首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sulfur hexafluoride (SF6) tracer release experiment was conducted in the Stockton Deep Water Ship Channel (DWSC) to quantify mixing and transport rates. SF6 was injected in the San Joaquin River upstream of the DWSC and mapped for 8 days. From the temporal change in SF6 distributions, the longitudinal dispersion coefficient (K x ) was determined to be 32.7 ± 3.6 m2 s−1 and the net velocity was 1.75 ± 0.03 km day−1. Based on the decrease in SF6 inventory during the experiment, the pulsed residence time for waters in the DWSC was estimated at ∼17 days. Within the DWSC from Stockton downstream to Turner Cut, dissolved oxygen concentrations maintained a steady state value of 4 mg l−1. These values are below water quality objectives for the time of year. The low flow rates observed in the DWSC and the inability of oxygen-rich waters from downstream to mix into the DWSC upstream of Turner Cut contribute to the low dissolved oxygen concentration.  相似文献   

2.
In this study, key uncertainty sources analysis was undertaken for a dynamic water model using a First order error analysis method. First, a dynamic water quality model for the Three Gorges Reservoir Regions was established using data after impoundment by the environmental fluid dynamics code model package. Model calibration and verification were then conducted using measured data collected during 2004 and 2006. Four statistical indices were employed to assess the modeling efficiency. The results indicated that the model simulated the variables well, with most relative error being less than 25 %. Next, input and parameter uncertainty analysis were conducted for ammonia nitrogen, nitrate nitrogen, total nitrogen, and dissolved oxygen at 3 grid cells located in the upper, middle and downstream portions of the research area. For the nitrogen related variables, input from Zhutuo Station, the Jialingjiang River, and the Wujiang River were the main sources of uncertainty. Point and nonpoint sources also accounted for a large ratio of uncertainty. Moreover, nitrification contributed some uncertainty to the estimated ammonia nitrogen and nitrate nitrogen. However, reaeration was found to be a key source of uncertainty for dissolved oxygen, especially at the middle and downstream reaches. The analysis conducted in this study gives a quantitative assessment for uncertainty sources of each variable, and provides guidance for further pollutant loading reduction in the Three Gorge Reservoir Region.  相似文献   

3.
Phytoplankton deposition onto sediments affects trophic structures, sedimentary nutrient fluxes, and dissolved oxygen concentrations in coastal ecosystems. Deposition can occur as distinct events that are highly variable over space and time, necessitating detection methods that have similarly high resolution. We present an assessment of a novel rapid detection method that combines water-column and benthic fluorometry with surficial sediment sampling to identify phytoplankton deposition, as implemented in a 2-year study of a Florida estuary (24?monthly collections at 14 locations). Maximum water-column chlorophyll concentration, average benthic chlorophyll fluorescence, and the proportion of centric vs. pennate diatoms at the sediment?Cwater interface were each fitted to sine functions to represent phytoplankton bloom cycles. The phase offsets among the three fitted sine functions were varied to maximize fit to the 336 observations. The fitted cycles were divided into four classes that separate dominance by benthic microalgae from early, late, and post-phytoplankton depositional states. Best-fitting cycles for the proportion of centric diatoms were consistently offset from water-column chlorophyll cycles, indicating peak deposition occurred after peak phytoplankton blooms. Phytoplankton deposition dominated the upstream region of the studied estuary and was associated with reduced dissolved oxygen concentrations. Benthic algae dominated in downstream regions, particularly during low freshwater flow conditions when light absorption by colored dissolved organic matter was low. This approach produced repeatable and consistent patterns that agreed with expected relationships and was practical for sampling with high spatial and temporal resolution.  相似文献   

4.
We summarize rates of metabolism and major sources and sinks of organic carbon in the 148-k long, tidally influenced, freshwater Hudson River. The river is strongly heterotrophic, with respiration exceeding gross primary production (GPP). The P:R ration averages 0.57 (defined as the ratio of GPP to total ecosystem respiration) if only the aquatic portion of the ecosystem is considered and 0.70 if the emergent marshes are also included. Gross primary production (GPP) by photoplankton averages approximately 300 g C m?2 yr?1 and is an order of magnitude greater than that by submersed macrophytes. However, the river is deep, well mixed, and turbid, and phytoplankton spend a majority of their time in the dark. As a result, respiration by living phytoplankton is extremely high and net primary production (NPP) by phytoplankton is estimated to be only some 6% of GPP. NPP by phytoplankton and submersed macrophytes are roughly equal (approximately 20 g C m?2 yr?1 each) when averaged over the river. Emergent marshes are quite productive, but probably less than 16 g C m?2 yr?1 enters the aquatic portion of the ecosystem from these marshes. Heterotrophic respiration and secondary production in the river are driven primarily by allochthonous inputs of organic matter from terrestrial sources. Rates of metabolism vary along the river, with depth being a critical controlling factor. The P:R ratio for the aquatic portion of the ecosystem varies from 1 in the mid-river to 0.2 in the deeper waters. NPP is actually negative in the downstream waters where average depths are greater since phytoplankton respiration exceeds GPP there; the positive rates of NPP occurring upriver support a downstream advection of phytoplankton to the deeper waters where this C is largely respired away by the algae themselves. This autotrophic respiration contributes significantly to oxygen depletion in the deeper waters of the Hudson. The tidally influenced freshwater Hudson largely fits the patterns predicted by the river continuum model for larger rivers. However, we suggest that the continuum model needs to more clearly distinguish between GPP and NPP and should include the importance of autotrophic respiration by phytoplankton that are advected along a river. The organic carbon budget for the tidally influenced freshwater Hudson is balanced to within a few percent. Respiration (54%) and downstream advection into the saline estuary (41%) are the major losses of organic carbon from the ecosystem. Allochthonous inputs from nonpoint sources on land (61%) and GPP by phytoplankton (28%) are the major sources to the system. Agricultural erosion is the major source of allochthonous inputs. Since agricultural land use increased dramatically in the last century, and has fallen in this century, the carbon cycle of the tidally influenced freshwater Hudson River has probably changed markedly over time. Before human disturbance, the Hudson was probably a less heterotrophic system and may even have been autotrophic, with gross primary production exceeding ecosystem respiration.  相似文献   

5.
This research studies the impact of water level control structures on self-assimilative capacity of rivers and on fish habitat. Constructing a water level control structure in a river reach will alter its hydraulics as well as its water quality, thermal regime and fish habitat. A mathematical model is developed to simulate river hydraulics, water quality, temperature and fish habitat. Diurnal dissolved oxygen concentrations are investigated to show their impact on fish. A case of a Nile River reach was studied to investigate the impact of the existence of the Esna barrage on the water quality and fish in its upstream reach. The barrage has negative impacts on the upstream self-assimilative capacity of the rivers. The waste load that the river could absorb was only 54 % (at low flow) and 78 % (at high flow) of the entire load if no barrage was present. Including in the simulation of the effects of photosynthesis and respiration, the above mentioned percentages were raised to 54 % and 91 %, respectively. Although water level control structures have negative impacts on the upstream self-assimilative capacity of the rivers, they have positive effect on downstream dissolved oxygen concentrations due to reaeration that happens across them. Downstream dissolved oxygen concentration increased by 6 % from its upstream concentration value. The barrage has a positive effect on fish habitat in the upstream section. The weighted usable area of Tilapia fish is doubled in case of barrage existence. The barrage causes a slight decrease in water temperature that reaches an average of 0.13 degree in the month of June.  相似文献   

6.
A deterministic, mass balance model for phytoplankton, nutrients, and dissolved oxygen was applied to the Mississippi River Plume/Inner Gulf Shelf (MRP/IGS) region. The model was calibrated to a comprehensive set of field data collected during July 1990 at over 200 sampling stations in the northern Gulf of Mexico. The spatial domain of the model is represented by a three-dimensional, 21-segment water-column grid extending from the Mississippi River Delta west to the Louisiana-Texas border, and from the shoreline seaward to the 30–60 m bathymetric contours. Diagnostic analyses and numerical experiments were conducted with the calibrated model to better understand the environmental processes controlling primary productivity and dissolved oxygen dynamics in the MRP/IGS region. Underwater light attenuation appears relatively more important than nutrient limitation in controlling rates of primary productivity. Chemical-biological processes appear relatively more important than advective-dispersive transport processes in controlling bottom-water dissolved oxygen dynamics. Oxidation of carbonaceous material in the water column, phytoplankton respiration, and sediment oxygen demand all appear to contribute significantly to total oxygen depletion rates in bottom waters. The estimated contribution of sediment oxygen demand to total oxygen-depletion rates in bottom waters ranges from 22% to 30%. Primary productivity appears to be an important source of dissolved oxygen to bottom waters in the region of the Atchafalaya River discharge and further west along the Louisiana Inner Shelf. Dissolved oxygen concentrations appear very sensitive to changes in underwater light attenuation due to strong coupling between dissolved oxygen and primary productivity in bottom waters. The Louisiana Inner Shelf in the area of the Atchafalaya River discharge and further west to the Texas border appears to be characterized by significantly different light attenuation-depth-primary productivity relationships than the area immediately west of the Mississippi Delta. Nutrient remineralization in the water column appears to contribute significantly to maintaining chlorophyll concentrations on the Louisiana Inner Shelf.  相似文献   

7.
Phytoplankton patchiness, as expressed by community composition and size distribution, during the rainy season in the Langat River estuary (Malaysia) is described. Four sites in the estuary were sampled on two different occasions. The sampling area covered a stretch of the river from upstream to downstream of aquaculture activities (shrimp farms). Water samples from a shrimp farm outlet were also analyzed for nutrient and phytoplankton content. Differences in community structure between stations were found by means of multivariate procedures. Genera composition and total biomass were related to environmental factors, revealing salinity, light, and nutrients as important explaining factors. Elevated phytoplankton biomass and total phosphorus concentration, as well as lower inorganic nitrogen: phosphorus ratios, were found downstream of the shrimp farming activities. The size distribution spectrum of the phytoplankton population downstream of the shrimp farms was significantly different from that at the other stations but not different than that found in the sampled effluent from the shrimp farms, where phytoplankton biomass was also high. Twenty-two of the 24 recorded genera from the shrimp farm outlet were also found downstream of the farming activities. A number of different environmental factors potentially alter conditions for phytoplankton in the lower reaches of the estuary as compared to the upper regions. A cause and effect relationship explaining the differences noted between the upper and lower reaches of the estuary cannot be established. This study suggests that nutrient enrichment from the shrimp farming activities is of a magnitude that may contribute to the phytoplankton community changes observed in the lower reaches of the estuary.  相似文献   

8.
Water quality in the Northern part of Mellegue-Medjerda watershed (East Algeria) has been adversely affected by important pollutants discharged into the Medjerda wadi without, in most cases, any treatment. Chemical and physical degradation are due to agricultural and industrial practices and domestic wastewaters. Over a three-month period, a study of the low-flow water quality characteristics throughout Medjerda wadi was undertaken. Longitudinal profiles of water quality were constructed using data from fourteen sites. All sewage, agricultural, and industrial inputs were included. Analyzed properties were nutrients (NO3 , NO2 , NH4 +, and PO4 3−), Biochemical oxygen demand after five days (BOD5), chemical oxygen demand (COD), and dissolved oxygen (DO). Along Medjerda wadi, all values change because of conditions specific to each sampling station. Nitrate was the most important form of nitrogen-element load (94%). Its concentration reached 34.3 mg L−1 at OM4 point, downstream of domestic wastewater discharges. The spatial evolution of the organic pollution index (OPI) shows that the wastewater effluent constitutes the main source of pollution. Indeed, water quality goes from a moderate pollution state at some sampling stations not or slightly affected by wastewaters discharges to a very strong pollution state (OPI of about 1.75) downstream of the domestic effluents inputs of Souk-Ahras city.  相似文献   

9.
Scales of nutrient-limited phytoplankton productivity in Chesapeake Bay   总被引:1,自引:0,他引:1  
The scales on which phytoplankton biomass vary in response to variable nutrient inputs depend on the nutrient status of the plankton community and on the capacity of consumers to respond to increases in phytoplankton productivity. Overenrichment and associated declines in water quality occur when phytoplankton growth rate becomes nutrient-saturated, the production and consumption of phytoplankton biomass become uncoupled in time and space, and phytoplankton biomass becomes high and varies on scales longer than phytoplankton generation times. In Chesapeake Bay, phytoplankton growth rates appear to be limited by dissolved inorganic phosphorus (DIP) during spring when biomass reaches its annual maximum and by dissolved inorganic nitrogen (DIN) during summer when phytoplankton growth rates are highest. However, despite high inputs of DIN and dissolved silicate (DSi) relative to DIP (molar ratios of N∶P and Si∶P>100), seasonal accumulations of phytoplankton biomass within the salt-intruded-reach of the bay appear to be limited by riverine DIN supply while the magnitude of the spring diatom bloom is governed by DSi supply. Seasonal imbalances between biomass production and consumption lead to massive accumulations of phytoplankton biomass (often>1,000 mg Chl-a m?2) during spring, to spring-summer oxygen depletion (summer bottom water <20% saturation), and to exceptionally high levels of annual phytoplankton production (>400 g m?2 yr?1). Nitrogen-dependent seasonal accumulations of phytoplankton biomass and annual production occur as a consequence of differences in the rates and pathways of nitrogen and phosphorus cycling within the bay and underscore the importance of controlling nitrogen inputs to the mesohaline and lower reaches of the bay.  相似文献   

10.
It is known that hydrogen peroxide interferes with chemical oxygen demand analysis by consuming oxidation agents such as potassium dichromate, thus leading to overestimation of the chemical oxygen demand measurements. The objective of the study was to investigate the effects of hydrogen peroxide interference and to determine true chemical oxygen demand values on interpreting treatment performance during ozone-based advanced oxidation of livestock wastewater in which hydrogen peroxide concentration and chemical oxygen demand values are dynamically changing. According to the chemical oxygen demand monitoring data, chemical oxygen demand values were always higher than the initial chemical oxygen demand load when hydrogen peroxide was involved and the treatment performance with ozone alone or ozone/ultraviolet was better than with coupled hydrogen peroxide. The extent of overestimation was proportional to the remaining hydrogen peroxide concentration and the average overestimation ratio in livestock wastewater was in the range of 0.50~0.58 mg per 1 mg of hydrogen peroxide, depending upon the quality of the wastewater treated. True chemical oxygen demand values were estimated by correlating the extent of overestimation with the remaining hydrogen peroxide concentration during treatment. The extent of overestimation decreased to zero gradually as the amount of hydrogen peroxide also approached zero as oxidation proceeded. The corrected chemical oxygen demand values indicated underlying tendency of oxidation, which could not be seen in the original chemical oxygen demand monitoring data. Application of ozone/hydrogen peroxide was more efficient for reducing chemical oxygen demand than ozone alone, as was ozone/hydrogen peroxide/ultraviolet compared to ozone/ultraviolet. When coupled with ozone, ultraviolet irradiation was more efficient than hydrogen peroxide for decreasing chemical oxygen demand during treatment of livestock wastewater.  相似文献   

11.
A study was carried out in Malawi to assess the extent of chemical pollution in a receiving river as affected by industrial effluents. Both the effluents and the water at selected points in the river were analysed for pH, dissolved oxygen, biochemical oxygen demand, electrical conductivity, suspended solids, nitrate, alkalinity, hardness, chloride and phosphate in the dry and rainy seasons. The results showed that the effluents were acidic in both the dry season (range: 4.2 ± 0.02–6.5 ± 0.02) and in the rainy season (range: 4.2 ± 0.05–5.6 ± 0.01). While the levels of dissolved oxygen, biological oxygen demand, electrical conductivity, suspended solids, alkalinity and chloride were relatively high in the dry and rainy seasons, the concentration of phosphate and nitrate were low in both seasons. The water upstream was neutral (average pH, 7.40 ± 0.04) with high dissolved oxygen but low in the levels of the other parameters in both seasons. The water after the effluent receiving points was acidic and the levels of the other parameters were high, especially downstream. The results suggested that the water in the river was polluted and not good for human consumption. It is therefore recommended that the careless disposal of the wastes should be discouraged and although the values in some cases were lower than the allowable limits, the continued discharge of the effluents in the river may result in severe accumulation of the contaminants and, unless the authorities implement the laws governing the disposal of wastes, this may affect the lives of the people.  相似文献   

12.
Dynamic hydrosalinity models are available, but are not used extensively on a large scale soil which receives wastewater from industrial areas, partly because adequate database are expensive to be obtained. Thus, for this reason, there is an urgent need to assess the salt and other pollutant loads collected in wastewater flows into the soil and/ or ground water systems. A conceptual hydrosalinity model was used on two major underlying principals of mass balance and steady state. This model was initially tested on the 4,117 km2 plains west of the Yazd-Ardakan district in the central part of Iran. This model was used at a time when the soil and ground water salinity problem was serious due to the high shortage of water. It was possible to calibrate the model with ± 2 % of the flow volume and total dissolved solids of the industrial wastewater discharge from over 2,000 factories. The verification results were 98 % of the measured values. Moreover, this model was tested for the verification of the model data from the analysis of 36 wells’ water in the area where industrial wastewater discharge was used. The results showed that most of the indices of total dissolved solids, total suspended solids, biological oxygen demand and chemical oxygen demand are above standard levels. The results of the model can be used for the management practice of the reduction of salt pollutant load in the area to achieve sustainable development for location of industries in the study area.  相似文献   

13.
Strong benthic–pelagic coupling is an important characteristic of shallow coastal marine ecosystems. Building upon a rich history of benthic metabolism data, we measured oxygen uptake and nutrient fluxes across the sediment–water interface along a gradient of water column primary production in Narragansett Bay, RI (USA). Despite the strong gradients seen in water column production, sediment oxygen demand (SOD) and benthic nutrient fluxes did not exhibit a clear spatial pattern. Some of our sites had been studied in the 1970s and 1980s and thus allowed historical comparison. At these sites, we found that SOD and benthic fluxes have not changed uniformly throughout Narragansett Bay. In the uppermost portion of the bay, the Providence River Estuary, we observed a significant decrease in dissolved inorganic phosphorus fluxes which we attribute to management interventions. At another upper bay site, we observed significant declines in SOD and dissolved inorganic nitrogen fluxes which may be linked to climate-induced decreases in water column primary production and shifts in bloom phenology. In the 1970s, benthic nutrient regeneration supplied 50% to over 200% of the N and P needed to support primary production by phytoplankton. Summer nutrient regeneration in the Providence River Estuary and Upper bay now may only supply some 5–30% of the N and 3–20% of the P phytoplankton demand.  相似文献   

14.
Suquía River is a medium-sized hydrological system (basin area of ~7,700 km2) that supplies fresh water to Córdoba city, a town of ~1,500,000 inhabitants in central Argentina. This paper examines the present-day hydrochemistry of Suquía River urban catchment analyzing its major and minor dissolved components, and the nutrients variability by means of QUAL-2K modeling software. The Suquía River has bicarbonate-type waters upstream the city and sulfate-type waters right downstream, whereas they exhibit a mixed-to-alkali-type cationic composition. The seasonal analysis of its major dissolved constituents clearly showed a dilution process during the wet season (i.e. austral summer). In the last 20 years, the Suquía River has modified its anionic composition, now showing higher relative concentrations of SO4 2− as a consequence of urban activities. However, trace elements dissolved concentrations do not evidence a strong pollution effect. Nutrients [nitrogen species, total phosphorous (TP)] and related parameters, such as biochemical oxygen demand (BOD), and dissolved oxygen (DO), evidence a clear influence of human activities. The QUAL-2K model was used to evaluate the spatial behavior of selected nutrients and associated variables, (i.e. TP, N–NH4 +, N–NO3 , DO, BOD). Nutrient concentrations are affected by point sources of contaminants, particularly domestic waste and sewage, as well as by diffuse agricultural pollution. A calibrated QUAL-2K modeling exercise clearly shows the impact of the Córdoba city’s municipal wastewater treatment plant on the Suquía River water quality.  相似文献   

15.
The natural isotopic composition of suspended particulate organic nitrogen was determined in the Southern Bight of the North Sea and in the Scheldt estuary. These data show that δ15N constitutes a convenient tracer of the origin of the suspended matter.In the winter, in the absence of intensive primary production, the suspended organic matter of the Scheldt estuary is a mixture of two components: a continental detrital component characterized by a low δ value of 1.5%. and a marine component with a mean δ value of 8%..During the phytoplankton flowering period, lasting from early May to October, intensive primary production occurs throughout the estuary giving rise to a third source of organic matter. This material is characterized by high δ values reflecting the isotopic composition of ammonia, the nitrogenous nutrient assimilated by phytoplankton in the estuary.The nitrification process occuring in the mixing area of the Scheldt estuary leads to higher downstream δ values of ammonia (>20%.) which permits the distinction between estuarine from fresh-water phytoplankton. Simple isotopic budget calculations show that, both in the upstream part and in the downstream part, autochthonous phytoplanktonic material contributes a major part of the total suspended matter in the Scheldt estuary during summer.  相似文献   

16.
This review carries out a comparative study of advanced technologies to design, upgrade and rehabilitate wastewater treatment plants. The study analyzed the relevant researches in the last years about the moving bed biofilm reactor process with only attached biomass and with hybrid biomass, which combined attached and suspended growth; both could be coupled with a secondary settling tank or microfiltration/ultrafiltration membrane as a separation system. The physical process of membrane separation improved the organic matter and NH4 +-N removal efficiencies compared with the settling tank. In particular, the pure moving bed biofilm reactor–membrane bioreactor showed average chemical oxygen demand, biochemical oxygen demand on the fifth day and total nitrogen removal efficiencies of 88.32, 90.84 and 60.17%, respectively, and the hybrid moving bed biofilm reactor–membrane bioreactor had mean chemical oxygen demand, biochemical oxygen demand on the fifth day and total nitrogen reduction percentages of 91.18, 97.34 and 68.71%, respectively. Moreover, the hybrid moving bed biofilm reactor–membrane bioreactor showed the best efficiency regarding organic matter removal for low hydraulic retention times, so this system would enable the rehabilitation of activated sludge plants and membrane bioreactors that did not comply with legislation regarding organic matter removal. As the pure moving bed biofilm reactor–membrane bioreactor performed better than the hybrid moving bed biofilm reactor–membrane bioreactor concerning the total nitrogen removal under low hydraulic retention times, this system could be used to adapt wastewater treatment plants whose effluent was flowed into sensitive zones where total nitrogen concentration was restricted. This technology has been reliably used to upgrade overloaded existing conventional activated sludge plants, to treat wastewater coming from textile, petrochemical, pharmaceutical, paper mill or hospital effluents, to treat wastewater containing recalcitrant compounds efficiently, and to treat wastewater with high salinity and/or low and high temperatures.  相似文献   

17.
Differences in phytoplankton community composition along a riverine to, freshwater tidal continuum was an important factor affecting the primary productivity and quantity of phytoplankton biomass available to the San Francisco Estuary food web downstream. The relative contribution of riverine and freshwater tidal phytoplankton was determined using measurements of primary productivity, respiration, and phytoplankton species composition along a riverine to freshwater tidal gradient in the San Joaquin River, one of two major rivers that flow into, the San Francisco Estuary. Chla-specific net primary productivity was greater in the freshwater tidal habitat and was correlated with both a higher growth efficiency and maximum growth potential compared with the river upstream. Cluster analysis indicated these differences in growth parameters were associated with differences in species composition, with greater percent diatom and green algal species biomass upstream and flagellate biomass downstream. Correlation between the chla specific net productivity and phytoplankton species composition suggested the downstream shift from riverine diatom and green algal species to flagellate species contributed to the seaward increase in net primary productivity. Environmental conditions, such as specific conductance and water transparency, may have influenced primary productivity along the riverine to freshwater tidal continuum through their effect on both species composition and growth rate. Data suggest light was not the sole controlling factor for primary productivity in this highly turbid estuary; phytoplankton growth rate did not increase when riverine plankton communities from low light conditions upstream were exposed to higher light conditions downstream. This study suggests that the availability of phytoplankton biomass to the estuarine food web may be influenced by management of both phytoplankton growth and community composition along the riverine to freshwater tidal continuum.  相似文献   

18.
Water quality monitoring in developing countries is inadequate, especially in stream water affected by urban effluents and runoff. The purpose of this study was to investigate heavy metal contaminants in the Nakivubo Stream water in Kampala, Uganda. Water samples Nakivubo Channelized Stream, tributaries and industrial effluents that drain into the stream were collected and analysed for the total elemental concentration using flame atomic absorption spectrophotometer. The results showed that: 1) the wastewater was highly enriched with lead and manganese above the maximum permissible limit; 2) the levels of dissolved oxygen were below the maximum permissible limit, while the biological oxygen demand was above the maximum permissible limit. All industrial effluents/wastewater were classified as strong (> 220 mg/L). Factor analysis results reveal two sources of pollutants; 1) mixed origin or chemical phenomena of industrial and vehicular emissions and 2) multiple origin of lead (vehicular, commercial establishment and industrial). In conclusion, Nakivubo Channelized Stream water is not enriched with heavy metals. These heavy metals (lead, cadmium and zinc) were rapidly removed by co-precipitation with manganese and iron hydroxides and total dissolved solids into stream sediments. This phenomena is controlled by pH in water.  相似文献   

19.
三峡大坝下游溶解氧变化特性及影响因素分析   总被引:4,自引:0,他引:4       下载免费PDF全文
根据三峡工程坝区水域实测数据,分析了水库蓄水以后大坝上、下游断面溶解氧浓度和溶解氧饱和度的变化特性,探讨了水位、流量因素对大坝下游水体溶解氧量的影响。结果表明,坝身孔口过流水体大量掺气后进入下游河道导致下游水体溶解氧浓度和饱和度显著增加,甚至达到超饱和状态。由于电站过流基本不改变水体溶解氧量,在电站和坝身孔口同时过流时,两种水体掺混后,下游溶解氧量主要受流量比的影响。此外,下游溶解氧量随流量的增加和下游水位的升高而增大。过坝总流量超过35 000 m3/s,下游水位超过68 m以及坝身孔口过流流量占总流量的绝大部分时,需特别重视溶解氧超饱和现象对水生生物可能造成的影响。  相似文献   

20.
River Vrishabhavathy, a tributary of Cauvery River was studied for 12 physico-chemical parameters at four sites over a distance of 50 km for a period of 2 years (1999–2001) at monthly intervals. Water was faintly alkaline, with pH showing negative correlation with temperature. The dissolved oxygen content increased downstream with negative correlation to biological oxygen demand (BOD), chemical oxygen demand (COD) and turbidity. Bicarbonate alkalinity was very low compared with carbonate alkalinity. Carbonate alkalinity, total hardness, total dissolved solids, total suspended solids, electrical conductivity, BOD and COD decreased downstream, with an upward trend in the middle reaches due to the introduction of raw sewage. The seasonal and yearly trends are also discussed. The river is a sewer collector undergoing self-purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号