首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Abstract

Using a groundwater flow model and long historical meteorological time series data, the evolution of the groundwater flow regime in a multi-layered groundwater flow basin in northern Belgium during the last one and a half centuries (since 1833) is reconstructed. Model output parameters such as piezometric levels, depth to water table, seepage fluxes in the valleys and calculated baseflow to the river system are presented and inter-annual and decadal variations are evaluated against seasonal fluctuations. The main time-varying boundary condition in the model is the aquifer recharge which was estimated using the method of Thornthwaite and Mather based on precipitation and temperature data. The model does not take into account changes in boundary conditions due to changes in land use (deforestation, drainage of cultivated land) or groundwater exploitation. Variations in model output parameters are therefore only due to climatological forcing. Only the natural non-exploited state of the aquifer is considered. Although few historical piezometric measurements are available to verify model output, the results give an indication of the natural hydrodynamic variations on a time scale of decades.

Citation Van Camp, M., Coetsiers, M., Martens, K. & Walraevens, K. (2010) Effects of multi-annual climate variability on the hydrodynamic evolution (1833 to present) in a shallow aquifer system in northern Belgium. Hydrol. Sci. J. 55(5), 763–779.  相似文献   

2.
We discuss techniques to represent groundwater flow in carbonate aquifers using the three existing modeling approaches: equivalent porous medium, conduit network, and discrete fracture network. Fractures in faulted stratigraphic successions are characterized by dominant sets of sub-vertical joints. Grid rotation is recommended using the equivalent porous medium to match higher hydraulic conductivity with the dominant orientation of the joints. Modeling carbonate faults with throws greater than approximately 100 m is more challenging. Such faults are characterized by combined conduit-barrier behavior. The barrier behavior can be modeled using the Horizontal Flow Barrier Package with a low-permeability vertical barrier inserted to represent the impediment of horizontal flow in faults characterized by sharp drops of the piezometric surface. Cavities can occur parallel to the strike of normal faults generating channels for the groundwater. In this case, flow models need to account for turbulence using a conduit network approach. Channels need to be embedded in an equivalent porous medium due to cavities a few centimeters large, which are present in carbonate aquifers even in areas characterized by low hydraulic gradients. Discrete fracture network modeling enables representation of individual rock discontinuities in three dimensions. This approach is used in non-heavily karstified aquifers at industrial sites and was recently combined with the equivalent porous medium to simulate diffusivity in the matrix. Following this review, we recommend that the future research combines three practiced modeling approaches: equivalent porous medium, discrete fracture network, and conduit network, in order to capture structural and flow aspects in the modeling of groundwater in carbonate rocks.  相似文献   

3.
The Differential System Method (DSM) permits identification of the physical parameters of finite-difference groundwater flow models in a confined aquifer when piezometric head and source terms are known at each point of the finite-difference lattice for at least two independent flow situations for which the hydraulic gradients are not parallel. Since piezometric head data are usually few and sparse, interpolation of the measured data onto a regular grid can be performed with geostatistical techniques. We apply kriging to the sparse data of a synthetic aquifer to evaluate the stability of the DSM with respect to uncorrelated measurement errors and interpolation errors. The numerical results show that the DSM is stable.  相似文献   

4.
The Differential System Method (DSM) permits identification of the physical parameters of finite-difference groundwater flow models in a confined aquifer when piezometric head and source terms are known at each point of the finite-difference lattice for at least two independent flow situations for which the hydraulic gradients are not parallel. Since piezometric head data are usually few and sparse, interpolation of the measured data onto a regular grid can be performed with geostatistical techniques. We apply kriging to the sparse data of a synthetic aquifer to evaluate the stability of the DSM with respect to uncorrelated measurement errors and interpolation errors. The numerical results show that the DSM is stable.  相似文献   

5.
Numerical simulations of variable-density flow and solute transport have been conducted to investigate dense plume migration for various configurations of 2D fracture networks. For orthogonal fractures, simulations demonstrate that dispersive mixing in fractures with small aperture does not stabilize vertical plume migration in fractures with large aperture. Simulations in non-orthogonal 2D fracture networks indicate that convection cells form and that they overlap both the porous matrix and fractures. Thus, transport rates in convection cells depend on matrix and fracture flow properties. A series of simulations in statistically equivalent networks of fractures with irregular orientation show that the migration of a dense plume is highly sensitive to the geometry of the network. If fractures in a random network are connected equidistantly to the solute source, few equidistantly distributed fractures favor density-driven transport. On the other hand, numerous fractures have a stabilizing effect, especially if diffusive transport rates are high. A sensitivity analysis for a network with few equidistantly distributed fractures shows that low fracture aperture, low matrix permeability and high matrix porosity impede density-driven transport because these parameters reduce groundwater flow velocities in both the matrix and the fractures. Enhanced molecular diffusion slows down density-driven transport because it favors solute diffusion from the fractures into the low-permeability porous matrix where groundwater velocities are smaller. For the configurations tested, variable-density flow and solute transport are most sensitive to the permeability and porosity of the matrix, which are properties that can be determined more accurately than the geometry and hydraulic properties of the fracture network, which have a smaller impact on density-driven transport.  相似文献   

6.
Detailed modelling of the hydrological setting of fen meadows appears to be possible provided that detailed information on geomorphology, hydrochemistry and piezometric heads is available for a number of years. In the Laegieskamp, a small wetland reserve located in the central part of The Netherlands, a piezometric monitoring network was sampled for water quality analysis and piezometric heads between 1986 and 1992. Average yearly discharge and recharge periods were used for FLOWNET calculations. First, the models were used to determine, with the help of information on water quality, the hydrological systems in the study area. Secondly, they were used to define the present and past hydrological setting of a fen meadow in the reserve. The hydrological systems and water quality in the study area have changed considerably over the past 65 years. At present the fen meadow is mainly fed by precipitation. The mineral-rich conditions favouring the fen meadow vegetation are thought to be maintained thanks to a clayey peat layer and an oscillating shallow water body that prevents rapid leaching of minerals. The sulphate content in the fen exhibits a pattern of temporal variation, which is related to the severity of the annual drought. Our study showed that groundwater flow is mainly lateral, instead of the assumed vertical infiltration of groundwater in previous regional studies. This led us to the conclusion that conservation and restoration perspectives are much better than previously expected. The polluted middle, deep groundwater is not a major threat to this fen at the moment. © 1997 John Wiley & Sons, Ltd.  相似文献   

7.
For good groundwater flow and solute transport numerical modeling, it is important to characterize the formation properties. In this paper, we analyze the performance and important implementation details of a new approach for stochastic inverse modeling called inverse sequential simulation (iSS). This approach is capable of characterizing conductivity fields with heterogeneity patterns difficult to capture by standard multiGaussian-based inverse approaches. The method is based on the multivariate sequential simulation principle, but the covariances and cross-covariances used to compute the local conditional probability distributions are computed by simple co-kriging which are derived from an ensemble of conductivity and piezometric head fields, in a similar manner as the experimental covariances are computed in an ensemble Kalman filtering. A sensitivity analysis is performed on a synthetic aquifer regarding the number of members of the ensemble of realizations, the number of conditioning data, the number of piezometers at which piezometric heads are observed, and the number of nodes retained within the search neighborhood at the moment of computing the local conditional probabilities. The results show the importance of having a sufficiently large number of all of the mentioned parameters for the algorithm to characterize properly hydraulic conductivity fields with clear non-multiGaussian features.  相似文献   

8.
Duke U. Ophori 《水文研究》2004,18(9):1579-1593
Two‐dimensional regional groundwater flow was simulated based on a conceptual model of low‐permeability crystalline rocks of the Whiteshell Research Area (WRA) in south‐eastern Manitoba. The conceptual model consists of fracture zones that strike in different directions and dip at various angles in the background rock mass. The thickness and hydraulic properties of the fracture zones in the conceptual model were varied as were the fluid properties and the boundary conditions of the groundwater flow system. The effects of these variations on the groundwater flow pattern and on the convective travel time along pathways from a hypothetical disposal vault at 500 m depth to discharge locations at the ground surface were evaluated. The vault was located in the regional discharge area of the groundwater system. A homogeneous conceptual model of the WRA, having only freshwater flow, formed a groundwater flow pattern with a regional flow system. Local flow systems developed increasingly with the introduction of fracture zones 20 m and 3 m thick, and depth‐dependent fluid density. This indicates a reduction in groundwater residence time by fracture zones and fluid density. Flow pathways were analysed using both a stream‐function and a particle‐tracking technique. The pathways and their lengths from the location of the vault to the surface varied spatially according to the flow patterns. The minimum travel time along these pathways was less than 150 000 and greater than 4 000 000 years in models with and without fracture zones, respectively, indicating that the presence of fracture zones was the major controlling factor. A precise knowledge and refinement of conceptual model parameters is necessary during site selection for waste disposal purposes. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
A common approach for the performance assessment of radionuclide migration from a nuclear waste repository is by means of Monte-Carlo techniques. Multiple realizations of the parameters controlling radionuclide transport are generated and each one of these realizations is used in a numerical model to provide a transport prediction. The statistical analysis of all transport predictions is then used in performance assessment. In order to reduce the uncertainty on the predictions is necessary to incorporate as much information as possible in the generation of the parameter fields. In this regard, this paper focuses in the impact that conditioning the transmissivity fields to geophysical data and/or piezometric head data has on convective transport predictions in a two-dimensional heterogeneous formation. The Walker Lake data based is used to produce a heterogeneous log-transmissivity field with distinct non-Gaussian characteristics and a secondary variable that represents some geophysical attribute. In addition, the piezometric head field resulting from the steady-state solution of the groundwater flow equation is computed. These three reference fields are sampled to mimic a sampling campaign. Then, a series of Monte-Carlo exercises using different combinations of sampled data shows the relative worth of secondary data with respect to piezometric head data for transport predictions. The analysis shows that secondary data allows to reproduce the main spatial patterns of the reference transmissivity field and improves the mass transport predictions with respect to the case in which only transmissivity data is used. However, a few piezometric head measurements could be equally effective for the characterization of transport predictions.  相似文献   

10.
A common approach for the performance assessment of radionuclide migration from a nuclear waste repository is by means of Monte-Carlo techniques. Multiple realizations of the parameters controlling radionuclide transport are generated and each one of these realizations is used in a numerical model to provide a transport prediction. The statistical analysis of all transport predictions is then used in performance assessment. In order to reduce the uncertainty on the predictions is necessary to incorporate as much information as possible in the generation of the parameter fields. In this regard, this paper focuses in the impact that conditioning the transmissivity fields to geophysical data and/or piezometric head data has on convective transport predictions in a two-dimensional heterogeneous formation. The Walker Lake data based is used to produce a heterogeneous log-transmissivity field with distinct non-Gaussian characteristics and a secondary variable that represents some geophysical attribute. In addition, the piezometric head field resulting from the steady-state solution of the groundwater flow equation is computed. These three reference fields are sampled to mimic a sampling campaign. Then, a series of Monte-Carlo exercises using different combinations of sampled data shows the relative worth of secondary data with respect to piezometric head data for transport predictions. The analysis shows that secondary data allows to reproduce the main spatial patterns of the reference transmissivity field and improves the mass transport predictions with respect to the case in which only transmissivity data is used. However, a few piezometric head measurements could be equally effective for the characterization of transport predictions.  相似文献   

11.
Fractures in porous media have been documented extensively. However, they are often omitted from groundwater flow and mass transport models due to a lack of data on fracture hydraulic properties and the computational burden of simulating fractures explicitly in large model domains. We present a MATLAB toolbox, FracKfinder, that automates HydroGeoSphere (HGS), a variably saturated, control volume finite-element model, to simulate an ensemble of discrete fracture network (DFN) flow experiments on a single cubic model mesh containing a stochastically generated fracture network. Because DFN simulations in HGS can simulate flow in both a porous media and a fracture domain, this toolbox computes tensors for both the matrix and fractures of a porous medium. Each model in the ensemble represents a different orientation of the hydraulic gradient, thus minimizing the likelihood that a single hydraulic gradient orientation will dominate the tensor computation. Linear regression on matrices containing the computed three-dimensional hydraulic conductivity (K) values from each rotation of the hydraulic gradient is used to compute the K tensors. This approach shows that the hydraulic behavior of fracture networks can be simulated where fracture hydraulic data are limited. Simulation of a bromide tracer experiment using K tensors computed with FracKfinder in HGS demonstrates good agreement with a previous large-column, laboratory study. The toolbox provides a potential pathway to upscale groundwater flow and mass transport processes in fractured media to larger scales.  相似文献   

12.
The major strategy used to prevent the discharge of highly saline groundwater to the River Murray in southeastern Australia is groundwater interception and disposal. The basic design principle assumes that the extraction of groundwater from an aquifer hydraulically connected to the river, using a line of pumps positioned close and roughly parallel to the river, will decrease piezometric heads thereby reducing the discharge of saline groundwater to the river. The paper considers one of these schemes which was designed for the Mildura area on the basis of a hydrogeological investigation. It analyses the effects on piezometric head and groundwater salinity due to the groundwater interception scheme and adjacent irrigation activity over a period of several years from January 1980. It is shown that piezometric heads have decreased significantly in the stretch close to the river. A slight reduction in groundwater salinity is also apparent in this stretch except for an area between the river and a holding basin used for disposal of the saline effluents emanating from the groundwater interception scheme. This general reduction in groundwater salinity is mainly caused by pumping from the groundwater interception scheme and recharge from irrigation. The exception in the trend in groundwater salinity is due to the movement of a highly saline body of groundwater from the holding basin towards the River Murray. Results of this Australian experience should be helpful to the designers of similar salinity mitigation schemes elsewhere.  相似文献   

13.
A sustained increase in spring discharges was monitored after the 2016 Central Italy seismic sequence in the fractured carbonate aquifer of Valnerina–Sibillini Mts. The groundwater surplus recorded between August 2016 and November 2017 was determined to be between 400 and 500 × 106 m3. In fractured aquifers, the post-seismic rise in spring discharges is generally attributed to an increase in bulk permeability caused by the fracture cleaning effect, which is induced by pore pressure propagation. In the studied aquifers, the large amount of additional discharge cannot only be attributed to the enhanced permeability, which was evaluated to be less than 20% after each main seismic event. A detailed analysis of the spring discharge hydrographs and of the water level at five gauging stations was carried out to determine the possible causes of this sudden increase in groundwater outflow. Taking into account the geological and structural framework, a conceptual model of a basin-in-series has been adopted to describe the complex hydrogeological setting, where the thrusts and extensional faults have clearly influenced the groundwater flow directions before and after the seismic sequence. The prevalent portion of the total post-seismic discharge surplus not explained by the increase in permeability has been attributed to changes in the hydraulic gradient that caused seismogenic fault rupture and the disruption in the upgradient sector of the aquifer. The additional flow calculated through the breach of the pre-existing hydrostructural barrier corresponds to approximately 470 × 106 m3. This value is consistent with the total discharge increase measured in the whole study area, validating the proposed conceptual model. Consequently, a shift in the piezometric divide of the hydrogeological system has been induced, causing a potentially permanent change that lowers the discharge amount of the eastern springs.  相似文献   

14.
《水文科学杂志》2013,58(6):1125-1138
Abstract

Type curves are derived analytically for radial flow in rough horizontal fractures toward a well. The basic assumptions are that there is no turbulent flow near the borehole and the well storage is ignored. The basis of the methodology is to write explicit expressions for the continuity and cubic law flow equations, which are combined using a Boltzmann transformation leading to a simple ordinary differential equation for groundwater movement. Solutions are presented as a set of type curves for different fracture apertures. It is observed that the solutions provide a method of uniquely identifying fracture hydraulic parameters when the fracture is smooth, but pose ambiguity for rough fracture parameter estimations. However, large time portions of these type curves appear as straight lines on semi-logarithmic paper, which provides a unique way for rough fracture parameter determination. Identification of the fracture parameters, namely, the aperture and relative roughness, is possible in a unique manner with the use of these lines and the dimensionless time drawdown concept. The cubic law is the asymptotic behaviour, either for large times or large fracture apertures. Prior to this asymptotic part, there is a non-cubic portion which gives rise to systematic deviations from the cubic law. The technique presented is useful, especially for evaluating pumping tests from a single major fracture isolated by packers.  相似文献   

15.
16.
Quantitative analyses of groundwater flow and transport typically rely on a physically‐based model, which is inherently subject to error. Errors in model structure, parameter and data lead to both random and systematic error even in the output of a calibrated model. We develop complementary data‐driven models (DDMs) to reduce the predictive error of physically‐based groundwater models. Two machine learning techniques, the instance‐based weighting and support vector regression, are used to build the DDMs. This approach is illustrated using two real‐world case studies of the Republican River Compact Administration model and the Spokane Valley‐Rathdrum Prairie model. The two groundwater models have different hydrogeologic settings, parameterization, and calibration methods. In the first case study, cluster analysis is introduced for data preprocessing to make the DDMs more robust and computationally efficient. The DDMs reduce the root‐mean‐square error (RMSE) of the temporal, spatial, and spatiotemporal prediction of piezometric head of the groundwater model by 82%, 60%, and 48%, respectively. In the second case study, the DDMs reduce the RMSE of the temporal prediction of piezometric head of the groundwater model by 77%. It is further demonstrated that the effectiveness of the DDMs depends on the existence and extent of the structure in the error of the physically‐based model.  相似文献   

17.
Flow regulation and water diversion for irrigation have considerably impacted the exchange of surface water between the Murray River and its floodplains. However, the way in which river regulation has impacted groundwater–surface water interactions is not completely understood, especially in regards to the salinization and accompanying vegetation dieback currently occurring in many of the floodplains. Groundwater–surface water interactions were studied over a 2 year period in the riparian area of a large floodplain (Hattah–Kulkyne, Victoria) using a combination of piezometric surface monitoring and environmental tracers (Cl, δ2H, and δ18O). Despite being located in a local and regional groundwater discharge zone, the Murray River is a losing stream under low flow conditions at Hattah–Kulkyne. The discharge zone for local groundwater, regional groundwater and bank recharge is in the floodplain within ∼1 km of the river and is probably driven by high rates of transpiration by the riparian Eucalyptus camaldulensis woodland. Environmental tracers data suggest that the origin of groundwater is principally bank recharge in the riparian zone and a combination of diffuse rainfall recharge and localized floodwater recharge elsewhere in the floodplain. Although the Murray River was losing under low flows, bank discharge occurred during some flood recession periods. The way in which the water table responded to changes in river level was a function of the type of stream bank present, with point bars providing a better connection to the alluvial aquifer than the more common clay‐lined banks. Understanding the spatial variability in the hydraulic connection with the river channel and in vertical recharge following inundations will be critical to design effective salinity remediation strategies for large semi‐arid floodplains. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Surface‐wetting properties are an important cause of changing the groundwater and two‐phase fluid flows. Various factors affecting the surface wettability were investigated in a parallel‐walled glass fracture with non‐aqueous phase liquid (NAPL) (gasoline, diesel, trichloroethylene, and creosote) wetted surfaces. First, the effect of the duration of NAPL exposure on wettability change was considered at pre‐wet fracture surfaces using the various NAPL species, and the result showed that the surface became hydrophobic after the exposure time of NAPL exceeded 2000 min. Second, the initial wetting state of the surface affected the timing when the wettability change begins as well as the extent of the wettability change in an NAPL‐wetted rock fractures. Under the dry condition, the wettability change was completed within a very short time of exposure to NAPL (~5 min), and then it finally reached the intermediate and weakly NAPL wetting (contact angle of 118°). Under the pre‐wet condition, a relatively long time of exposure (~5000 min) was needed to observe the obvious change of the surface wettability, which was changed up to strongly NAPL wetting (contact angle of 142°). Third, the wettability changed by NAPL exposure was stable and maintained for a long time, regardless of water flushing rate and temperature. Finally, the wettability change by the exposure of NAPL on parallel fracture surfaces was evaluated at various groundwater flow velocities. Result showed that groundwater flow velocity has an important impact upon measured contact angle. Although fracture surfaces were exposed to NAPL at the low groundwater flow velocity, the wettability was not changed from hydrophilic to hydrophobic when the contact time between NAPL and mineral surfaces was not sufficient owing to the pulse‐type movement of NAPL. This implies that the variation of exposure pattern due to groundwater flow on the wettability change can be an important factor affecting the wettability change of fracture surface and migration behaviour at natural fractured rock aquifers in case of NAPL spill. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Groundwater depletion has been an emerging crisis in recent years, especially in highly urbanized areas as a result of unregulated exploitation, thus leaving behind an insufficient volume of usable freshwater. Presently Ganges river basin, the sixth largest prolific fluvial system and sustaining a huge population in South Asia, is witnessed to face (i) aquifer vulnerability through surface waterborne pollutant and (ii) groundwater stress due to summer drying of river as a result of indiscriminate groundwater abstraction. The present study focuses on a detailed sub-hourly to seasonally varying interaction study and flux quantification between river Ganges and groundwater in the Indian subcontinent which is one of the first documentations done on a drying perennial river system that feeds an enormous population. Contributing parameters to the total discharge of a river at its middle course on both temporal and spatial scale is estimated through three-component hydrograph separation and end-member mixing analysis using high-resolution water isotope (δ18O and δ2H) and electrical conductivity data. Results from this model report groundwater discharge in river to be the highest in pre-monsoon, that is, 30%, whereas, during post-monsoon the contribution lowers to 25%; on the contrary, during peak monsoon, the flow direction reverses thus recharging the groundwater which is also justified using annual piezometric hydrographs of both river water and groundwater. River water-groundwater interaction also shows quantitative variability depending on river morphometry. The current study also provides insight on aquifer vulnerability as a result of pollutant mixing through interaction and plausible attempts towards groundwater management. The present study is one of the first in South Asian countries that provides temporally and spatially variable detailed quantification of baseflow and estimates contributing parameters to the river for a drying mega fluvial system.  相似文献   

20.
A systematic investigation of the effect of configurations of stochastically distributed fracture networks on hydraulic behaviour for fractured rock masses could provide either quantitative or qualitative correlation between the structural configuration of the fracture network and its corresponding hydraulic behaviour, and enhance our understanding of appropriate application of groundwater flow and contaminant transport modelling in fractured rock masses. In this study, the effect of block sizes, intersection angles of fracture sets, standard deviations of fracture orientation, and fracture densities on directional block hydraulic conductivity and representative elementary volume is systematically investigated in two dimensions by implementing a numerical discrete fracture fluid flow model and incorporating stochastically distributed fracture configurations. It is shown from this investigation that the configuration of a stochastically distributed fracture network has a significant quantitative or qualitative effect on the hydraulic behaviour of fractured rock masses. Compared with the deterministic fracture configurations that have been extensively dealt with in a previous study, this investigation is expected to be more practical and adequate, since fracture geometry parameters are inherently stochastically distributed in the field. Moreover, the methodology and approach presented in this study may be generally applied to any fracture system in investigating the hydraulic behaviours from configurations of the fracture system while establishing a ‘bridge’ from the discrete fracture network flow modelling to equivalent continuum modelling in fractured rock masses. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号