首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The planetary dynamics of 4/3, 3/2, 5/2, 3/1 and 4/1 mean motion resonances is studied by using the model of the general three body problem in a rotating frame and by determining families of periodic orbits for each resonance. Both planar and spatial cases are examined. In the spatial problem, families of periodic orbits are obtained after analytical continuation of vertical critical orbits. The linear stability of orbits is also examined. Concerning initial conditions nearby stable periodic orbits, we obtain long-term planetary stability, while unstable orbits are associated with chaotic evolution that destabilizes the planetary system. Stable periodic orbits are of particular importance in planetary dynamics, since they can host real planetary systems. We found stable orbits up to 60° of mutual planetary inclination, but in most families, the stability does not exceed 20°–30°, depending on the planetary mass ratio. Most of these orbits are very eccentric. Stable inclined circular orbits or orbits of low eccentricity were found in the 4/3 and 5/2 resonance, respectively.  相似文献   

2.
We study the families of simple periodic orbits in a three-dimensional system that represents the inner parts of a perturbed triaxial galaxy. The perturbations depend on two control parameters. We find the regions where each family is stable, simply unstable, doubly unstable, or complex unstable. the stable and simply unstable families produce other families by bifurcation. Several families reach a maximum (or minimum) perturbation and then are continued by other families. The bifurcations are direct or inverse. The transition from one type of bifurcation to the other is theoretically explained. Another important phenomenon is the splitting of one family into two, or the joining of two families into one. We do not have any complex instability in the limiting cases of two-dimensional motions (when one control parameter is zero).The two main families of periodic orbits are in most cases stable when the energy is smaller than the escape energy. Most high energy orbits are unstable. However, we found stable orbits even for energies about four times larger than the escape energy.  相似文献   

3.
We derive an equation to determine the coordinates of the points at which unstable periodic orbits emerge from a zero-velocity contour in an arbitrary rotationally symmetric potential. Examples of such orbits are given for several model potentials.  相似文献   

4.
We study the peculiarities of irregular periodic orbits, i.e. orbits belonging to families not connected with the main families or their bifurcation, of Hamiltonian systems of two degrees of freedom. Families of irregular periodic orbits appear in triplets which are either closed or extend to infinity. If these triplets form an infinite sequence they surround an escape region. It seems probable that in general regions covered by irregular families are of high degree of stochasticity.  相似文献   

5.
The characteristics of several families of periodic orbits are investigated numerically in a time-independent, bisymmetrical dynamical system which is considered to describe the motion on the plane of rotation of a nearly axisymmetric galaxy. The results of the present study are compared with those found by Caranicolas and Barbanis (1982).  相似文献   

6.
We study the properties of the families of three-dimensional periodic orbits which bifurcate from the vertical critical orbits of the retrograde family of quasi-circular plane periodic orbits which extend from the galactic center up to infinity. We consider the case of a barred galaxy with a strong central bulge. The values of the parameters are chosen in such a way as to cover the cases of a strong or weak bar with a fast or slow rotation.  相似文献   

7.
Families of orbits of a conservative, two degree-of-freedom system are represented by an unsteady velocity field with componentsu(x, y, t) andv(x, y, t). Intrinsic stability properties depend on velocity field divergence and curl, whose dynamical evolution is determined by a matrix Riccati equation. Near equilibrium, divergence-free or irrotational fields are dynamically compatible with the conservative force field. It is shown that a necessary condition for stable periodic orbits is satisfied when the orbitaveraged divergence is zero, which results in bounded normal variations. A sufficient condition for stability is derived from the requirement that tangential variations do not exhibit secular growth.In a steady, divergence-free field, velocity component functionsu(x, y) andv(x, y) may be continuedanalytically from any initial condition, except when velocity is parallel to U or at equilibria. In an unsteady field, the orbit-averaged divergence is zero when the vorticity function is periodic. When such a field exists, initial conditions for stable periodic orbits (i.e., characteristic loci) may be determinedanalytically.  相似文献   

8.
We distinguish between regular orbits, that bifurcate from the main families of periodic orbits (those that exist also in the unperturbed case) and irregular periodic orbits, that are independent of the above. The genuine irregular families cannot be made to join the regular families by changing some parameters. We present evidence that all irregular families appear inside lobes formed by the asymptotic curves of the unstable periodic orbits. We study in particular a dynamical system of two degrees of freedom, that is symmetric with respect to the x-axis, and has also a triple resonance in its unperturbed form. The distribution of the periodic orbits (points on a Poincaré surface of section) shows some conspicuous lines composed of points of different multiplicities. The regular periodic orbits along these lines belong to Farey trees. But there are also lines composed mainly of irregular orbits. These are images of the x-axis in the map defined on the Poincaré surface of section. Higher order iterations of this map , close to the unstable triple periodic orbit, produce lines that are close to the asymptotic curves of this unstable orbit. The homoclinic tangle, formed by these asymptotic curves, contains many regular orbits, that were generated by bifurcation from the central orbit, but were trapped inside the tangle as the perturbation increased. We found some stable periodic orbits inside the homoclinic tangle, both regular and irregular. This proves that the homoclinic tangle is not completely chaotic, but contains gaps (islands of stability) filled with KAM curves.  相似文献   

9.
We study the families of periodic orbits in a time-independent two-dimensional potential field symmetric with respect to both axes. By numerical calculations we find characteristic curves of several families of periodic orbits when the ratio of the unperturbed frequencies isA 1/2/B 1/2=2/1. There are two groups of characteristic curves: (a) The basic characteristic and the characteristics which bifurcate from it. (b) The characteristics which start from the boundary line and the axisx=0.  相似文献   

10.
A substantial fraction of the Edgeworth-Kuiper belt objects are presently known to move in resonance with Neptune (the principal commensurabilities are 1/2, 3/5, 2/3, and 3/4). We have found that many of the distant (with orbital semimajor axes a > 50 AU) trans-Neptunian objects (TNOs) also execute resonant motions. Our investigation is based on symplectic integrations of the equations of motion for all multiple-opposition TNOs with a > 50 AU with allowance made for the uncertainties in their initial orbits. Librations near such commensurabilities with Neptune as 4/9, 3/7, 5/12, 2/5, 3/8, 4/27, and others have been found. The largest number of distant TNOs move near the 2/5 resonance with Neptune: 12 objects librate with a probability higher than 0.75. The multiplicity of objects moving in 2/5 resonance and the longterm stability of their librations suggest that this group of resonant objects was formed at early formation stages of the Solar system. For most of the other resonant objects, the librations are temporary. We also show the importance of asymmetric resonances in the large changes in TNO perihelion distances.  相似文献   

11.
We use the analytical method of Lindstedt to make an inventory of the families of periodic orbits in a two-dimensional galactic potential first introduced by Contopoulos (1960). We examine the general case of orbital resonance and its neighborhood; two special cases, the 1∶1 and 2∶1 resonances are dealt with separately. The present paper provides a synthesis and an extension of earlier works on this potential in the neighborhood of the integrable case (ε?1).  相似文献   

12.
We study the various families of periodic orbits in a dynamical system representing a plane rotating barred galaxy. One can have a general view of the main resonant types of orbits by considering the axisymmetric background. The introduction of a bar perturbation produces infinite gaps along the central familyx 1 (the family of circular orbits in the axisymmetric case). It produces also higher order bifurcations, unstable regions along the familyx 1, and long period orbits aroundL 4 andL 5. The evolution of the various types of orbits is described, as the Jacobi constanth, and the bar amplitude, increase. Of special importance are the infinities of period doubling pitchfork bifurcations. The genealogy of the long and short period orbits is described in detail. There are infinite gaps along the long period orbits producing an infinity of families. All of them bifurcate from the short period family. The rules followed by these families are described. Also an infinity of higher order bridges join the short and long period families. The analogies with the restricted three body problem are stressed.  相似文献   

13.
The planar isosceles three-body problem where the two symmetric bodies have small masses is considered as a perturbation of the Kepler problem. We prove that the circular orbits can be continued to saddle orbits of the Isosceles problem. This continuation is not possible in the elliptic case. Their perturbed orbits tend to a continued circular one or approach a triple collision. The basic tool used is the study of the Poincaré maps associated with the periodic solutions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The equilibria and periodic orbits around a dumbbell-shaped body   总被引:1,自引:0,他引:1  
This paper investigates the equilibria, their stability, and the periodic orbits in the vicinity of a rotating dumbbell-shaped body. First, the geometrical model of dumbbell-shaped body is established. The gravitational potential fields are obtained by the polyhedral method for several dumbbell-shaped bodies with various length–diameter ratios. Subsequently, the equilibrium points of these dumbbell-shaped bodies are computed and their stabilities are analyzed. Periodic orbits around equilibrium points are determined by the differential correction method. Finally, in order to understand further motion characteristic of dumbbell-shaped body, the effect of the rotating angular velocity of the dumbbell-shaped bodies is investigated. This study extends the research work of the orbital dynamics from simple shaped bodies to complex shaped bodies and the results can be applied to the dynamics of orbits around some asteroids.  相似文献   

15.
A systematic and detailed discussion of planar periodic orbits, of a charged particle moving under the influence of an electromagnetic field of three celestial bodies, is given for the first time. In this problem the periodic orbits are all asymmetric. Numerical procedures are applied to find the families of these orbits and to study their stability. Moreover, the bifurcations of these families with families of three dimensional asymmetric periodic orbits are given.  相似文献   

16.
Resonant orbits in the vicinity of asteroid 216 Kleopatra   总被引:3,自引:0,他引:3  
This investigation examines the resonant orbits in the vicinity of asteroid 216 Kleopatra using a precise gravitational model, with emphasis on their crucial role in determining the global orbital behaviors. Three-dimensional Monte Carlo simulations of test particle trajectories are launched to find the condition and probability distribution of resonance. It is revealed the resonant orbits are rich and concentrated in the near-field regime, which provides a short-term mechanism to clear the vicinal ejecta away from the asteroid. The unstable boundary predicted in our calculations is consistent with the observed mutual orbits of satellites S/2008 (216) 1 and S/2008 (216) 2. The probability distribution of resonance is considered as an indicator of the stability of vicinal orbits, and the results are identical to the previous analysis by Scheeres et al. (Icarus 121:67, 1996) for the stability of retrograde orbits around asteroid 4769 Castalia.  相似文献   

17.
Recent results on periodic orbits are presented and it is shown that the periodic orbits can be used in the study of planetary systems and triple or multiple stellar systems. Triple stellar systems are stable even for close approaches of the three components. Also stable triple systems exist with nearly zero angular momentum. For the planetary systems a global view is obtained from which it is clear which configurations are stable or unstable and also what factors affect the stability. Also, the relation between resonance and instability is studied by making use of periodic orbits.  相似文献   

18.
Assuming that the potential field on the plane of symmetry of a nearly axisymmetric galaxy is a polynomial of the fourth degree, we study the conditions of existence and stability of the main types of periodic orbits. We verify the theoretical results by numerical calculations.  相似文献   

19.
We show by a general argument that periodic solutions of the planar problem of three bodies (with given masses) form one-parameter families. This result is confirmed by numerical investigations: two orbits found earlier by Standish and Szebehely are shown to belong to continuous one-parameter families of periodic orbits. In general these orbits have a non-zero angular momentum, and the configuration after one period is rotated with respect to the initial configuration. Similar general arguments whow that in the three-dimensional problem, periodic orbits form also one-parameter families; in the one-dimensional problem, periodic orbits are isolated.  相似文献   

20.
In the three dipole problem where enormous electromagnetic forces obstruct the three dimensional movement of the charged particle we determined for the first time families of three dimensional asymmetric periodic orbits. We study how these families appear, branching from the planar motion and we develop the procedures we have followed to determine them numerically. Also we give their characteristics and the conical projections and plottings of some orbits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号