首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fully implicit iterative integration procedure is presented for local and geographically distributed hybrid simulation of the seismic response of complex structural systems with distributed nonlinear behavior. The purpose of this procedure is to seamlessly incorporate experimental elements in simulations using existing fully implicit integration algorithms designed for pure numerical simulations. The difficulties of implementing implicit integrators in a hybrid simulation are addressed at the element level by introducing a safe iteration strategy and using an efficient procedure for online estimation of the experimental tangent stiffness matrix. In order to avoid physical application of iterative displacements, the required experimental restoring force at each iteration is estimated from polynomial curve fitting of recent experimental measurements. The experimental tangent stiffness matrix is estimated by using readily available experimental measurements and by a classical diagonalization approach that reduces the number of unknowns in the matrix. Numerical and hybrid simulations are used to demonstrate that the proposed procedure provides an efficient method for implementation of fully implicit numerical integration in hybrid simulations of complex nonlinear structures. The hybrid simulations presented include distributed nonlinear behavior in both the numerical and experimental substructures. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Real‐time hybrid testing combines experimental testing and numerical simulation, and provides a viable alternative for the dynamic testing of structural systems. An integration algorithm is used in real‐time hybrid testing to compute the structural response based on feedback restoring forces from experimental and analytical substructures. Explicit integration algorithms are usually preferred over implicit algorithms as they do not require iteration and are therefore computationally efficient. The time step size for explicit integration algorithms, which are typically conditionally stable, can be extremely small in order to avoid numerical stability when the number of degree‐of‐freedom of the structure becomes large. This paper presents the implementation and application of a newly developed unconditionally stable explicit integration algorithm for real‐time hybrid testing. The development of the integration algorithm is briefly reviewed. An extrapolation procedure is introduced in the implementation of the algorithm for real‐time testing to ensure the continuous movement of the servo‐hydraulic actuator. The stability of the implemented integration algorithm is investigated using control theory. Real‐time hybrid test results of single‐degree‐of‐freedom and multi‐degree‐of‐freedom structures with a passive elastomeric damper subjected to earthquake ground motion are presented. The explicit integration algorithm is shown to enable the exceptional real‐time hybrid test results to be achieved. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
A collaborative structural analysis (CSA) system is developed, which is capable of performing highly sophisticated structural analyses utilizing beneficial features of existing individual structural analysis programs. In the system, the global equations of motion for the overall structural system are formulated in the host program. Some substructures, whose behaviors are relatively simple, are directly solved in the host program, whereas those having complex behavior are analyzed by the station programs. A time‐consuming static condensation procedure is needed for the substructures analyzed by the station programs if adopting an implicit integration scheme. The operator splitting (OS) method, which does not require tangential stiffness, can be used to improve the system efficiency. To this end, a hybrid formulation of the Newmark‐β and OS methods is proposed, and a CSA scheme based on the hybrid formulation is developed. In the CSA system adopting the hybrid formulation, the degrees of freedom whose tangential stiffness are unavailable are formulated by the OS method, whereas the rest are still formulated by the commonly used Newmark‐β method. Using the system, analyses of a three‐story‐braced steel moment‐resisting frame are conducted. In the analyses, the column bases are analyzed using the commercial finite element method software ABAQUS, and the remaining structural elements are analyzed using a frame analysis program called NETLYS. Results suggest that the hybrid formulation is very effective for the CSA system. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
We present a comparison of methods for the analysis of the numerical substructure in a real‐time hybrid test. A multi‐tasking strategy is described, which satisfies the various control and numerical requirements. Within this strategy a variety of explicit and implicit time‐integration algorithms have been evaluated. Fully implicit schemes can be used in fast hybrid testing via a digital sub‐step feedback technique, but it is shown that this approach requires a large amount of computation at each sub‐step, making real‐time execution difficult for all but the simplest models. In cases where the numerical substructure poses no harsh stability condition, it is shown that the Newmark explicit method offers advantages of speed and accuracy. Where the stability limit of an explicit method cannot be met, one of the several alternatives may be used, such as Chang's modified Newmark scheme or the α‐operator splitting method. Appropriate methods of actuator delay compensation are also discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
In real‐time hybrid simulations (RTHS) that utilize explicit integration algorithms, the inherent damping in the analytical substructure is generally defined using mass and initial stiffness proportional damping. This type of damping model is known to produce inaccurate results when the structure undergoes significant inelastic deformations. To alleviate the problem, a form of a nonproportional damping model often used in numerical simulations involving implicit integration algorithms can be considered. This type of damping model, however, when used with explicit integration algorithms can require a small time step to achieve the desired accuracy in an RTHS involving a structure with a large number of degrees of freedom. Restrictions on the minimum time step exist in an RTHS that are associated with the computational demand. Integrating the equations of motion for an RTHS with too large of a time step can result in spurious high‐frequency oscillations in the member forces for elements of the structural model that undergo inelastic deformations. The problem is circumvented by introducing the parametrically controllable numerical energy dissipation available in the recently developed unconditionally stable explicit KR‐α method. This paper reviews the formulation of the KR‐α method and presents an efficient implementation for RTHS. Using the method, RTHS of a three‐story 0.6‐scale prototype steel building with nonlinear elastomeric dampers are conducted with a ground motion scaled to the design basis and maximum considered earthquake hazard levels. The results show that controllable numerical energy dissipation can significantly eliminate spurious participation of higher modes and produce exceptional RTHS results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Hybrid simulation combines numerical and experimental methods for cost‐effective, large‐scale testing of structures under simulated earthquake loading. Structural system level response can be obtained by expressing the equation of motion for the combined experimental and numerical substructures, and solved using time‐stepping integration similar to pure numerical simulations. It is often assumed that a reliable model exists for the numerical substructures while the experimental substructures correspond to parts of the structure that are difficult to model. A wealth of data becomes available during the simulation from the measured experiment response that can be used to improve upon the numerical models, particularly if a component with similar structural configuration and material properties is being tested and subjected to a comparable load pattern. To take advantage of experimental measurements, a new hybrid test framework is proposed with an updating scheme to update the initial modeling parameters of the numerical model based on the instantaneously‐measured response of the experimental substructures as the test progresses. Numerical simulations are first conducted to evaluate key algorithms for the selection and calibration of modeling parameters that can be updated. The framework is then expanded to conduct actual hybrid simulations of a structural frame model including a physical substructure in the laboratory and a numerical substructure that is updated during the tests. The effectiveness of the proposed framework is demonstrated for a simple frame structure but is extendable to more complex structural behavior and models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A variant of the Rosenbrock‐W integration method is proposed for real‐time dynamic substructuring and pseudo‐dynamic testing. In this variant, an approximation of the Jacobian matrix that accounts for the properties of both the physical and numerical substructures is used throughout the analysis process. Only an initial estimate of the stiffness and damping properties of the physical components is required. It is demonstrated that the method is unconditionally stable provided that specific conditions are fulfilled and that the order accuracy can be maintained in the nonlinear regime without involving any matrix inversion while testing. The method also features controllable numerical energy dissipation characteristics and explicit expression of the target displacement and velocity vectors. The stability and accuracy of the proposed integration scheme are examined in the paper. The method has also been verified through hybrid testing performed of SDOF and MDOF structures with linear and highly nonlinear physical substructures. The results are compared with those obtained from the operator splitting method. An approach based on the modal decomposition principle is presented to predict the potential effect of experimental errors on the overall response during testing. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Real‐time hybrid testing is a method that combines experimental substructure(s) representing component(s) of a structure with a numerical model of the remaining part of the structure. These substructures are combined with the integration algorithm for the test and the servo‐hydraulic actuator to form the real‐time hybrid testing system. The inherent dynamics of the servo‐hydraulic actuator used in real‐time hybrid testing will give rise to a time delay, which may result in a degradation of accuracy of the test, and possibly render the system to become unstable. To acquire a better understanding of the stability of a real‐time hybrid test with actuator delay, a stability analysis procedure for single‐degree‐of‐freedom structures is presented that includes both the actuator delay and an explicit integration algorithm. The actuator delay is modeled by a discrete transfer function and combined with a discrete transfer function representing the integration algorithm to form a closed‐loop transfer function for the real‐time hybrid testing system. The stability of the system is investigated by examining the poles of the closed‐loop transfer function. The effect of actuator delay on the stability of a real‐time hybrid test is shown to be dependent on the structural parameters as well as the form of the integration algorithm. The stability analysis results can have a significant difference compared with the solution from the delay differential equation, thereby illustrating the need to include the integration algorithm in the stability analysis of a real‐time hybrid testing system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
A set of algorithms combined with a substructure technique is proposed for an online hybrid test framework, in which the substructures are encapsulated by a standard interface that implements displacements and forces at the common substructure boundaries. A coordinator equipped with the proposed algorithms is designed to achieve boundary compatibility and equilibrium, thereby endowing the substructures the ability to behave as one piece. A model‐based predictor and corrector, and a noniterative procedure, characterize the set of algorithms. The coordinator solves the dynamics of the entire structure and updates the static boundary state simultaneously by a quasi‐Newton procedure, which gradually formulates the condensed stiffness matrix associated with corresponding degrees of freedom. With the condensed stiffness matrix and dynamic information, a condensed equation of motion is derived and then solved by a typical time integration algorithm. Three strategies for updating the condensed stiffness matrix are incorporated into the proposed algorithms. Each adopts different stiffness matrix during the predicting and correcting stage. These algorithms are validated by two numerical substructure simulations and a hybrid test. The effectiveness and feasibility are fully demonstrated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
This paper deals with an explicit numerical integration method for real‐time pseudo dynamic tests. The proposed method, termed the MPC‐SSP method, is suited to use in real‐time pseudo dynamic tests as no iteration steps are involved in each step of computation. A procedure for implementing the proposed method in real‐time pseudo dynamic tests is described in the paper. A state‐space approach is employed in this study to formulate the equations of motion of the system, which is advantageous in real‐time pseudo dynamic testing of structures with active control devices since most structural control problems are formulated in state space. A stability and accuracy analysis of the proposed method was performed based on linear elastic systems. Owing to an extrapolation scheme employed to predict the system's future response, the MPC‐SSP method is conditionally stable. To demonstrate the effectiveness of the MPC‐SSP method, a series of numerical simulations were performed and the performance of the MPC‐SSP method was compared with other pseudo dynamic testing methods including Explicit Newmark, Central Difference, Operator Splitting, and OS‐SSP methods based on both linear and non‐linear single‐degree‐of‐freedom systems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents a new method, called the equivalent force control method, for solving the nonlinear equations of motion in a real‐time substructure test using an implicit time integration algorithm. The method replaces the numerical iteration in implicit integration with a force‐feedback control loop, while displacement control is retained to control the motion of an actuator. The method is formulated in such a way that it represents a unified approach that also encompasses the effective force test method. The accuracy and effectiveness of the method have been demonstrated with numerical simulations of real‐time substructure tests with physical substructures represented by spring and damper elements, respectively. The method has also been validated with actual tests in which a Magnetorheological damper was used as the physical substructure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
The time delay resulting from the servo hydraulic systems can potentially destabilize the real‐time dynamic hybrid testing (RTDHT) systems. In this paper, the discrete‐time root locus technique is adopted to investigate the delay‐dependent stability performance of MDOF RTDHT systems. Stability analysis of an idealized two‐story shear frame with two DOFs is first performed to illustrate the proposed method. The delay‐dependent stability condition is presented for various structural properties, time delay, and integration time steps. Effects of delay compensation methods on stability are also investigated. Then, the proposed method is applied to analyze the delay‐dependent stability of a single shaking table RTDHT system with an 18‐DOF finite element numerical substructure, and corresponding RTDHTs are carried out to verify the theoretical results. Furthermore, the stability behavior of a finite element RTDHT system with two physical substructures, loaded by twin shaking tables, is theoretically and experimentally investigated. All experimental results convincingly demonstrate that the delay‐dependent stability analysis on the basis of the discrete‐time root locus technique is feasible. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Real‐time hybrid simulation provides a viable method to experimentally evaluate the performance of structural systems subjected to earthquakes. The structural system is divided into substructures, where part of the system is modeled by experimental substructures, whereas the remaining part is modeled analytically. The displacements in a real‐time hybrid simulation are imposed by servo‐hydraulic actuators to the experimental substructures. Actuator delay compensation has been shown by numerous researchers to vitally achieve reliable real‐time hybrid simulation results. Several studies have been performed on servo‐hydraulic actuator delay compensation involving single experimental substructure with single actuator. Research on real‐time hybrid simulation involving multiple experimental substructures, however, is limited. The effect of actuator delay during a real‐time hybrid simulation with multiple experimental substructures presents challenges. The restoring forces from experimental substructures may be coupled to two or more degrees of freedom (DOF) of the structural system, and the delay in each actuator must be adequately compensated. This paper first presents a stability analysis of actuator delay for real‐time hybrid simulation of a multiple‐DOF linear elastic structure to illustrate the effect of coupled DOFs on the stability of the simulation. An adaptive compensation method then proposed for the stable and accurate control of multiple actuators for a real‐time hybrid simulation. Real‐time hybrid simulation of a two‐story four‐bay steel moment‐resisting frame with large‐scale magneto‐rheological dampers in passive‐on mode subjected to the design basis earthquake is used to experimentally demonstrate the effectiveness of the compensation method in minimizing actuator delay in multiple experimental substructures. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Real‐time hybrid simulation is a viable experiment technique to evaluate the performance of structures equipped with rate‐dependent seismic devices when subject to dynamic loading. The integration algorithm used to solve the equations of motion has to be stable and accurate to achieve a successful real‐time hybrid simulation. The implicit HHT α‐algorithm is a popular integration algorithm for conducting structural dynamic time history analysis because of its desirable properties of unconditional stability for linear elastic structures and controllable numerical damping for high frequencies. The implicit form of the algorithm, however, requires iterations for nonlinear structures, which is undesirable for real‐time hybrid simulation. Consequently, the HHT α‐algorithm has been implemented for real‐time hybrid simulation using a fixed number of substep iterations. The resulting HHT α‐algorithm with a fixed number of substep iterations is believed to be unconditionally stable for linear elastic structures, but research on its stability and accuracy for nonlinear structures is quite limited. In this paper, a discrete transfer function approach is utilized to analyze the HHT α‐algorithm with a fixed number of substep iterations. The algorithm is shown to be unconditionally stable for linear elastic structures, but only conditionally stable for nonlinear softening or hardening structures. The equivalent damping of the algorithm is shown to be almost the same as that of the original HHT α‐algorithm, while the period elongation varies depending on the structural nonlinearity and the size of the integration time‐step. A modified form of the algorithm is proposed to improve its stability for use in nonlinear structures. The stability of the modified algorithm is demonstrated to be enhanced and have an accuracy that is comparable to that of the existing HHT α‐algorithm with a fixed number of substep iterations. Both numerical and real‐time hybrid simulations are conducted to verify the modified algorithm. The experimental results demonstrate the effectiveness of the modified algorithm for real‐time testing. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
This paper proposes a non‐iterative time integration (NITI) scheme for non‐linear dynamic FEM analysis. The NITI scheme is constructed by combining explicit and implicit schemes, taking advantage of their merits, and enables stable computation without an iteration process for convergence even when used for non‐linear dynamic problems. Formulation of the NITI scheme is presented and its stability is studied. Although the NITI scheme is not unconditionally stable when applied to non‐linear problems, it is stable in most cases unless stiffness hardening occurs or the problem has a large velocity‐dependent term. The NITI scheme is applied to dynamic analysis of the non‐linear soil–structure system and computation results are compared with those by the central difference method (CDM). Comparison shows that the stability of the NITI scheme is superior to that of the CDM. Accuracy of the NITI scheme is verified because its results are identical with those by the CDM in which the time step is set as 1/10 of that for the NITI scheme. The application of the NITI scheme to the mesh‐partitioned FEM is also proposed. It is applied to dynamic analysis of the linear soil–structure system. It yields the same results as a conventional single‐domain FEM analysis using the Newmark β method. This result verifies the usability of mesh‐partitioned FEM analysis using the NITI scheme. Copyright © 2003 John Wiley& Sons, Ltd.  相似文献   

16.
A method for estimating specimen tangent stiffness for hybrid simulation   总被引:2,自引:0,他引:2  
Researchers have long recognized the importance and potential benefits of utilizing the tangent stiffness matrix of a test specimen in hybrid simulations employing implicit and mixed‐integration schemes. However, the computation of the tangent stiffness matrix during testing has proved to be challenging, particularly for test specimens with more than one degree of freedom (dof). This paper presents a new methodology that is more straightforward and simpler than existing techniques for computing the tangent stiffness matrix of a multi‐dof test specimen. The proposed method is combined with the operator‐splitting method (OSM), and the capabilities, advantages and limitations of the new formulation are demonstrated through several examples. The accuracy, stability, and error propagation characteristics of the modified OSM are also studied theoretically as well as numerically. The research results show that the proposed algorithm provides results that are better than those produced via the regular OSM alone, especially for damped structures undergoing highly inelastic behavior during testing. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Compensation of delay and dynamic response of servo‐hydraulic actuators is critical for stability and accuracy of hybrid experimental and numerical simulations of seismic response of structures. In this study, current procedures for compensation of actuator delay are examined and improved procedures are proposed to minimize experimental errors. The new procedures require little or no a priori information about the behavior of the test specimen or the input excitation. First, a simple approach is introduced for rapid online estimation of system delay and actuator command gain, thus capturing the variability of system response through a simulation. Second, an extrapolation procedure for delay compensation, based on the same kinematics equations used in numerical integration procedures is examined. Simulations using the proposed procedures indicate a reduction in high‐frequency noise in force measurements that can minimize the excitation of high‐frequency modes. To further verify the effectiveness of the compensation procedures, the artificial energy added to a hybrid simulation as a result of actuator tracking errors is measured and used for demonstrating the improved accuracy in the simulations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents novel predictor–corrector time‐integration algorithms based on the Generalized‐α method to perform pseudo‐dynamic tests with substructuring. The implicit Generalized‐α algorithm was implemented in a predictor–one corrector form giving rise to the implicit IPC–ρ∞ method, able to avoid expensive iterative corrections in view of high‐speed applications. Moreover, the scheme embodies a secant stiffness formula that can closely approximate the actual stiffness of a structure. Also an explicit algorithm endowed with user‐controlled dissipation properties, the EPC–ρb method, was implemented. The resulting schemes were tested experimentally both on a two‐ and on a six‐degrees‐of‐freedom system, using substructuring. The tests indicated that the numerical strategies enhance the fidelity of the pseudo‐dynamic test results even in an environment characterized by considerable experimental errors. Moreover, the schemes were tested numerically on severe non‐linear substructured multiple‐degrees‐of‐freedom systems reproduced with the Bouc–Wen model, showing the reliability of the seismic tests under these conditions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not necessarily for real-time testing, but rather for models that involve large-scale physical sub-structures and highly nonlinear numerical models. Four case studies are presented and discussed. In the first case study, the accuracy of integration schemes including two widely used methods, namely, modified version of the implicit Newmark with fixed-number of iteration (iterative) and the operator-splitting (non-iterative) is examined through pure numerical simulations. The second case study presents the results of 10 hybrid simulations repeated with the two aforementioned integration methods considering various time steps and fixed-number of iterations for the iterative integration method. The physical sub-structure in these tests consists of a single-degree-of-freedom (SDOF) cantilever column with replaceable steel coupons that provides repeatable highlynonlinear behavior including fracture-type strength and stiffness degradations. In case study three, the implicit Newmark with fixed-number of iterations is applied for hybrid simulations of a 1:2 scale steel moment frame that includes a relatively complex nonlinear numerical substructure. Lastly, a more complex numerical substructure is considered by constructing a nonlinear computational model of a moment frame coupled to a hybrid model of a 1:2 scale steel gravity frame. The last two case studies are conducted on the same porotype structure and the selection of time steps and fixed number of iterations are closely examined in pre-test simulations. The generated unbalance forces is used as an index to track the equilibrium error and predict the accuracy and stability of the simulations.  相似文献   

20.
Real‐time hybrid testing is a promising technique for experimental structural dynamics, in which the structure under consideration is split into a physical test of key components and a numerical model of the remainder. The physical test and numerical analysis proceed in parallel, in real time, enabling testing of critical elements at large scale and at the correct loading rate. To date most real‐time hybrid tests have been restricted to simple configurations and have used approximate delay compensation schemes. This paper describes a real‐time hybrid testing approach in which non‐linearity is permitted in both the physical and numerical models, and in which multiple interfaces between physical and numerical substructures can be accommodated, even when this results in very stiff coupling between actuators. This is achieved using a Newmark explicit numerical solver, an advanced adaptive controller known as MCSmd and a multi‐tasking strategy. The approach is evaluated through a series of experiments on discrete mass–spring systems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号