a new type of isolator consisting of shape memory alloy springs and friction bearing called an SMA spring-friction bearing (SFB). The SFB is a sliding-type isolator with SMA devices used for the seismic protection of engineering structures. The principle of operation of the isolation bearing is introduced. In order to explore the possibility of applying SMA elements in passive seismic control devices, large diameter superelastic tension/compression NiTi SMA helical springs used in the SFB isolator were developed. Mechanical experiments of the SMA helical spring were carried out to understand its superelastic characteristics. After that, a series of quasi-static tests on a single SFB isolator prototype were conducted to measure its force-displacement relationships for different loading conditions and study the corresponding variation law of its mechanical performance. The experimental results demonstrate that the SFB exhibits full hysteretic curves, excellent energy dissipation capacity, and moderate recentering ability. Finally, a theoretical model capable of emulating the hysteretic behavior of the SMA-based isolator was then established and implemented in MATLAB software. The comparison of the numerical results with the experimental results shows the efficacy of the proposed model for simulating the response of the SFB.  相似文献   

12.
Reinforced concrete (R/C) frame buildings designed according to older seismic codes represent a large part of the existing building stock worldwide. Their structural elements are often vulnerable to shear or flexure‐shear failure, which can eventually lead to loss of axial load resistance of vertical elements and initiate vertical progressive collapse of a building. In this study, a hysteretic model capturing the local shear response of shear‐deficient R/C elements is described in detail, with emphasis on post‐peak behaviour; it differs from existing models in that it considers the localisation of shear strains after the onset of shear failure in a critical length defined by the diagonal failure planes. Additionally, an effort is made to improve the state of the art in post‐peak shear response modelling, by compiling the largest database of experimental results for shear and flexure‐shear critical R/C columns cycled well beyond the onset of shear failure and/or up to the onset of axial failure, and developing empirical relationships for the key parameters defining the local backbone post‐peak shear response of such elements. The implementation of the derived local hysteretic shear model in a computationally efficient beam‐column finite element model with distributed shear flexibility, which accounts for all deformation types, will be presented in a companion paper.  相似文献   

13.
The seismic performance of unreinforced masonry structures is strongly associated with the interaction between in‐plane and out‐of‐plane mechanisms. The seismic response of these structures has been thoroughly investigated by means of experimental testing, analytical procedures, and computational approaches. Within the framework of the numerical simulations, models based on the finite element method provide a good prediction of the seismic performance of unreinforced masonry structures. However, they usually require a high computational cost and advanced user expertise to define appropriate mechanical properties and to interpret the numerical results. Because of these limitations, simplified models for practical applications have been developed during the last decades. Despite this, a great number of these models focus mostly on the evaluation of the in‐plane response, assuming box (or integral) behavior of the structure. In this paper, a simplified macroelement modeling approach is used to simulate the seismic response of 2 masonry prototypes taking into consideration the combined in‐plane and out‐of‐plane action. The numerical investigations were performed in the static and dynamic fields by using pushover analyses and nonlinear dynamic analyses respectively. The latter is a novel implementation of a model previously developed for static analysis. The results obtained from this study are in good agreement with those provided by a detailed nonlinear continuum FE approach, demonstrating the applicability of this macroelement model with a significant reduction of the computational cost.  相似文献   

14.
The paper proposes a systematic comparison between two methods of analysis that are well established in the field of earthquake engineering: nonlinear dynamic analysis and nonlinear static procedure (NSP), applied to the out‐of‐plane seismic response of two masonry façades representative of many ancient Italian churches. The comparison is based on extensive numerical analyses, which focus on the flexural and torsional mechanisms, while the in‐plane damage mechanisms and the possible detachment between the façade and the lateral walls because of a poor connection have been presently disregarded. The computations, both in the static and in the dynamic field, are based on a rigid body and spring model specifically implemented for this issue, computationally efficient and equipped with a realistic model of damage and hysteresis at the mesoscale. An innovative aspect of this study is the heuristic modelling of three‐wythe masonry, to include some typical texture effects on the macroscale nonlinear response. For each façade, two different masonry textures were considered, performing extensive dynamic analyses that offered a detailed overview about the performance under earthquakes of different intensities. In parallel, NSP and the classical N2‐based seismic assessment were applied. A critical discussion and comparison of the results of the two methods is presented to rationally appraise limits and opportunities. In particular, flexural and twisting out‐of‐plane mechanisms were clearly appraised in the dynamic field, whereas NSPs were not always able to describe the collapse, because they missed the partial failures determined by higher vibration modes, as could be expected. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
等效框架模型采用宏观模型来模拟砌体墙在平面内的抗震性能。砌体墙的墙柱和墙梁采用同时考虑轴向弯曲和剪切变形的基于力法的纤维截面进行模拟,且两者的连接视为刚性区域。轴向压缩及弯曲效应在截面纤维模型中考虑,而剪切效应由V-γ剪切恢复力模型表达,弯曲和剪切在单元层面进行耦合。通过统计和分析,确定骨架曲线的计算方法,并基于Ibarra-Krawinkler模型提出剪切恢复力模型。通过算例得出:该模型在单调加载和循环加载下的数值计算结果与试验结果均吻合较好。  相似文献   

16.
The macroelement technique for modelling the nonlinear response of masonry panels is particularly efficient and suitable for the analysis of the seismic behaviour of complex walls and buildings. The paper presents a macroelement model specifically developed for simulating the cyclic in‐plane response of masonry walls, with possible applications in nonlinear static and dynamic analysis of masonry structures. The model, starting from a previously developed macroelement model, has been refined in the representation of flexural–rocking and shear damage modes, and it is capable of fairly simulating the experimental response of cyclic tests performed on masonry piers. By means of two internal degrees of freedom, the two‐node macroelement permits to represent the coupling of axial and flexural response as well as the interaction of shear and flexural damage. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents an energy‐consistent approach for reducing the number of degrees‐of‐freedom (DOFs) in tall steel frames. In the present approach, the moment resistance of beams and columns in each story is represented by the moment resistance of a rotational spring and a beam‐column element, respectively. The shear resistance provided by braces in each story is represented by the shear resistance of a shear spring. Furthermore, the resistance to the overturning moment provided by axial resistance of columns in each story is represented by the moment resistance of a rotational spring. These representations are carried out by achieving the equivalence between the strain energy stored and dissipated in the elements in the full (unreduced) DOF models and the strain energy stored and dissipated in the corresponding elements in the reduced DOF models. The accuracy of the present approach is demonstrated through numerical examples, which compare the results of nonlinear time history analyses obtained using the full and reduced DOF models. In the numerical examples, the response is estimated for 20‐story and 40‐story steel frames with and without buckling‐restraint braces subjected to a suite of near‐fault and far‐fault ground motions. The present approach is useful in estimating the response of tall steel frames having non‐regular member arrangements to a suite of intense ground motions including near‐fault ones, where it is crucial to capture the influence of higher mode effects on collapse mechanisms. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
A multiscale strategy is evaluated at a structural level for the analysis of unreinforced masonry structures. The mechanical characterization of the masonry is deduced from homogenization-based micro-scale finite element (FE) models. The derived data are here employed at a structural level via a discrete FE model. The discrete FE model is composed of quadrilateral rigid plates interconnected through vertical and horizontal interfaces. On the interfaces, between adjoining discrete elements, a model that accounts for the in- and out-of-plane behavior of masonry, with damage and plasticity, is adopted. Such interfaces represent the material pre- and post-peak regimes, its orthotropy, and, depending on the micro-model assumed, account by three-dimensional shear effects that are especially important for multi-leaf walls and complex regular textures. The discrete model has been implemented in an advanced structural analysis software where powerful built-in features as the arc-length method, line-search algorithm, and implicit or explicit solver schemes are available. The multi-scale model is applied for the dynamic study of a small English-bond masonry house prototype subjected to a series of consecutive earthquake records. Detailed comparisons between the experimental and numerical data are presented, including the results obtained through a continuous total strain rotating crack model. Quasi-static and dynamic analyses are conducted. Results demonstrate that when enough experimental information is available on the masonry components under tension, shear, and compression regimes, the approach predicts well the seismic structural response in terms of time-history displacements, seismic capacity, and damage patterns. The required computational cost (CPU time) is very attractive.  相似文献   

19.
The in‐plane cyclic behaviour of three types of unreinforced clay masonry was characterized by means of laboratory tests on full‐scale specimens. The masonry walls were assembled with various bonding arrangements (head joints made with mortar pockets, dry head joints with mechanical interlocking, thin‐layer mortar bed joints), which are not yet inserted in seismic codes. Experimental behaviour was modelled with an analytical hysteretic model able to predict lateral load–displacement curves in case of shear failure of the unreinforced walls. According to the experimental results and those of the selected analytical model, parametric study to evaluate the reduction in lateral strength demand produced by non‐linear behaviour in masonry walls, i.e. the load reduction factor was carried out by non‐linear dynamic analyses. The calculated values of the load reduction factor were modest. The differences in values found for the three masonry types, although consistent with them, were not great. This may indicate that, in the ultimate limit state, the type of masonry cannot significantly affect the behaviour of an entire building. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
An existing two‐dimensional macroelement for reinforced concrete beam–column joints is extended to a three‐dimensional macroelement. The three‐dimensional macroelement for beam–column joints consists of six rigid interface plates and uniaxial springs for concrete, steel, and bond–slip, which model the inside of a beam–column joint. The mechanical models for the materials and the stiffness equation for the springs are also presented. To validate the model, we used test results from three slab–beam–column sub‐assemblages subjected to bi‐lateral cyclic load. It is revealed that the new joint model is capable of capturing the strength of beam–column joints and the bidirectional interaction in joint shear response, including the concentration of damage in the beam–column joint, the pinching nature in hysteretic behavior, the stiffness degradation, and strength deterioration resulting from cyclic and bidirectional loading. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号