首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Merensky pegmatoid (normal reef) in the western Bushveld Complex is commonly characterized as a pyroxene-rich pegmatoidal unit with a base that is enriched in chromite and platinum-group element-bearing sulfides overlying a leuconorite footwall. Models for its formation have ranged from those that view it as entirely a magmatic cumulate succession to those that have suggested that it is a zone of volatile-induced remelting. The consequences of the latter interpretation are investigated using the numerical modeling program IRIDIUM, which links diffusive and advective mass and heat transport with a phase equilibration routine based on the MELTS program. The initial system consists of a simple stratigraphic succession of a partially molten leuconorite overlain by a partially molten pyroxenite, both initially at 1,190°C and 2 kbar. 2 wt% of a volatile fluid composed of 75 mol% H2O, 20 mol% COand 5 mol% H2S is then added to the lower 20 cm of the pyroxenite. The system is then allowed to evolve under conditions of chemical diffusion in the liquid. The addition of the volatile components results in a modest increase in the amount of melt in the pyroxenite. However, chemical diffusion across the leuconorite–pyroxenite boundary leads to more extensive melting at and below the boundary with preferential loss of opx from the underlying leuconorite, preferential re-precipitation of sulfide and chromite and concentration of the PGE at this boundary. These results mimic actual mineral and compositional profiles across the Merensky pegmatoid and illustrate that long-term diffusion process can effectively produce mineralogical and compositional layering not present in the original assemblage.  相似文献   

2.
The genesis of the pegmatitic pyroxenite that often forms thebase of the Merensky Unit in the Bushveld Complex is re-examined.Large (>1 cm) orthopyroxene grains contain tricuspidate inclusionsof plagioclase, and chains and rings of chromite grains, whichare interpreted to have grown by reaction between small, primaryorthopyroxene grains and superheated liquid. This superheatedliquid may have been an added magma or be due to a pressurereduction as a result of lateral expansion of the chamber. Therewould then have been a period of non-accumulation of grains,permitting prolonged interaction with the crystal mush at thecrystal–liquid interface. Crystal ageing and grain enlargementof original orthopyroxene grains would ensue. Only after thepegmatitic pyroxenite had developed did another layer of chromiteand pyroxenite, with normal grain size, accumulate above it.Immiscible sulphide liquids formed with the second pyroxenite,but percolated down as a result of their density contrast, evenas far as the footwall anorthosite in some cases. Whole-rockabundances of incompatible trace elements in the pegmatiticpyroxenite are comparable with or lower than those of the overlyingpyroxenite, and so there is no evidence for addition and/ortrapping of large proportions of interstitial liquid, or ofan incompatible-element enriched liquid or fluid in the productionof the pegmatitic rock. Because of the coarse-grained natureof the rock, modal analysis, especially for minor minerals,is unreliable. Annealing has destroyed primary textures, suchthat petrographic studies should not be used in isolation todistinguish cumulus and intercumulus components. Geochemicaldata suggest that the Merensky pyroxenite (both pegmatitic andnon-pegmatitic) typically consists of about 70–80% cumulusorthopyroxene and 10–20% cumulus plagioclase, with a further10% of intercumulus minerals, and could be considered to bea heteradcumulate. KEY WORDS: Bushveld Complex; Merensky Reef; pegmatitic textures; cumulate processes; heteradcumulates; recrystallization; incompatible trace elements  相似文献   

3.
Large mafic–ultramafic layered intrusions may containlayers enriched in platinum-group elements (PGE). In many cases,the PGE are hosted by disseminated sulphides. We have investigatedthe distribution of the sulphides in three dimensions in twooriented samples of the Merensky Reef and the J-M Reef. Theaim of the study was to test the hypothesis that the sulphidescrystallized from a base metal sulphide liquid that percolatedthrough the cumulate pile during compaction. The distributionof sulphides was quantified using: (1) X-ray computed tomography;(2) microstructural analysis of polished thin sections orientedparallel to the paleovertical; (3) measurement of dihedral anglesbetween sulphides and silicates or oxides. In the Merensky Reefand the J-M Reef, sulphides are connected in three dimensionsand fill paleovertical dilatancies formed during compaction,which facilitated the downward migration of sulphide liquidin the cumulate. In the melanorite of the Merensky Reef, thesulphide content increases from top to bottom, reaching a maximumvalue above the underlying chromitite layer. In the chromititelayers sulphide melt connectivity is negligible. Thus, the chromititemay have acted as a filter, preventing extensive migration ofsulphide melt downwards into the footwall. This could partiallyexplain the enrichment in PGE of the chromitite layer and theobserved paucity of sulphide in the footwall. KEY WORDS: X-ray computed tomography; microstructures; sulphides; Merensky Reef; J-M Reef  相似文献   

4.
The concentrations of platinum-group elements (PGE), Co, Re,Au and Ag have been determined in the base-metal sulphide (BMS)of a section of the Merensky Reef. In addition we performeddetailed image analysis of the platinum-group minerals (PGM).The aims of the study were to establish: (1) whether the BMSare the principal host of these elements; (2) whether individualelements preferentially partition into a specific BMS; (3) whetherthe concentration of the elements varies with stratigraphy orlithology; (4) what is the proportion of PGE hosted by PGM;(5) whether the PGM and the PGE found in BMS could account forthe complete PGE budget of the whole-rocks. In all lithologies,most of the PGE (65 up to 85%) are hosted by PGM (essentiallyPt–Fe alloy, Pt–Pd sulphide, Pt–Pd bismuthotelluride).Lesser amounts of PGE occur in solid solution within the BMS.In most cases, the PGM occur at the contact between the BMSand silicates or oxides, or are included within the BMS. Pentlanditeis the principal BMS host of all of the PGE, except Pt, andcontains up to 600 ppm combined PGE. It is preferentially enrichedin Pd, Rh and Co. Pyrrhotite contains, Rh, Os, Ir and Ru, butexcludes both Pt and Pd. Chalcopyrite contains very little ofthe PGE, but does concentrate Ag and Cd. Platinum and Au donot partition into any of the BMS. Instead, they occur in theform of PGM and electrum. In the chromitite layers the whole-rockconcentrations of all the PGE except Pd are enriched by a factorof five relative to S, Ni, Cu and Au. This enrichment couldbe attributed to BMS in these layers being richer in PGE thanthe BMS in the silicate layers. However, the PGE content inthe BMS varies only slightly as a function of the stratigraphy.The BMS in the chromitites contain twice as much PGE as theBMS in the silicate rocks, but this is not sufficient to explainthe strong enrichment of PGE in the chromitites. In the lightof our results, we propose that the collection of the PGE occurredin two steps in the chromitites: some PGM formed before sulphidesaturation during chromitite layer formation. The remainingPGE were collected by an immiscible sulphide liquid that percolateddownward until it encountered the chromitite layers. In thesilicate rocks, PGE were collected by only the sulphide liquid. KEY WORDS: Merensky Reef; Rustenburg Platinum Mine; sulphide; platinum-group elements; image analysis; laser ablation ICP-MS  相似文献   

5.
Trace elements were analysed in rocks and minerals from three sections across the Merensky Reef in the Rustenburg Platinum Mine in the Bushveld Complex of South Africa. Whole rocks and separated minerals were analysed by inductively coupled plasma-mass-spectrometer (ICP-MS) and in situ analyses were carried out by ion microprobe and by laser-source ICP-MS. Merensky Reef pyroxenites contain extremely high concentrations of a wide range of trace elements. These include elements incompatible with normal silicate minerals as well as siderophile and chalcophile elements. For major elements and compatible trace elements, the measured concentrations in cumulus phases and the bulk rock compositions are similar. For highly incompatible elements, however, concentrations in bulk rocks are far higher than those measured in the cumulus phases. In situ analyses of plagioclase have far lower concentrations of Th, Zr and rare earth elements than ICP-MS analyses of bulk separates of plagioclase, a difference that is attributed to the presence of trace-element-rich accessory phases in the bulk mineral separates. We used these data to calculate the trace-element composition of the magmas parental to the Merensky Unit and adjacent norites. We argue that there is no reason to assume that the amount of trapped liquid in the Merensky orthopyroxenite was far greater than in the norites and we found that the pyroxenite formed from a liquid with higher concentrations of incompatible trace elements than the liquid that formed the norites. We propose that the Bushveld Complex was fed by magma from a deeper magma chamber that had been progressively assimilating its crustal wall rocks. The magma that gave rise to the Merensky Unit was the more contaminated and unusually rich in incompatible trace elements, and when it entered the main Bushveld chamber it precipitated the unusual phases that characterize the Merensky Reef. The hybrid magma segregated sulphides or platinum-group-element-rich phases during the course of the contamination in the lower chamber. These phases accumulated following irruption into the main Bushveld chamber to form the Merensky ore deposits.  相似文献   

6.
The platiniferous Merensky Reef was discovered on the farm Maandagshoek in the Bushveld Complex in August 1924. A historical review of these events is presented, based partly on an unpublished report and a map by Dr Hans Merensky. It has been supposed that Merensky first traced the platinum to discordant ultramafic pipes. However, a re-examination of the topography and river systems in the area shows that this was not possible. A stream sediment study from this area has been undertaken to determine the source of the platinum originally panned at the discovery site. Determination of the Pt:Pd:Au ratio in these samples indicates a strong similarity with ratios in the Merensky Reef, and is completely different from the ratio found in the pipes, which are deficient in Pd and Au. These ratios also suggest that weathering and transportation has occurred predominantly due to physical rather than chemical processes. Two platinum-group element anomalies in the stream sediments are found upstream from the Merensky Reef outcrops. This results from a change in the fluvial system due to Pliocene to recent up warping with a reversal in flow direction.  相似文献   

7.
Syn-magmatic removal of the cumulate pile during the formation of the Bushveld Complex resulted in “potholes”. Erosion progressed downward in the cumulate pile, resulting in a series of steep, transgressive contacts between locally conformable potholed reefs in the regional pothole sub-facies of the Swartklip Facies in the western limb of the Bushveld Complex. The deepest of these potholes, “third-order” or “FWP2” potholing, occurs where the base of the Merensky Cyclic Unit transgresses the Upper Pseudo-Reef Chromitite marker horizon. The base of a FWP2 pothole on Northam Platinum Mine consists of an unconformable stringer Merensky Chromitite overlain by a medium-grained, poikilitic orthopyroxenite and underlain by either a pegmatitic harzburgite or the medium-grained Lower Pseudo-Reef Anorthosite. Detailed shape and distribution analysis of FWP2 potholes reveals underlying patterns in their shape and distribution which, in turn, suggest a structural control. The ratio between pothole short vs long axes is 0.624 (N=1,385), although the ratio increases from 0.48 to 0.61 in the long axis range 10 to 60 m, then decreases from 0.61 to 0.57 from 61 to 100 m, increasing again from 0.57 to 0.61 from 101 to 400 m, suggesting that there is not a simple relationship between pothole shape and size. Shape (circularity, eccentricity, and dendricity) analysis of a subset of 638 potholes indicates that potholes with long axes <100 m have an elliptical, average normalized shape, elongate on a 120–150° orientation. Potholes with long axis lengths >100 m have an average normalized shape that is bilobate and elongate on a 120° orientation. The average aspect ratio (short axis length divided by long axis length) of potholes is highest for potholes with long axis lengths >100 m and lowest for potholes with long axis lengths between 35 and 60 m. The most common long axis orientation for potholes with long axis lengths <100 m is 150° but 120° for long axis lengths >100 m. Fractal analysis indicates that the distribution of pothole centers is controlled neither by a single nor several interacting fractal dimensions. Autocorrelation (Fry) analysis of the distribution of pothole centers shows recurring pothole distribution trends at 038, 070, and 110° for potholes over the full range of long axis lengths, while the trends of 008 and 152° occur in potholes with long axes lengths between 60 and 100 m. Chi-squared (X 2) analysis of the locations of pothole centers suggests that the distribution of small potholes is highly non-uniform but becomes exponentially more uniform with increasing pothole size. The model which best fits the observed shape and distribution analysis is a combination of protracted independent growth and “nearest neighbor” merging along specific orientations. For instance, the clustered distribution of original pothole centers resulted in merged potholes with long axes lengths of up to 60 m, exhibiting short vs long axes ratios of 0.61, preferred orientations of 150°, and alignment along 010 and 150° trends. Further independent growth allowed for merging of similar-sized (and smaller) neighboring potholes, generating potholes with long axes of up to 100 m in length, a preferred long axis orientation of 150°, and alignment along 010, 040, 075, and 150°. Subsequent preferential merging occurred along a 120° trend, thereby preserving a bilobate form. This implies that while pothole initiation and enlargement may be driven by a “top-down” (i.e., possibly thermomechanical) process, an underlying linear or structural catalyst/control is revealed in changes in pothole shape during enlargement and, furthermore, in the preferred trends along which potholes merged over a considerable period, possibly concomitant with adjustment of major structures in the footwall to the Bushveld Complex and pulses into the magma chamber.  相似文献   

8.
The Merensky Reef of the Bushveld Complex occurs in its highest stratigraphic position as a heterogeneous, pegmatitic, feldspathic melanorite bounded by two narrow chromitite stringers at the base of the Merensky Cyclic Unit (MCU). In the Swartklip Facies of the Rustenburg Layered Suite, the occurrence of widespread thermal and mechanical erosion termed “potholing” has led to the subdivision of the Merensky Reef into Normal Reef and Regional Pothole Reef sub-facies. The transition between the two sub-facies occurs where the MCU transgresses the lower chromitite stringer of the Normal Merensky Reef and cuts down into the underlying cumulate lithologies. In the Regional Pothole Reef at the Northam Platinum Mine, several economic reef types are identified, where the Merensky Reef becomes conformable to cumulate layering, in particular, to the footwall marker (NP2 reef type) and the upper pseudoReef (P2 reef type). The Normal Merensky Reef, as well as the P2 and NP2 Reefs, contains economic platinum group element (PGE) grades and includes the lower portion of the MCU melanorite and the Merensky Chromitite. Whole rock geochemistry indicates that this package is compositionally identical in Normal, P2, and NP2 Reefs, suggesting that the base of the MCU is a relatively homogeneous drape over both Normal and Regional Pothole Reef regions. However, the lower sections of the three Reefs are variables depending on the depth of transgression of the MCU. In the Normal and P2 reef types, transgression by the MCU was arrested within harzburgites, melanorites, and norites, resulting in coarse, pegmatitic textures in the immediate footwall units. For the NP2 Reef, transgression by the MCU was arrested within leucocratic rocks and resulted in the formation of troctolites below the Merensky Chromitite. These troctolites are characterised by a coupled relationship between olivine and sulphides and by changes in major element chemistry and PGE contents relative to equivalent units in the footwall of the Normal Reef. Along with micro-textural relationships, these features suggest that troctolization of leucocratic cumulates in the NP2 Reef beneath the Merensky chromitite was a result of a reactive infiltration of a chromite-saturated melt and an immiscible sulphide liquid from the overlying MCU, rather than a significant fluid flux from below. In all reef types, the concentration of S defines symmetrical peaks centred on the Merensky Chromitite (and chromitites from pre-existing cyclic units in Normal and P2 Reefs), whereas PGE concentrations define asymmetrical peaks with higher PGE contents in reconstituted footwall rocks relative to the MCU melanorite. This signature is attributable to a magmatic model of PGE collection followed by deposition towards the base of the MCU and within reconstituted footwall rocks. The continuity of the asymmetrical magmatic PGE signature between the Normal Reef and Regional Pothole Reef sub-facies indicates that PGE mineralization inherent to the Merensky magma occurred as a drape over a variably eroded and subsequent texturally and geochemically reworked or reconstituted footwall.  相似文献   

9.
The northern lobe of the Bushveld Complex is currently a highly active area for platinum-group element (PGE) exploration. This lobe hosts the Platreef, a 10–300-m thick package of PGE-rich pyroxenites and gabbros, that crops out along the base of the lobe to the north of Mokopane (formerly Potgietersrus) and is amenable to large-scale open pit mining along some portions of its strike. An early account of the geology of the deposit was produced by Percy Wagner where he suggested that the Platreef was an equivalent PGE-rich layer to the Merensky Reef that had already been traced throughout the eastern and western lobes of the Bushveld Complex. Wagner’s opinion remains widely held and is central to current orthodoxy on the stratigraphy of the northern lobe. This correlates the Platreef and an associated cumulate sequence that includes a chromitite layer—known as the Grasvally norite-pyroxenite-anorthosite (GNPA) member—directly with the sequence between the UG2 chromitite and the Merensky Reef as it is developed in the Upper Critical Zone of the eastern and western Bushveld. Implicit in this view of the magmatic stratigraphy is that similar Critical Zone magma was present in all three lobes prior to the development of the Merensky Reef and the Platreef. However, when this assumed correlation is examined in detail, it is obvious that there are significant differences in lithologies, mineral textures and chemistries (Mg# of orthopyroxene and olivine) and the geochemistry of both rare earth elements (REE) and PGE between the two sequences. This suggests that the prevailing interpretation of the stratigraphy of the northern lobe is not correct. The “Critical Zone” of the northern lobe cannot be correlated with the Critical Zone in the rest of the complex and the simplest explanation is that the GNPA-Platreef sequence formed from a separate magma, or mixture of magmas. Chilled margins of the GNPA member match the estimated initial composition of tholeiitic (Main Zone-type) magma rather than a Critical Zone magma composition. Where the GNPA member is developed over the ultramafic Lower Zone, hybrid rocks preserve evidence for mixing between new tholeiitic magma and existing ultramafic liquid. This style of interaction and the resulting rock sequences are unique to the northern lobe. The GNPA member contains at least seven sulphide-rich horizons with elevated PGE concentrations. Some of these are hosted by pyroxenites with similar mineralogy, crystallisation sequences and Pd-rich PGE signatures to the Platreef. Chill zones are preserved in the lowest Main Zone rocks above the GNPA member and the Platreef and this suggests that both units were terminated by a new influx of Main Zone magma. This opens the possibility that the Platreef and GNPA member merge laterally into one another and that both formed in a series of mixing/quenching events involving tholeiitic and ultramafic magmas, prior to the main influx of tholeiitic magma that formed the Main Zone.  相似文献   

10.
We have determined the S, Se, Cu and La contents through a complete stratigraphic section of the Bushveld Complex. The principle aim was to determine which phases controlled these elements. S, Se and Cu show positive correlations, but these elements do not correlate with La. In most cases, the concentration of S, Se and Cu in rocks containing greater than 800 ppm S can be modeled by segregation of a Fe–Ni–Cu sulfide liquid from a fractionating magma. As the magma evolved, Se and Cu were depleted by the continual segregation of sulfide liquid and the S/Se and S/Cu of the rocks increased. The Se/Cu ratio is higher in the more evolved rocks, which suggests that Se has a slightly lower partition coefficient than Cu into sulfide liquid (1,200 versus 1,700). The Lower and lower Critical Zone of the complex contains on average only 99 ppm S. The low S content of these rocks has led some authors to suggest that these rocks do not contain cumulate sulfides, despite the fact that they are moderately enriched in PGE. These samples fall along the same trend as the S-rich samples on the S-versus-Se plot and the S/La and Se/La ratios are greater than the initial magmas suggesting that despite the low S contents cumulate sulfides are present. Three models may be suggested in order to explain the low S content in the Lower and Critical Zone rocks: (a) the sulfides that were present have migrated away from the cumulate pile into the footwall or center of the intrusion; (b) the magma was saturated in sulfides at depth and during transport some sulfides lagged in embayments; (c) the rocks have lost both S and Se at high temperature. The first two models have important implications for exploration.  相似文献   

11.
About 30% of the chromite grains of variable sizes in a chromitite seam at the base of the Merensky Reef of the Bushveld Complex on the farm Vlakfontein contain abundant composite mineral inclusions. The inclusions are polygonal to circular with radial cracks that protrude into the enclosing chromite. They vary from a few microns to several millimeters in diameter and are concentrated in the cores and mantles of chromite crystals. Electron backscattered patterns indicate that the host chromites are single crystals and not amalgamations of multiple grains. Na-phlogopite and orthopyroxene are most abundant in the inclusions. Edenitic hornblende, K-phlogopite, oligoclase and quartz are less abundant. Cl-rich apatite, rutile, zircon and chalcopyrite are present at trace levels. Na-phlogopite is unique to the inclusions; it has not been found elsewhere in the Bushveld Complex. Other minerals in the inclusions are also present in the matrix of the chromitite seam, but their compositions are different. The Mg/(Mg+Fe2+) ratios of orthopyroxene in the inclusions are slightly higher than those of orthopyroxene in the matrix. K-phlogopite in the inclusions contains more Na than in the matrix. The average compositions of the inclusions are characterized by high MgO (26 wt%), Na2O (2.4 wt%) and H2O (2.6 wt%), and low CaO (1.1 wt%) and FeO (4.4 wt%). The δ18O value of the trapped melt, estimated by analysis of inclusion-rich and inclusion-poor chromites, is ∼7‰. This value is consistent with the previous estimates for the Bushveld magma and with the δ18O values of silicate minerals throughout the reef. The textural features and peculiar chemical compositions are consistent with entrapment of orthopyroxene with variable amounts of volatile-rich melts during chromite crystallization. The volatile-rich melts are thought to have resulted from variable degrees of mixing between the magma on the floor of the chamber and Na-K-rich fluids expelled from the underlying crystal pile. The addition of fluid to the magma is thought to have caused dissolution of orthpyroxene, leaving the system saturated only in chromite. Both oxygen and hydrogen isotopic values are consistent with the involvement of a magmatic fluid in the process of fluid addition and orthopyroxene dissolution. Most of the Cr and Al in the inclusions was contributed through wall dissolution of the host chromite. Dissolution of minor rutile trapped along with orthopyroxene provided most of the Ti in the inclusions. The Na- and K-rich hydrous silicate minerals in the inclusions were formed during cooling by reaction between pyroxene and the trapped volatile-rich melts.  相似文献   

12.
Highly restitic metapelites occur at the contact of the RustenburgLayered Suite (Bushveld Complex). On the basis of previous experimentalstudies, the high (  相似文献   

13.
The Merensky Reef of the Bushveld Complex contains one of theworld’s largest concentrations of platinum-group elements(PGE). We have investigated ‘normal’ reef, its footwalland its hanging wall at Impala Platinum Mines. The Reef is 46cm thick and consists from bottom to top of leuconorite, anorthosite,chromitite and a very coarse-grained melanorite. The footwallis leuconorite and the hanging wall is melanorite. The onlyhydrous mineral present is biotite, which amounts to 1%, orless, of the rock. All of the rocks contain 0·1–5%interstitial sulphides (pyrrhotite, pentlandite and chalcopyrite),with the Reef rocks containing the most sulphides (1–5%).Lithophile inter-element ratios suggest that the magma fromwhich the rocks formed was a mixture of the two parental magmasof the Bushveld Complex (a high-Mg basaltic andesite and a tholeiiticbasalt). The Reef rocks have low incompatible element contentsindicating that they contain 10% or less melt fraction. Nickel,Cu, Se, Ag, Au and the PGE show good correlations with S inthe silicate rocks, suggesting control of the abundance of thesemetals by sulphides. The concentration of the chalcophile elementsand PGE in the silicate rocks may be modelled by assuming thatthe rocks contain sulphide liquid formed in equilibrium withthe evolving silicate magma. It is, however, difficult to modelthe Os, Ir, Ru, Rh and Pt concentrations in the chromititesby sulphide liquid collection alone, as the rocks contain 3–4times more Os, Ir, Ru, Rh and Pt than the sulphide-collectionmodel would predict. Two possible solutions to this are: (1)platinum-group minerals (PGM) crystallize from the sulphideliquid in the chromitites; (2) PGM crystallize directly fromthe silicate magma. To model the concentrations of Os, Ir, Ru,Rh and Pt in the chromitites it is necessary to postulate thatin addition to the 1% sulphides in the chromitites there isa small quantity (0·005%) of cumulus PGM (laurite, cooperiteand malanite) present. Sulphide liquids do crystallize PGM atlow fS2. Possibly the sulphide liquid that was trapped betweenthe chromite grains lost some Fe and S by reaction with thechromite and this provoked the crystallization of PGM from thesulphide liquid. Alternatively, the PGM could have crystallizeddirectly from the silicate magma when it became saturated inchromite. A weakness of this model is that at present the exactmechanism of how and why the magma becomes saturated in PGMand chromite synchronously is not understood. A third modelfor the concentration of PGE in the Reef is that the PGE arecollected from the underlying cumulus pile by Cl-rich hydrousfluids and concentrated in the Reef at a reaction front. Althoughthere is ample evidence of compaction and intercumulus meltmigration in the Impala rocks, we do not think that the PGEwere introduced into the Reef from below, because the rocksunderlying the Reef are not depleted in PGE, whereas those overlyingthe Reef are depleted. This distribution pattern is inconsistentwith a model that requires introduction of PGE by intercumulusfluid percolation from below. KEY WORDS: Merensky Reef; platinum-group elements; chalcophile elements; microstructures  相似文献   

14.
赵伟  王烨  徐靖  王君玉  陈爱平 《岩矿测试》2010,29(4):419-424
介绍了黑色页岩样品中6个铂族元素铂、钯、钌、锇、铑、铱的标准物质研制过程。黑色页岩样品采自贵州黄家湾,为一次采集、一次混样的原始样品,随机抽取包装好后的样品进行检验与定值。均匀性、稳定性符合要求后,按照国际标准化组织(ISO)34、35指南的基本要求和我国一级标准物质的技术规范,采用多个实验室协同测试的定值方式,利用不同原理的分析方法对此样品的6个铂族元素进行定值。以各实验室组数据作为最小统计单元,用Grubbs准则、Dixon法检验剔除离群数据,Shapiro-Wilk法检验各元素数据分布的正态性。检验结果100%的元素呈正态或近似正态分布。定值的6个元素均符合标准值水平。  相似文献   

15.
夏家店金矿床位于南秦岭造山带内,是一个受构造和地层控制的大型金矿床,矿石类型为角砾岩型、碎裂岩型和石英脉型3种类型,赋矿围岩主要为寒武系水沟口组的炭泥质板岩、炭硅质板岩、硅质岩及白云岩,次为泥盆系西岔河组的角砾岩。本文对夏家店金矿床中矿石(角砾状炭硅质板岩、碎裂硅化白云岩、碎裂炭泥质板岩和石英脉状矿化的硅质岩)和围岩(硅质岩、硅化白云岩和硅质板岩)的微量元素、铂族元素(PGE)质量分数进行测试,进而探讨成矿物质来源以及矿床成因。结果表明:不同类型的矿石与其各自的围岩具有高度的相似性,均富集Sr、Ga、Zr等元素;不同类型的矿石稀土总量均高于各类围岩,但是两者具有相似的稀土配分模式,轻稀土富集,重稀土亏损,均表现出负Eu异常(δEu值为0.51~0.63);不同类型的矿石PGE总量(7.71×10-9~38.30×10-9,平均值23.00×10-9)均明显大于各类围岩PGE总量(1.28×10-9~2.44×10-9,平均值1.86×10-9),相比上地壳,不同类型的矿石均明显富集Os、Ir、Pt和Pd,亏损Ru、Rh,而各类围岩均富集Os,亏损Pt、Ru、Rh、Pd,但两者的铂族元素配分曲线具有高度相似性,呈Ru亏损的V型,为地壳的(Os)-Pt-Pd型配分模式。以上特征表明不同类型的矿石和围岩具有明显的微量、稀土元素和PGE地球化学继承性,暗示夏家店下寒武统有可能是重要的矿源层之一。同时,所有矿石和围岩的Au/Ir值(分别为4 821~299 666)和406~8 050)及Pd/Ir值(分别为16.9~588.0和15.2~47.5)变化范围均较大,两者Au/Ir值远高于炭质球粒陨石和原始地幔值、Pd/Ir值远高于岩浆成因矿石值,且夏家店金矿床矿石和围岩的PGE配分曲线与典型热液成因矿床一致。这些特征显示夏家店金矿床具有明显的热液成因,是构造-热液流体成矿作用的产物。  相似文献   

16.
The Merensky Reef of the Bushveld Complex consists of two chromitite layers separated by coarse-grained melanorite. Microstructural analysis of the chromitite layers using electron backscatter diffraction analysis (EBSD), high-resolution X-ray microtomography and crystal size distribution analyses distinguished two populations of chromite crystals: fine-grained idiomorphic and large silicate inclusion-bearing crystals. The lower chromitite layer contains both populations, whereas the upper contains only fine idiomorphic grains. Most of the inclusion-bearing chromites have characteristic amoeboidal shapes that have been previously explained as products of sintering of pre-existing smaller idiomorphic crystals. Two possible mechanisms have been proposed for sintering of chromite crystals: (1) amalgamation of a cluster of grains with the same original crystallographic orientation; and (2) sintering of randomly orientated crystals followed by annealing into a single grain. The EBSD data show no evidence for clusters of similarly oriented grains among the idiomorphic population, nor for earlier presence of idiomorphic subgrains spatially related to inclusions, and therefore are evidence against both of the proposed sintering mechanisms. Electron backscatter diffraction analysis maps show deformation-related misorientations and curved subgrain boundaries within the large, amoeboidal crystals, and absence of such features in the fine-grained population. Microstructures observed in the lower chromitite layer are interpreted as the result of deformation during compaction of the orthocumulate layers, and constitute evidence for the formation of the amoeboid morphologies at an early stage of consolidation. An alternative model is proposed whereby silicate inclusions are incorporated during maturation and recrystallisation of initially dendritic chromite crystals, formed as a result of supercooling during emplacement of the lower chromite layer against cooler anorthosite during the magma influx that formed the Merensky Reef. The upper chromite layer formed from a subsequent magma influx, and hence lacked a mechanism to form dendritic chromite. This accounts for the difference between the two layers.  相似文献   

17.
Potholes represent areas where the normally planar PGE-rich Merensky Reef of the upper Critical Zone of the Bushveld Complex transgresses its footwall, such geometric relationships being unusual in layered intrusions. The recognition of vertical dykes of Merensky pyroxenite in the footwall suggests downward collapse of crystal mush into pull-apart sites resulting from tensional deformation due to the loading effects of major new magma additions. In contrast, crosscutting anorthosite veins display physical and isotopic evidence of upward emplacement. The Merensky Reef and its footwall have distinct initial Sr-isotope ratios (R 0 > 0.7066 and <0.7066, respectively), which may be used to constrain these processes related to pothole formation. Merensky Reef in potholes (R 0 = 0.7069−0.7078) shows no isotopic evidence of assimilation of, or reaction with, footwall material. Discrete, discordant replacement bodies of anorthosite extend from the footwall lithologies to cross-cut the Merensky Reef and its hanging wall. The initial Sr-isotope ratio in these replaced rocks is totally reset to footwall values (R 0 = 0.7066), and immediately adjacent stratiform lithologies are slightly modified towards footwall values. In contrast, Neptunian pyroxenitic (Merensky) dykes cross-cutting the footwall lithologies, with a large surface area to volume ratio, and low Sr content, do not display footwall-like Sr-isotope initial-ratios (R 0 = 0.7077), and thus show no evidence for assimilation of or reaction with footwall material. Furthermore, pegmatoidal replacement pyroxenite (“replacement pegmatoid”), at the base of the Merensky Reef within potholes, has a high initial-ratio (R 0 > 0.7071), and so models of pervasive metasomatism by footwall material are not applicable. This isotopic evidence indicates that there was no active interaction of footwall material with the overlying magma during, or after, the formation of Merensky Reef potholes, a basic tenet of existing pothole formation hypotheses involving footwall mass-transfer. In contrast, the isotopic data are entirely consistent with an extensional model for pothole formation, with the more radiogenic Merensky magma migrating laterally to fill extensional zones in the footwall layers. Received: 11 October 1997 / Accepted: 21 December 1998  相似文献   

18.
Base-metal sulfides in magmatic Ni-Cu-PGE deposits are important carriers of platinum-group elements (PGE). The distribution and concentrations of PGE in pentlandite, pyrrhotite, chalcopyrite, and pyrite were determined in samples from the mineralized portion of four Merensky Reef intersections from the eastern and western Bushveld Complex. Electron microprobe analysis was used for major elements, and in situ laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) for trace elements (PGE, Ag, and Au). Whole rock trace element analyses were performed on representative samples to obtain mineralogical balances. In Merensky Reef samples from the western Bushveld, both Pt and Pd are mainly concentrated in the upper chromitite stringer and its immediate vicinity. Samples from the eastern Bushveld reveal more complex distribution patterns. In situ LA-ICP-MS analyses of PGE in sulfides reveal that pentlandite carries distinctly elevated PGE contents, whereas pyrrhotite and chalcopyrite only contain very low PGE concentrations. Pentlandite is the principal host of Pd and Rh in the ores. Palladium and Rh concentrations in pentlandite reach up to 700 and 130 ppm, respectively, in the samples from the eastern Bushveld, and up to 1,750 ppm Pd and up to 1,000 ppm Rh in samples from the western Bushveld. Only traces of Pt are present in the base-metal sulfides (BMS). Pyrrhotite contains significant though generally low amounts of Ru, Os, and Ir, but hardly any Pd or Rh. Chalcopyrite contains most of the Ag but carries only extremely low PGE concentrations. Mass balance calculations performed on the Merensky Reef samples reveal that in general, pentlandite in the feldspathic pyroxenite and the pegmatoidal feldspathic pyroxenite hosts up to 100 % of the Pd and Rh and smaller amounts (10–40 %) of the Os, Ir, and Ru. Chalcopyrite and pyrrhotite usually contain less than 10 % of the whole rock PGE. The remaining PGE concentrations, and especially most of the Pt (up to 100 %), are present in the form of discrete platinum-group minerals such as cooperite/braggite, sperrylite, moncheite, and isoferroplatinum. Distribution patterns of whole rock Cu, Ni, and S versus whole rock Pd and Pt show commonly distinct offsets. The general sequence of “offset patterns” of PGE and BMS maxima, in the order from bottom to top, is Pd in pentlandite?→?Pd in whole rock?→?(Cu, Ni, and S). The relationship is not that straightforward in general; some of the reef sequences studied only partially show similar trends or are more complex. In general, however, the highest Pd concentrations in pentlandite appear to be related to the earliest, volumetrically rather small sulfide liquids at the base of the Merensky Reef sequence. A possible explanation for the offset patterns may be Rayleigh fractionation.  相似文献   

19.
The major element composition of plagioclase, pyroxene, olivine,and magnetite, and whole-rock 87Sr/86Sr data are presented forthe uppermost 2·1 km of the layered mafic rocks (upperMain Zone and Upper Zone) at Bierkraal in the western BushveldComplex. Initial 87Sr/86Sr ratios are near-constant (0·7073± 0·0001) for 24 samples and imply crystallizationfrom a homogeneous magma sheet without major magma rechargeor assimilation. The 2125 m thick section investigated in drillcore comprises 26 magnetitite and six nelsonite (magnetite–ilmenite–apatite)layers and changes up-section from gabbronorite (An72 plagioclase;Mg# 74 clinopyroxene) to magnetite–ilmenite–apatite–fayaliteferrodiorite (An43; Mg# 5 clinopyroxene; Fo1 olivine). The overallfractionation trend is, however, interrupted by reversals characterizedby higher An% of plagioclase, higher Mg# of pyroxene and olivine,and higher V2O5 of magnetite. In the upper half of the successionthere is also the intermittent presence of cumulus olivine andapatite. These reversals in normal fractionation trends definethe bases of at least nine major cycles. We have calculateda plausible composition for the magma from which this entiresuccession formed. Forward fractional crystallization modelingof this composition predicts an initial increase in total iron,near-constant SiO2 and an increasing density of the residualmagma before magnetite crystallizes. After magnetite beginsto crystallize the residual magma shows a near-constant totaliron, an increase in SiO2 and decrease in density. We explainthe observed cyclicity by bottom crystallization. Initiallymagma stratification developed during crystallization of thebasal gabbronorites. Once magnetite began to crystallize, periodicdensity inversion led to mixing with the overlying magma layer,producing mineralogical breaks between fractionation cycles.The magnetitite and nelsonite layers mainly occur within fractionationcycles, not at their bases. In at least two cases, crystallizationof thick magnetitite layers may have lowered the density ofthe basal layer of melt dramatically, and triggered the proposeddensity inversion, resulting in close, but not perfect, coincidenceof mineralogical breaks and packages of magnetitite layers. KEY WORDS: layered intrusion; mineral chemistry; isotopes; magma; convection; differentiation  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号