共查询到20条相似文献,搜索用时 15 毫秒
1.
A smeared crack approach has been proposed to model the static and dynamic behavior of mass concrete in three‐dimensional space. The proposed model simulates the tensile fracture on the mass concrete and contains pre‐softening behavior, softening initiation, fracture energy conservation and strain rate effects under dynamic loads. The validity of the proposed model has been checked using the available experimental results under static and dynamic loads. The direct and indirect displacement control algorithms have been employed under incremental increasing static loads. It was found that the proposed model gives excellent results and crack profiles when compared with the available data under static loads. The Koyna Dam in India has been used to verify the dynamic behavior of the proposed model. It was found that the resulting crack profiles were in good agreement with the available experimental results. Finally, the Morrow Point Dam was analyzed, including the dam–reservoir interaction effects, to consider its non‐linear seismic behavior. It was found that the resulting crack profiles were in good agreement with the contour of maximum principal stresses and no numerical instability occurred during the analysis. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
2.
Performance‐based design methodology is based on reaching performance objectives that are associated to certain damage conditions. These performance objectives are related to the seismic hazard and to the performance levels. In actual application, reliable tools are required for capturing the evolution of the damage condition as well as for measuring and locating it. Moreover, it is essential to accurately establish the relationship between the damage and the performance levels. This paper shows the application of damage mechanics to performance‐based design. A layered damage mechanics‐based finite element program is presented with a discussion on modeling for prediction of the response of normal‐strength and high‐strength concrete columns subjected to cyclic flexural loading and various axial load levels. The damage indices derived from these analyses were used to elaborate several damage charts expressed as a function of drift and displacement ductility. This makes it possible to establish a relationship between the damage state and the performance levels. Results have demonstrated the ability of the damage mechanics modeling to accurately predict the behavior of the specimens tested. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
3.
Most of the finite element analyses of reinforced concrete structures are restricted to two‐dimensional elements. Three‐dimensional solid elements have rarely been used although nearly all reinforced concrete structures are under a triaxial stress state. In this work, a three‐dimensional solid element based on a smeared fixed crack model that has been used in the past mainly for monotonic static loading analysis is extended to cater for dynamic analysis. The only material parameter that needs to be input for this model is the uniaxial compressive strength of concrete. Steel bars are modelled as uniaxial elements and an embedded formulation allows them to have any orientation inside the concrete elements. The proposed strategy for loading or unloading renders a numerical procedure which is stable and efficient. The whole process is applied to two RC frames and compared against existing experiments in the literature. Results show that the proposed approach may adequately be used to predict the dynamic response of a structure. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
4.
Dispersions for the pushover‐based risk assessment of reinforced concrete frames and cantilever walls 下载免费PDF全文
The paper presents the results of an investigation into the dispersion values, expressed in terms of limit‐state spectral accelerations, which could be used for the pushover‐based risk assessment of low‐height to mid‐height reinforced concrete frames and cantilever walls. The results of an extensive parametric study of a portfolio of test structures indicated that the dispersion values due to record‐to‐record variability and modelling uncertainty (βLS,RU) are within the range from 0.3 to 0.55 for the near collapse limit state, and between 0.35 and 0.60 for the collapse limit state. The dispersions βLS,RU proposed for the code‐conforming and the majority of old (non code‐conforming) frames are in between these values. On the other hand, the dispersions proposed for the old frames with a soft storey and an invariant plastic mechanism, and for the code‐conforming cantilever walls, are at the lower and upper bounds of the presented values, respectively. The structural parameters that influence these dispersions were identified, and the influence of different ground motion sets, and of the models used for the calculation of the rotation capacities of the columns, on the calculated fragility parameters was examined and quantified. The proposed dispersion values were employed in a practice‐oriented pushover‐based method for the estimation of failure probability for eight selected examples. The pushover‐based risk assessment method, although extremely simple and economical when compared with more rigorous probabilistic methods, was able to predict seismic risk with reasonable accuracy, thus showing it to be a practical tool for engineers. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
5.
本文提出了一种反复荷载下混凝土材料的本构模型,该模型采用平面应力状态下的弥散正交裂缝假设,钢筋采用弥散假设,并考虑了屈服、应变硬化、循环卸载与再加载规则等因素。该本构模型与其他模型相比,具有简便有效的优点。在此基础上,本文采用八结点平面应力单元建立了钢筋混凝土核心筒体非线性有限元分析模型,并对试验模型进行了非线性分析,计算结果与试验结果吻合较好。 相似文献
6.
A fully automated design methodology based on nonlinear response history analysis is proposed for the optimum seismic design of reinforced concrete (RC) structures. The conventional trial‐and‐error process is replaced by a structural optimization algorithm that serves as a search engine capable of locating the most efficient design in terms of cost and performance. Two variations of the proposed design methodology are introduced. The first approach treats the optimum design problem in a deterministic manner, while in the second variation the optimum design is sought in the framework of a reliability‐based optimization problem. The reliability‐based approach seems to be a more rational procedure since more meaningful design criteria that correlate better with the performance‐based design concept can be adopted. Thus, the practice of using the mean annual frequency of a limit‐state being exceeded to assess the candidate designs is compared with the use of deterministic criteria. Both formulations take into consideration the structural response for a number of limit‐states, from serviceability to collapse prevention. The proposed design procedure is specifically tailored to the design of RC structures, where a preliminary design step of generating tables of concrete sections is introduced. In order to handle the large size of the tables, the concept of multi‐database cascade optimization is implemented. The final design has to comply with the provisions of European design codes. The proposed methodology allows for a significant reduction of the direct construction cost combined with improved control of the seismic performance under earthquake loading. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
7.
Non‐ductile reinforced concrete buildings represent a prevalent construction type found in many parts of the world. Due to the seismic vulnerability of such buildings, in areas of high seismic activity non‐ductile reinforced concrete buildings pose a significant threat to the safety of the occupants and damage to such structures can result in large financial losses. This paper introduces advanced analytical models that can be used to simulate the nonlinear dynamic response of these structural systems, including collapse. The state‐of‐the‐art loss simulation procedure developed for new buildings is extended to estimate the expected losses of existing non‐ductile concrete buildings considering their vulnerability to collapse. Three criteria for collapse, namely first component failure, side‐sway collapse, and gravity‐load collapse, are considered in determining the probability of collapse and the assessment of financial losses. A detailed example is presented using a seven‐story non‐ductile reinforced concrete frame building located in the Los Angeles, California. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
8.
基于可靠度理论的概率极限状态设计法是结构设计的基本法则之一,而新一代"基于性能的地震工程"要求在性能化设计中尚应考虑随机因素的影响。为获得满足预设性能水准和可靠度指标的最优方案,以钢筋混凝土框架结构为例,根据其在不同性能水准下的位移需求,采用非线性随机有限元方法求解结构的抗震可靠度,并将可靠度指标作为约束条件,以总造价为优化目标,提出了一种基于性能和可靠度的抗震优化设计方法。其中,可靠度计算以OpenSees为平台,并采用基于梯度分析的FORM有限元法。优化分析以MATLAB为平台,通过程序调用,实现了与可靠度分析之间的数据通讯。算例分析表明,模拟退火算法在本问题中较遗传算法具有更高全局搜索能力和计算精度。研究成果可为新一代基于性能和可靠度的优化设计提供参考。 相似文献
9.
In this paper, a practical method is developed for performance‐based design of RC structures subjected to seismic excitations. More efficient design is obtained by redistributing material from strong to weak parts of a structure until a state of uniform deformation or damage prevails. By applying the design algorithm on 5, 10 and 15‐storey RC frames, the efficiency of the proposed method is initially demonstrated for specific synthetic and real seismic excitations. The results indicate that, for similar structural weight, designed structures experience up to 30% less global damage compared with code‐based design frames. The method is then developed to consider multiple performance objectives and deal with seismic design of RC structures for a design spectrum. The results show that the proposed method is very efficient at controlling performance parameters and improving structural behaviour of RC frames. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
10.
Shaking table test and numerical simulation of a 1/2‐scale self‐centering reinforced concrete frame 下载免费PDF全文
Self‐centering reinforced concrete frames are developed as an alternative of traditional seismic force‐resisting systems with better seismic performance and re‐centering capability. This paper presents an experimental and computational study on the seismic performance of self‐centering reinforced concrete frames. A 1/2‐scale model of a two‐story self‐centering reinforced concrete frame model was designed and tested on the shaking table in State Key Laboratory of Disaster Reduction in Civil Engineering at Tongji University to evaluate the seismic behavior of the structure. A structural analysis model, including detailed modeling of beam–column joints, column–base joints, and prestressed tendons, was constructed in the nonlinear dynamic modeling software OpenSEES. Agreements between test results and numerical solutions indicate that the designed reinforced concrete frame has satisfactory seismic performance and self‐centering capacity subjected to earthquakes; the self‐centering structures can undergo large rocking with minor residual displacement after the earthquake excitations; the proposed analysis procedure can be applied in simulating the seismic performance of self‐centering reinforced concrete frames. To achieve a more comprehensive evaluation on the performance of self‐centering structures, research on energy dissipation devices in the system is expected. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
11.
This paper presents the shake‐table tests of a 2/3‐scale, three‐story, two‐bay, reinforced concrete frame infilled with unreinforced masonry walls. The specimen is representative of the construction practice in California in the 1920s. The reinforced concrete frame had nonductile reinforcement details and it was infilled with solid masonry walls in one bay and infill walls with window openings in the other bay. The structure was subjected to a sequence of dynamic tests including white‐noise base excitations and 14 scaled historical earthquake ground motion records of increasing intensity. The performance of the structure was satisfactory considering the seismic loads it was subjected to. The paper summarizes the design of the specimen and the major findings from the shake‐table tests, including the dynamic response, the load resistance, the evolution of damage, and the final failure mechanism. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
12.
Collapse resistance of high‐rise buildings has become a research focus because of the frequent occurrence of strong earthquakes and terrorist attacks in recent years. Research development has demonstrated that numerical simulation is becoming one of the most powerful tools for collapse analysis in addition to the conventional laboratory model tests and post‐earthquake investigations. In this paper, a finite element method based numerical model encompassing fiber‐beam element model, multilayer shell model, and elemental deactivation technique is proposed to predict the collapse process of high‐rise buildings subjected to extreme earthquake. The potential collapse processes are simulated for a simple 10‐story RC frame and two existing RC high‐rise buildings of 18‐story and 20‐story frame–core tube systems. The influences of different failure criteria used are discussed in some detail. The analysis results indicate that the proposed numerical model is capable of simulating the collapse process of existing high‐rise buildings by identifying potentially weak components of the structure that may induce collapse. The study outcome will be beneficial to aid further development of optimal design philosophy. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
13.
钢筋混凝土核心筒体抗震性能分析 总被引:3,自引:1,他引:3
本文在非线性有限元计算模型和分析程序的基础上,对影响钢筋混凝土核心筒体抗震性能的三个重要参数,即高宽比、轴压比、连梁刚度比,进行了一系列模型的非线性计算分析,得出了各参数对核心筒的承载力、破坏形式、延性、耗能能力等抗震性能的影响,为参数影响的定量研究和工程设计提供了有价值的参考。 相似文献
14.
Fundamental period of vibration appears to be one of the most critical parameter for the seismic design of buildings because this period strongly affects the magnitude of seismic forces. In this paper, an empirical formula for estimating the fundamental period of reinforced concrete structures is recommended, on the basis of the vibration analysis of 20 different real building configurations. These structures have already been constructed in Greece, and they are analyzed by using in detail 3‐D finite element models and modal eigenvalue analysis. These models take into account the presence of external and internal infill walls, which are usually ignored as nonstructural elements. This neglect leads to unreliable evaluation of period because the infill walls' contribution to the lateral stiffness and therefore to the fundamental period of vibration is also ignored. Furthermore, taking into account that the flexibility of soil elongates the fundamental period, the soil–structure interaction effect is also considered. To achieve a unique, simple, and effective empirical expression for the fundamental period of vibration, a comprehensive nonlinear regression analysis is applied for the datasets of buildings under consideration. This empirical expression is also compared with the similar expressions from the pertinent literature. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
15.
铝合金筋与混凝土的粘结性能是影响铝合金配筋新型混凝土梁承载力的重要因素。对9根铝合金配筋混凝土梁和2根钢筋混凝土对比梁进行了静载试验,分析混凝土梁在加载过程中的裂缝发展情况,基于缝宽-滑移理论研究试验梁的粘结性能。研究结果表明:同级荷载作用下,钢筋混凝土梁的裂缝宽度小于铝合金配筋混凝土梁,钢筋与混凝土的粘结性能优于铝合金与混凝土的粘结性能;混凝土梁中纵筋所受拉力,实质上是混凝土开裂后,单元体内部粘结力的合力;纵筋与混凝土的粘结滑移量与粘结力直接相关,可通过代数和微积分计算得到二者的对应关系。 相似文献
16.
An improvement is suggested to the direct displacement‐based design (DDBD) procedure for bridges to account for higher mode effects, the key idea being not only the proper prediction of a target‐displacement profile through the effective mode shape method (wherein all significant modes are considered), but also the proper definition of the corresponding peak structural response. The proposed methodology is then applied to an actual concrete bridge wherein the different pier heights and the unrestrained transverse displacement at the abutments result in an increased contribution of the second mode. A comparison between the extended and the ‘standard’ DDBD is conducted, while further issues such as the proper consideration of the degree of fixity at the pier's top and the effect of the deck's torsional stiffness are also investigated. The proposed methodology and resulting designs are evaluated using nonlinear response‐history analysis for a number of spectrum‐compatible motions. Unlike the ‘standard’ DDBD, the extended procedure adequately reproduced the target‐displacement profile providing at the same time a good estimate of results regarding additional design quantities such as yield displacements, displacement ductilities, etc., closely matching the results of the more rigorous nonlinear response‐history analysis. However, the need for additional iterations clearly indicates that practical application of the proposed procedure is feasible only if it is fully ‘automated’, that is, implemented in a software package. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
17.
In this paper a new seismic design procedure for Reinforced Concrete (R/C) structures is proposed—the Rigid‐Plastic Seismic Design (RPSD) method. This is a design procedure based on Non‐Linear Time‐ History Analysis (NLTHA) for systems expected to perform in the non‐linear range during a lifetime earthquake event. The theoretical background is the Theory of Plasticity (Rigid‐Plastic Structures). Firstly, a collapse mechanism is chosen and the corresponding stress field is made safe outside the regions where plastic behaviour takes place. It is shown that this allows the determination of the required structural strength with respect to a pre‐defined performance parameter using a rigid‐plastic response spectrum, which is characteristic of the ground motion alone. The maximum strength demand at any point is solely dependent on the intensity of the ground motion, which facilitates the task of distributing required strength throughout the structure. Any artificial considerations intended to adjust results according to empirical observations are avoided, which, from a conceptual point of view, is considered to be an advantage over other simplified design procedures for seismic design. The procedure is formulated using a step‐by‐step format followed by a design example of a 4‐storey‐R/C‐plane‐frame. Results are compared with refined NLTHA and found to be extremely encouraging. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
18.
19.
The uncertainty in the seismic demand of a structure (referred to as the engineering demand parameter, EDP) needs to be properly characterized in performance‐based earthquake engineering. Uncertainties in the ground motion and in structural properties are responsible for EDP uncertainty. In this study, sensitivity of EDPs to major uncertain variables is investigated using the first‐order second‐moment method for a case study building. This method is shown to be simple and efficient for estimating the sensitivity of seismic demand. The EDP uncertainty induced by each uncertain variable is used to determine which variables are most significant. Results show that the uncertainties in ground motion are more significant for global EDPs, namely peak roof acceleration and displacement, and maximum inter‐storey drift ratio, than those in structural properties. Uncertainty in the intensity measure (IM) of ground motion is the dominant variable for uncertainties in local EDPs such as the curvature demand at critical cross‐sections. Conditional sensitivity of global and local EDPs given IM is also estimated. It is observed that the combined effect of uncertainties in structural properties is more significant than uncertainty in ground motion profile at lower IM levels, while the opposite is true at higher IM levels. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
20.
Three‐dimensional beam‐truss model for reinforced concrete walls and slabs – part 1: modeling approach,validation, and parametric study for individual reinforced concrete walls 下载免费PDF全文
A three‐dimensional beam‐truss model for reinforced concrete (RC) walls developed by the first two authors in a previous study is modified to better represent the flexure–shear interaction and more accurately capture diagonal shear failures under static cyclic or dynamic loading. The modifications pertain to the element formulations and the determination of the inclination angle of the diagonal elements. The modified beam‐truss model is validated using the experimental test data of eight RC walls subjected to static cyclic loading, including two non‐planar RC walls under multiaxial cyclic loading. Five of the walls considered experienced diagonal shear failure after reaching their flexural strength, while the other three walls had a flexure‐dominated response. The numerically computed lateral force–lateral displacement and strain contours are compared with the experimentally recorded response and damage patterns for the walls. The effects of different model parameters on the computed results are examined by means of parametric analyses. Extension of the model to simulate RC slabs and coupled RC walls is presented in a companion paper. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献