首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study uses long‐term records of stream chemistry, discharge and air temperature from two neighbouring forested catchments in the southern Appalachians in order to calculate production of dissolved CO2 and dissolved inorganic carbon (DIC). One of the pair of catchments was clear‐felled during the period of the study. The study shows that: (1) areal production rates of both dissolved CO2 and DIC are similar between the two catchments even during and immediately after the period of clear‐felling; (2) flux of total inorganic carbon (dissolved CO2+ DIC) rises dramatically in response to a catchment‐wide acidification event; (3) DIC and dissolved CO2 are dominantly released on the old water portion of the discharge and concentrations peak in the early autumn when flows in the study catchments are at their lowest; (4) total fluvial carbon flux from the clear‐felled catchment is 11·6 t km−2 year−1 and for the control catchment is 11·4 t km−2 year−1. The total inorganic carbon flux represents 69% of the total fluvial carbon flux. The method presented in the study provides a useful way of estimating inorganic carbon flux from a catchment without detailed gas monitoring. The time series of dissolved CO2 at emergence to the stream can also be a proxy for the soil flux of CO2. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
In order to understand the differences in the suspended sediment and total dissolved solid (TDS) yield patterns between the glacial and non‐glacial catchments at the headwaters of Urumqi River, northwestern China, water samples were collected from a glacier catchment and an empty cirque catchment within the region, during three melting seasons from 2006 to 2008. These samples were analyzed to estimate suspended sediment and TDS concentrations, fluxes and erosion rates in the two adjoining catchments. There were remarked differences in suspended sediment and TDS yield patterns between the two catchments. Suspended sediment concentrations were controlled mainly by the sediment source, whereas TDS concentrations were primarily related to the hydrologic interaction with soil minerals. Generally, the glacial catchment had much higher suspended sediment and TDS yields, together with higher denudation rates, than the non‐glacial catchment. Overall, glacial catchment was mainly dominated by physical denudation process, whereas the non‐glacial catchment was jointly influenced by physical and chemical denudation processes. The observed differences in material delivery patterns were mainly controlled by the runoff source and the glacial processes. The melting periods of glacier and snow were typically the most important time for the suspended sediment and TDS yields. Meanwhile, episodic precipitation events could generate disproportionately large yields. Subglacial hydrology dynamics, glaciers pluck and grind processes could affect erodibility, and the large quantities of dust stored on the glacier surface provided additional sources for suspended sediment transport in the glacial catchment. These mechanisms imply that, in response to climate change, the catchment behaviour will be modified significantly in this region, in terms of material flux. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Recent understanding of chemical weathering in glacierized catchments has been focused on mid-latitude, Alpine catchments; comparable studies from the high latitudes are currently lacking. This paper attempts to address this deficiency by examining solute provenance, transport and denudation in a glacierized catchment at 78°N in the Svalbard High Arctic archipelago. Representative samples of snow, glacier ice, winter proglacial icing and glacier meltwater were obtained from the catchment during spring and summer 1993 and analysed for major ion chemistry. Seasonal variations in the composition of glacier meltwater occur and are influenced by proglacial solute acquisition from the icing at the very start of the melt season, and subsequently by a period of discharge of concentrated snowmelt caused by snowpack elution; weathering within the ice-marginal channels that drain the glacier, particularly carbonation reactions, continues to furnish solute to meltwater when suspended sediment concentrations increase later in the melt season. Partitioning the solute flux into its various components (sea-salt, crustal, aerosol and atmospheric sources) shows that c. 25% of the total flux is sea salt derived, consistent with the maritime location of the glacier, and c. 71% is crustally derived. Estimated chemical denudation, 160 meq m−2 a−1 sea salt-corrected cation equivalent weathering rate, is somewhat low compared with other studied glacierized catchments (estimates in the range 450–1000 meq m−2 a−1), which is probably attributable to the relatively short melt season and low specific runoff in the High Arctic. A positive relationship was identified between discharge and CO2 drawdown owing to carbonation reactions in turbid meltwater. © 1997 John Wiley & Sons, Ltd.  相似文献   

4.
The Senegal River is of intermediate size accommodating at present about 3.5 million inhabitants in its catchment. Its upstream tributaries flow through different climatic zones from the wet tropics in the source area in Guinea to the dry Sahel region at the border between Senegal and Mauritania. Total suspended matter, particulate and dissolved organic carbon and nitrogen as well as nutrient concentrations were determined during the dry and wet seasons at 19 locations from the up- to downstream river basin. The aims of the study were to evaluate the degree of human interference, to determine the dissolved and particulate river discharges into the coastal sea and to supply data to validate model results. Statistical analyses showed that samples from the wet and dry season are significantly different in composition and that the upstream tributaries differ mainly in their silicate and suspended matter contents. Nutrient concentrations are relatively low in the river basin, indicating low human impact. Increasing nitrate concentrations, however, show the growing agriculture in the irrigated downstream areas. Particulate organic matter is dominated by C4 plants during the wet season and by aquatic plankton during the dry season. The total suspended matter (TSM) discharge at the main gauging station Bakel was about 1.93 Tg yr−1 which is in the range of the only available literature data from the 1980s. The calculated annual discharges of particulate organic carbon (POC), dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) are 55.8 Gg yr−1, 54.1 Gg yr−1, and 5.3 Gg yr−1, respectively. These first estimates from the Senegal River need to be verified by further studies.  相似文献   

5.
Water quality analyses for the Niger River for the 1980/81 hydrological year are presented. The samples were collected from the main river at Lokoja, and from two main tributaries, the Kaduna and the Benue Rivers. Different water types were distinguished by the concentrations of major ions. The type Ca > Na > Mg > K - HCO3 > SO4 > Cl was represented at all stations during at least part of the year. Chloride was found to dominate the sulphate ion in the Kaduna and Niger, while the Benue maintained a higher concentration of sulphate relative to chloride all year round. Distinct patterns of seasonal variation in the ion concentrations were observed, particularly for the samples collected at Lokoja. Low ion concentrations were prominent during periods of high discharge, while low flow periods coincided with high dissolved ion concentrations. The contribution of rainwater to the total dissolved solids in the river waters was assessed indirectly using rainwater chemistry data from the Gulf of Guinea. The estimated rainwater contribution to the Lower Niger amounts to 5.15 mg 1?1. Geochemical weathering calculations involving reactions of the four major minerals of granitic rocks - anorthite, biotite, albite, and K-feldspar - with carbon dioxide and water, can account for the average water composition of the Lower Niger. The proportion of the ionic components was also related to the occurrence of the respective element in the minerals.  相似文献   

6.
The uranium-series isotope signatures of the suspended and dissolved load of rivers have emerged as an important tool for understanding the processes of erosion and chemical weathering at the scale of a watershed. These signatures are a function of both time and weathering-induced fractionation between the different nuclides. Provided appropriate models can be developed, they can be used to constrain the residence time of river sediment. This chronometer is triggered as the bedrock starts weathering and the inferred timescale encompasses the residence time in the weathering profile, storage in temporary sediment deposits (e.g. floodplain) and transport in the river. This approach has been applied to various catchments over the past five years showing that river sediments can reside in a watershed for timescales ranging from a few hundreds of years (Iceland) to several hundreds of thousands of years (lowlands of the Amazon). Various factors control how long sediment resides in the watershed: the longest residence times are observed on stable cratons unaffected by glacial cycles (or more generally, climate variability) and human disturbance. Shorter residence times are observed in active orogens (Andes) or fast-eroding, recently glaciated catchments (Iceland). In several cases, the residence time of suspended sediments also corresponds to the time since the last major climate change. The U-series isotope composition of rivers can also be used to predict the river sediment yield assuming steady-state erosion is reached. By comparing this estimate with the modern sediment yield obtained by multi-year sediment gauging, it is clear that steady-state is seldom reached. This can be explained by climate variability and/or human disturbance. Steady-state is reached in those catchments where sediment transport is rapid (Iceland) or where the region has been unaffected by climate change and/or human disturbance. U-series are thus becoming an important tool to study the dynamics of erosion.  相似文献   

7.
Two expeditions (October 1989 and May 1992) were carried out to two points of the main Amazon River channel and four tributaries. The Solimões and Madeira rivers, taking their origin in the Andes, are whitewater rivers. The Negro River is a typical acid, blackwater river. The Trombetas River flows through bauxite‐rich areas, and is characterized by low concentrations of dissolved humic substances. The 238U, 234U, 232Th and 230Th activities were recorded from dissolved, suspended particulate phases and river bank sediments. The latter were analysed for their 226Ra, 228Ra and 210Pb contents, and also subjected to leaching with 0·2 M hydroxylamine–hydrochloride solution to determine the concentrations of radionuclides bound to amorphous Fe hydroxides and Mn oxides and hydroxides. The dissolved U average concentration in the Amazon system is ten times lower than the mean world river concentration. The uranium concentration observed at Óbidos in the lower Amazon (0·095 µg L?1), where the U content in the river bank sediments and suspended matter is lowest, suggests U release from the solid phase during river transport. About 485 t of U are transported annually to the Amazon delta area in dissolved form, and 1943 t bound to suspended particulate matter. Total U and Th concentrations in the river bank sediments ranged from 1·59 to 7·14 µg g?1 and from 6·74 to 32 µg g?1, respectively. The highest concentrations were observed in the Trombetas River. The proportion extracted by means of the hydroxylamine solution (HL) was relatively high for U in the Trombetas river bank sediment (31%) and for Th in the Solimões sediment (30%). According to the alpha recoil effects, the 234U/238U activity ratios of the Andean river waters and downstream Amazon water (Óbidos) were >1, but were <1 in the Negro River (at Manaus). The activity ratios of dissolved U correlate with pH and also with the U activity ratios in the river bank sediment hydroxylamine extracts. As expected, the 234U/238U activity ratios in river bank sediments were <1 in the Andean rivers and in the downstream Amazon, but they were >1 in the Trombetas and Negro rivers. Such ratios probably result from the binding of dissolved uranium to solid sediment. The 228Th/232Th ratios of river bank sediments were close to unity (except for the Negro River, where it is lower), suggesting no significant Th exchanges between the river water and the sediment. The 226Ra/232Th activity ratios were <1, and the 226Ra/228Ra activity ratios generally were significantly higher than the activity ratios of their respective parents. This perhaps is the result of easier leaching of the 226Ra parent, 230Th, from solid material (owing to the alpha recoil effect) than of the 228Ra parent. Uranium and thorium isotopes were used as tools to evaluate the chemical weathering rate of rocks in the Amazon system, which was estimated to be 2·7 cm 1000 year?1 s?1. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Detailed knowledge of the flood period of Arctic rivers remains one of the few factors impeding rigorous prediction of the effect of climate change on carbon and related element fluxes from the land to the Arctic Ocean. In order to test the temporal and spatial variability of element concentration in the Ob River (western Siberia) water during flood period and to quantify the contribution of spring flood period to the annual element export, we sampled the main channel year round in 2014–2017 for dissolved C, major, and trace element concentrations. We revealed high stability (approximately ≤10% relative variation) of dissolved C, major, and trace element concentrations in the Ob River during spring flood period over a 1‐km section of the river channel and over 3 days continuous monitoring (3‐hr frequency). We identified two groups of elements with contrasting relationship to discharge: (a) DIC and soluble elements (Cl, SO4, Li, B, Na, Mg, Ca, P, V, Cr, Mn, As, Rb, Sr, Mo, Ba, W, and U) negatively correlated (p < 0.05) with discharge and exhibited minimal concentrations during spring flood and autumn high flow and (b) DOC and particle‐reactive elements (Al, Fe, Ti, Y, Zr, Nb, Cs, REEs, Hf, Tl, Pb, and Th), some nutrients (K), and metalloids (Ge, Sb, and Te), positively correlated (p < 0.05) with discharge and showed the highest concentrations during spring flood. We attribute the decreased concentration of soluble elements with discharge to dilution by groundwater feeding and increased concentration of DOC and particle‐reactive metals with discharge to leaching from surface soil, plant litter, and suspended particles. Overall, the present study provides first‐order assessment of fluxes of major and trace elements in the middle course of the Ob River, reveals their high temporal and spatial stability, and characterizes the mechanism of river water chemical composition acquisition.  相似文献   

9.
Amount and composition of dissolved organic matter (DOM) were evaluated for multiple, nested stream locations in a forested watershed to investigate the role of hydrologic flow paths, wetlands and drainage scale. Sampling was performed over a 4‐year period (2008–2011) for five locations with drainage areas of 0.62, 3.5, 4.5, 12 and 79 ha. Hydrologic flow paths were characterized using an end‐member mixing model. DOM composition was determined using a suite of spectrofluorometric indices and a site‐specific parallel factor analysis model. Dissolved organic carbon (DOC), humic‐like DOM and fluorescence index were most sensitive to changes with drainage scale, whereas dissolved organic nitrogen, specific UV absorbance, Sr and protein‐like DOM were least sensitive. DOM concentrations and humic‐like DOM constituents were highest during both baseflow and stormflow for a 3.5‐ha catchment with a wetland near the catchment outlet. Whereas storm‐event concentrations of DOC and humic DOM constituents declined, the mass exports of DOC increased with increasing catchment scale. A pronounced dilution in storm‐event DOC concentration was observed at peak stream discharge for the 12‐ha drainage location, which was not as apparent at the 79‐ha scale, suggesting key differences in supply and transport of DOM. Our observations indicate that hydrologic flow paths, especially during storms, and the location and extent of wetlands in the catchment are key determinants of DOM concentration and composition. This study furthers our understanding of changes in DOM with drainage scale and the controls on DOM in headwater, forested catchments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Land-use changes and associated river discharges in coastal tropical regions present a global threat to coral reef environments. This study investigated the temporal variation in biological oxygen demand (BOD5) and suspended particulate matter (SPM) at the mouths of seven rivers on Okinawa Island (Japan) over 20 years. We report strong positive relationships between human population densities within river catchment areas and both average BOD5 concentration (r2 = 0.968; p < 0.001) and SPM (r2 = 0.659; p < 0.003) at the mouths of the rivers. At the reef adjacent to one river (Hija River, 50.2 km2 catchment area) we applied moving window analysis to assess an optimal sampling strategy for elucidating transitional boundaries in coral composition from the river mouth to a point where the effect of river discharge was minimal. The optimal window width for Okinawan rivers was five 1 m2 quadrats spaced over 5 m intervals. This sampling strategy clearly showed dissimilarity spikes in coral community composition up to 400 m from the Hija River mouth, beyond which no significant differences in coral composition were detected using analysis of similarities (ANOSIM). We developed a simple diffusion model linking the rivers' maximum discharge rate, and the average concentration of BOD5 and SPM with the spatial impact on the coral communities. The diffusion model can aid in predicting negative shifts in coral communities expected to result from detrimental land-use changes and is an important tool for monitoring coral reefs.  相似文献   

11.
Dissolved major ions, Sr concentrations and 87Sr/86Sr ratios of 10 coastal lakes from the Larsemann Hills, East Antarctica have been studied to constrain their solute sources, transport and glacial weathering patterns in their catchments. In absence of perennial river/streams, lakes serve as only reliable archive to study land surface processes in these low-temperature regions. The lake water chemistry is mostly Na-Cl type and it does not show any significant depth variations. Sr isotope compositions of these lakes vary from 0.7110 to 0.7211 with an average value of 0.7145, which is higher than modern seawater value. In addition to oceanic sources, major ions and Sr isotopic data show appreciable amount of solute supply from chemical weathering of silicate rocks in lake catchments and dissolution of Ca-Mg rich salts produced during the freezing of seawaters. The role of sulphide oxidation and carbonate weathering are found to be minimal on lake hydro-chemistry in this part of Antarctica. Inverse model calculations using this chemical dataset provide first-order estimates of dissolved cations and Sr; they are mostly derived from oceanic (seawater + snow) sources (cations approximately 76%) and (Sr approximately 92%) with minimal supplies from weathering of silicates (cations approximately 15%); (Sr approximately 2%) and Ca-rich minerals (cations approximately 9%); (Sr approximately 7%). The silicate weathering rate and its corresponding atmospheric CO2 consumption rate estimates for Scandrett lake catchment (3.6 ± 0.3 tons/km2/year and 0.5 × 105 moles/km2/year), are lower than that of reported values for the average global river basins (5.4 tons/km2/year and 0.9 × 105 tons/km2/year) respectively. The present study provides a comprehensive report of chemical weathering intensity and its role in atmospheric CO2 consumption in low-temperature pristine environment of Antarctica. These estimates underscore the importance of Antarctica weathering on atmospheric CO2 budget, particularly during the past warmer periods when the large area was exposed and available for intense chemical weathering.  相似文献   

12.
Rivers display temporal dependence in suspended sediment–water discharge relationships. Although most work has focused on multi‐decadal trends, river sediment behavior often displays sub‐decadal scale fluctuations that have received little attention. The objectives of this study were to identify inter‐annual to decadal scale fluctuations in the suspended sediment–discharge relationship of a dry‐summer subtropical river, infer the mechanisms behind these fluctuations, and examine the role of El Niño Southern Oscillation climate cycles. The Salinas River (California) is a moderate sized (11 000 km2), coastal dry‐summer subtropical catchment with a mean discharge (Qmean) of 11.6 m3 s?1. This watershed is located at the northern most extent of the Pacific coastal North America region that experiences increased storm frequency during El Niño years. Event to inter‐annual scale suspended sediment behavior in this system was known to be influenced by antecedent hydrologic conditions, whereby previous hydrologic activity regulates the suspended sediment concentration–water discharge relationship. Fine and sand suspended sediment in the lower Salinas River exhibited persistent, decadal scale periods of positive and negative discharge corrected concentrations. The decadal scale variability in suspended sediment behavior was influenced by inter‐annual to decadal scale fluctuations in hydrologic characteristics, including: elapsed time since small (~0.1 × Qmean), and moderate (~10 × Qmean) threshold discharge values, the number of preceding days that low/no flow occurred, and annual water yield. El Niño climatic activity was found to have little effect on decadal‐scale fluctuations in the fine suspended sediment–discharge relationship due to low or no effect on the frequency of moderate to low discharge magnitudes, annual precipitation, and water yield. However, sand concentrations generally increased in El Niño years due to the increased frequency of moderate to high magnitude discharge events, which generally increase sand supply. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
A method that combines calibration and identifiability analysis of a dynamic water quality model to evaluate the relative importance of various processes affecting the dynamic aspects of water composition is illustrated by a study of the response of suspended sediment and dissolved nutrients to a flood hydrograph in a rural catchment area in the Netherlands. Since the water quality model simulates the observed concentrations of suspended sediment and dissolved nutrients reasonably well, the most important processes during the observed flood hydrograph could be determined. These were erosion, exchange between dissolved phase and bed sediments and denitrification. It is concluded that the method is very useful for identifying the most significant model parameters and processes that are essential for water quality modelling. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
The dynamics of dissolved and particulate N, P and organic C were examined for field drains, through a headwater (4 km2), into a mesoscale stream (51 km2) and river (1844 km2) catchment. Distributions of N and P forms were similar in the agricultural headwater and field drains; annual P fluxes of particulate and dissolved forms were of equal magnitude, whilst N was dominated by NO3–N. Across all scales organic P was an important, often dominant, component of the dissolved P. Temporal variation in nutrient concentrations and proportions was greatest in the headwater, where storms resulted in the generation of large concentrations of suspended particulate matter, particulate and dissolved P, particularly following dry periods. The data suggest that groundwater and minor point source inputs to the mesoscale catchment buffered the temporal variability in hydrochemistry relative to the headwater. Summer low flows were associated with large PO4–P concentrations in the mesoscale catchment at a critical time of biological sensitivity. At the largest river catchment scale, organic forms of C, N and P dominated. Inorganic nutrient concentrations were kept small through dilution by runoff from upland areas and biological processes converted dissolved N and P to particulate forms. The different processes operating between the drain/headwater to the large river scale have implications for river basin management. Given the prevalence of organic and particulate P forms in our catchment transect, the bioavailability of these fractions needs to be better understood.  相似文献   

15.
The concentration and isotopic composition of nitrate were analyzed to improve an understanding of nitrate sources and transformation processes in a typical karstic agricultural field in the Houzhai catchment, Guizhou Province, Southwest China. The results revealed that no distinct spatial pattern of content and isotopic composition of nitrate exists in this karst catchment. Nitrate in surface stream (SFS) had slightly lighter isotopic composition and lower concentration compared with nitrate in subterranean stream (STS) during the dry season. Concentrations of SFS nitrate increased to concentrations similar to those of STS during the wet season. The isotopic values indicated that nitrate were mainly impacted by manure sources during the dry season and influenced by a mix of chemical fertilizer and manure during the wet season. The denitrification rates were roughly estimated based on the isotopic compositions of nitrate after considering volatilization and ignoring assimilation. The calculated result showed that approximately one fifth of nitrate load was removed by denitrification in the catchment. Annual nitrate flux from the outlets accounted for 14.2% of applied total fertilizers used in the catchment, approximately 85% of total transported flux from the catchment in the wet season. Furthermore, chemical weathering processes were enhanced by using nitrogen fertilizer because liberated protons and enhanced HCO3? flux were produced through by nitrification. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
This study presents uranium and thorium concentrations and activity ratios for all riverine phases (bedload, suspended load, dissolved load and colloids) from basaltic terrains in Iceland and the Azores. Small basaltic islands, such as these, are thought to account for ~ 25% of CO2 consumed by global silicate weathering, and for ~ 45% of the flux of suspended material to the oceans. These data indicate that [U] and [Th] in the dissolved and colloidal fractions are strongly controlled by pH, and to a much lesser extent by levels of dissolved organic carbon (which are low in these environments). At high pH, basalt glass dissolution is enhanced, and secondary mineral formation (e.g. Fe-oxyhydroxides and allophane) is suppressed, resulting in high dissolved [U], and low colloidal [U] and [Th], indicating a direct chemical weathering control on elemental abundances. When the dissolved (234U/238U) activity ratio is >~1.3 (i.e. when physical weathering, groundwater contribution or soil formation are high), there is little isotope exchange between dissolved and colloidal fractions. At lower activity ratios, the dissolved load and colloids have indistinguishable activity ratios, suggesting that when chemical weathering rates are high, secondary clay formation is also high, and colloids rapidly adsorb dissolved U. Many of the suspended sediment samples have (234U/238U) activity ratios of > 1, which suggests that uptake of U onto the suspended load is important. Identical (230Th/232Th) in suspended, dissolved and colloidal samples suggests that Th, like U, is exchanged or sorbed rapidly between all riverine phases. This particle-reactivity, combined with poorly constrained contributions from groundwater and hydrothermal water, and short-term variations in input to soils (volcanic and glacial), suggests that U-series nuclides in riverine material from such basaltic terrains are unlikely to reflect steady state erosion processes.  相似文献   

17.
Solute and runoff fluxes from two adjacent alpine streams (one glacial and one non‐glacial) were investigated to determine how the inorganic solute chemistry of runoff responded to seasonal and interannual changes in runoff sources and volume, and to differences in physical catchment properties. Intercatchment differences in solute composition were primarily controlled by differences in catchment geology and the presence of soils, whereas differences in total solute fluxes were largely dependent on specific discharge. The glacial stream catchment had higher chemical denudation rates due to the high rates of flushing (higher specific discharge). The non‐glacial Bow River had higher overall concentrations of solutes despite the greater prevalence of more resistant lithologies in this catchment. This is likely the result of both longer average water–rock contact times, and a greater supply of protons from organic soils and/or pyrite oxidation. Increases in snowpack depth/snowmelt runoff reduced the retention of nitrate in the Bow River catchment (i.e. increased nitrate export), probably by reducing net biological uptake, or by reducing the proportion of runoff that had contact with biologically active soil horizons that tend to remove nitrate. The two streams exhibited opposite solute flux responses to climate perturbations over three melt seasons (1998, 1999, and 2000). The 1998 El Niño event resulted in an unusually thin winter snowpack, and increased runoff and solute fluxes from the glacial catchment, but decreased fluxes from the Bow River catchment. Solute fluxes in the Bow River increased proportionally to discharge, indicating that increased snowmelt runoff in this catchment resulted in a proportional increase in weathering rates. In contrast, the proportional variation in solute flux in the glacial stream was only ∼70–80% of the variation in water flux. This suggests that increased ablation of glacier ice and the development of subglacial channels during the 1998 El Niño year apparently reduced the average water–rock contact time in the glacial catchment relative to seasons when the subglacial drainage system was primarily distributed in character. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Springs are the point of origin for most headwater streams and are important regulators of their chemical composition. We analysed solute concentrations of water emerging from 57 springs within the 3 km2 Fool Creek catchment at the Fraser Experimental Forest and considered sources of spatial variation among them and their influence on the chemical composition of downstream water. On average, calcium and acid neutralizing capacity (bicarbonate-ANC) comprised 50 and 90% of the cation and anion charge respectively, in both spring and stream water. Variation in inorganic chemical composition among springs reflected distinct groundwater sources and catchment geology. Springs emerging through glacial deposits in the upper portion of the catchment were the most dilute and similar to snowmelt, whereas lower elevation springs were more concentrated in cations and ANC. Water emerging from a handful of springs in a geologically faulted portion of the catchment were more concentrated than all others and had a predominant effect on downstream ion concentrations. Chemical similarity indicated that these springs were linked along surface and subsurface flowpaths. This survey shows that springwater chemistry is influenced at nested spatial scales including broad geologic conditions, elevational and spatial attributes and isolated local features. Our results highlight the role of overlapping factors on solute export from headwater catchments.  相似文献   

19.
Waterborne carbon (C) export from terrestrial ecosystems is a potentially important flux for the net catchment C balance and links the biogeochemical C cycling of terrestrial ecosystems to their downstream aquatic ecosystems. We have monitored hydrology and stream chemistry over 3 years in ten nested catchments (0.6–15.1 km2) with variable peatland cover (0%–22%) and groundwater influence in subarctic Sweden. Total waterborne C export, including dissolved and particulate organic carbon (DOC and POC) and dissolved inorganic carbon (DIC), ranged between 2.8 and 7.3 g m–2 year–1, representing ~10%–30% of catchment net ecosystem exchange of CO2. Several characteristics of catchment waterborne C export were affected by interacting effects of peatland cover and groundwater influence, including magnitude and timing, partitioning into DOC, POC, and DIC and chemical composition of the exported DOC. Waterborne C export was greater during the wetter years, equivalent to an average change in export of ~2 g m–2 year–1 per 100 mm of precipitation. Wetter years led to a greater relative increase in DIC export than DOC export due to an inferred relative shift in dominance from shallow organic flow pathways to groundwater sources. Indices of DOC composition (SUVA254 and a250/a365) indicated that DOC aromaticity and average molecular weight increased with catchment peatland cover and decreased with increased groundwater influence. Our results provide examples on how waterborne C export and DOC composition might be affected by climate change. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号