首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《大气与海洋》2013,51(2):81-92
Abstract

Evidence based on numerical simulations is presented for a strong correlation between the North Atlantic Oscillation (NAO) and the North Atlantic overturning circulation. Using an ensemble of numerical experiments with a coupled ocean‐atmosphere model including both natural and anthropogenic forcings, it is shown that the weakening of the thermohaline circulation (THC) could be delayed in response to a sustained upward trend in the NAO, which was observed over the last three decades of the twentieth century, 1970–99. Overall warming and enhanced horizontal transports of heat from the tropics to the subpolar North Atlantic overwhelm the NAO‐induced cooling of the upper ocean layers due to enhanced fluxes of latent and sensible heat, so that the net effect of warmed surface ocean temperatures acts to increase the vertical stability of the ocean column. However, the strong westerly winds cause increased evaporation from the ocean surface, which leads to a reduced fresh water flux over the western part of the North Atlantic. Horizontal poleward transport of salinity anomalies from the tropical Atlantic is the major contributor to the increasing salinities in the sinking regions of the North Atlantic. The effect of positive salinity anomalies on surface ocean density overrides the opposing effect of enhanced warming of the ocean surface, which causes an increase in surface density in the Labrador Sea and in the ocean area south of Greenland. The increased density of the upper ocean layer leads to deeper convection in the Labrador Sea and in the western North Atlantic. With a lag of four years, the meridional overturning circulation of the North Atlantic shows strengthening as it adjusts to positive density anomalies and enhanced vertical mixing. During the positive NAO trend, the salinity‐driven density instability in the upper ocean, due to both increased northward ocean transports of salinity and decreased atmospheric freshwater fluxes, results in a strengthening overturning circulation in the North Atlantic when the surface atmospheric temperature increases by 0.3°C and the ocean surface temperature warms by 0.5° to 1°C.  相似文献   

2.
 The long-term adjustment processes of atmosphere and ocean in response to gradually increased atmospheric CO2 concentration have been analysed in two 850-year integrations with a coupled atmosphere-ocean general circulation model (AOGCM). In these experiments the CO2 concentration has been increased to double and four times the initial concentration, respectively, and is kept fixed thereafter. Three characteristic time scales have been identified: a very fast response associated with processes dominated by the atmospheric adjustment, an intermediate time scale of a few decades connected with processes in the upper ocean, and adjustment processes with time scales of centuries and longer due to the inertia of the deep ocean. The latter in particular is responsible for a still ongoing adjustment of the atmosphere-ocean system at the end of the integrations after 850 years. After 60 years, at the time of CO2 doubling, the global mean near-surface air temperature rises by 1.4 K. In spite of the constant CO2 concentration during the following centuries the warming continues to 2.6 K after 850 years. The behaviour of the quadrupling run is similar: global mean near-surface air temperature increases by 3.8 K at the time of CO2 quadrupling and by 4.8 K at the end of the simulation. The thermohaline circulation undergoes remarkable changes. Temporarily, the North Atlantic overturning circulation weakens by up to 30% in the CO2 doubling experiment and up to 50% in the CO2 quadrupling experiment. After reaching the minimum the North Atlantic overturning slowly recovers in both experiments. Received: 23 August 1999 / Accepted: 27 April 2000  相似文献   

3.
Most state-of-the art global coupled models simulate a weakening of the Atlantic meridional overturning circulation (MOC) in climate change scenarios but the mechanisms leading to this weakening are still being debated. The third version of the CNRM (Centre National de Recherches Météorologiques) global atmosphere-ocean-sea ice coupled model (CNRM-CM3) was used to conduct climate change experiments for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4). The analysis of the A1B scenario experiment shows that global warming leads to a slowdown of North Atlantic deep ocean convection and thermohaline circulation south of Iceland. This slowdown is triggered by a freshening of the Arctic Ocean and an increase in freshwater outflow through Fram Strait. Sea ice melting in the Barents Sea induces a local amplification of the surface warming, which enhances the cyclonic atmospheric circulation around Spitzberg. This anti-clockwise circulation forces an increase in Fram Strait outflow and a simultaneous increase in ocean transport of warm waters toward the Barents Sea, favouring further sea ice melting and surface warming in the Barents Sea. Additionally, the retreat of sea ice allows more deep water formation north of Iceland and the thermohaline circulation strengthens there. The transport of warm and saline waters toward the Barents Sea is further enhanced, which constitutes a second positive feedback.  相似文献   

4.
The uptake and storage of anthropogenic carbon in the North Atlantic is investigated using different configurations of ocean general circulation/carbon cycle models. We investigate how different representations of the ocean physics in the models, which represent the range of models currently in use, affect the evolution of CO2 uptake in the North Atlantic. The buffer effect of the ocean carbon system would be expected to reduce ocean CO2 uptake as the ocean absorbs increasing amounts of CO2. We find that the strength of the buffer effect is very dependent on the model ocean state, as it affects both the magnitude and timing of the changes in uptake. The timescale over which uptake of CO2 in the North Atlantic drops to below preindustrial levels is particularly sensitive to the ocean state which sets the degree of buffering; it is less sensitive to the choice of atmospheric CO2 forcing scenario. Neglecting physical climate change effects, North Atlantic CO2 uptake drops below preindustrial levels between 50 and 300 years after stabilisation of atmospheric CO2 in different model configurations. Storage of anthropogenic carbon in the North Atlantic varies much less among the different model configurations, as differences in ocean transport of dissolved inorganic carbon and uptake of CO2 compensate each other. This supports the idea that measured inventories of anthropogenic carbon in the real ocean cannot be used to constrain the surface uptake. Including physical climate change effects reduces anthropogenic CO2 uptake and storage in the North Atlantic further, due to the combined effects of surface warming, increased freshwater input, and a slowdown of the meridional overturning circulation. The timescale over which North Atlantic CO2 uptake drops to below preindustrial levels is reduced by about one-third, leading to an estimate of this timescale for the real world of about 50 years after the stabilisation of atmospheric CO2. In the climate change experiment, a shallowing of the mixed layer depths in the North Atlantic results in a significant reduction in primary production, reducing the potential role for biology in drawing down anthropogenic CO2.  相似文献   

5.
 The stability of the Atlantic thermohaline circulation against meltwater input is investigated in a coupled ocean-atmosphere general circulation model. The meltwater input to the Labrador Sea is increased linearly for 250 years to a maximum input of 0.625 Sv and then reduced again to 0 (both instantaneously and linearly decreasing over 250 years). The resulting freshening forces a shutdown of the formation of North Atlantic deepwater and a subsequent reversal of the thermohaline circulation of the Atlantic, filling the deep Atlantic with Antarctic bottom water. The change in the overturning pattern causes a drastic reduction of the Atlantic northward heat transport, resulting in a strong cooling with maximum amplitude over the northern North Atlantic and a southward shift of the sea-ice margin in the Atlantic. Due to the increased meridional temperature gradient, the intertropical convergence zone over the Atlantic is displaced southward and the westerlies in the Northern Hemisphere gain strength. We identify four main feedbacks affecting the stability of the thermohaline circulation: the change in the overturning circulation of the Atlantic leads to longer residence times of the surface water in high-northern latitudes, which allows them to accumulate more precipitation and runoff from the continents. As a consequence the stratification in the North Atlantic becomes more stable. This effect is further amplified by an enhanced northward atmospheric water vapour transport, which increases the freshwater input into the North Atlantic. The reduced northward oceanic heat transport leads to colder sea-surface temperatures and an intensification of the atmospheric cyclonic circulation over the Norwegian Sea. The associated Ekman transports cause increased upwelling and increased freshwater export with the East Greenland Current. Both the cooling and the wind-driven circulation changes largely compensate for the effects of the first two feedbacks. The wind-stress feedback destabilizes modes without deep water formation in the North Atlantic, but has been neglected in almost all studies so far. After the meltwater input stops, the North Atlantic deepwater formation resumed in all experiments and the meridional overturning returned within 200 years to a conveyor belt pattern. This happened although the formation of North Atlantic deep water was suppressed in one experiment for more than 300 years and the Atlantic overturning had settled into a circulation pattern with Antarctic bottom water as the only source of deep water. It is a clear indication that cooling and wind-stress feedback are more effective, at least in our model, than advection feedback and increased atmospheric water vapour transport. We conclude that the conveyor belt-type thermohaline circulation seems to be much more stable than hitherto assumed from experiments with simpler models. Received 31 January 1996/Accepted 22 August 1996  相似文献   

6.
We discuss the potential variations of the biological pump that can be expected from a change in the oceanic circulation in the ongoing global warming. The biogeochemical model is based on the assumption of a perfect stoichiometric composition (Redfield ratios) of organic material. Upwelling nutrients are transformed into organic particles that sink to the deep ocean according to observed profiles. The physical circulation model is driven by the warming pattern as derived from scenario computations of a fully coupled ocean-atmosphere model. The amplitude of the warming is determined from the varying concentration of atmospheric CO2. The model predicts a pronounced weakening of the thermohaline overturning. This is connected with a reduction of the transient uptake capacity of the ocean. It yields also a more effective removal of organic material from the surface which partly compensates the physical effects of solubility. Both effects are rather marginal for the evolution of atmospheric pCO2. Running climate models and carbon cycle models separately seems to be justified. Received: 9 August 1995 / Accepted: 22 April 1996  相似文献   

7.
A new complex earth system model consisting of an atmospheric general circulation model, an ocean general circulation model, a three-dimensional ice sheet model, a marine biogeochemistry model, and a dynamic vegetation model was used to study the long-term response to anthropogenic carbon emissions. The prescribed emissions follow estimates of past emissions for the period 1751–2000 and standard IPCC emission scenarios up to the year 2100. After 2100, an exponential decrease of the emissions was assumed. For each of the scenarios, a small ensemble of simulations was carried out. The North Atlantic overturning collapsed in the high emission scenario (A2) simulations. In the low emission scenario (B1), only a temporary weakening of the deep water formation in the North Atlantic is predicted. The moderate emission scenario (A1B) brings the system close to its bifurcation point, with three out of five runs leading to a collapsed North Atlantic overturning circulation. The atmospheric moisture transport predominantly contributes to the collapse of the deep water formation. In the simulations with collapsed deep water formation in the North Atlantic a substantial cooling over parts of the North Atlantic is simulated. Anthropogenic climate change substantially reduces the ability of land and ocean to sequester anthropogenic carbon. The simulated effect of a collapse of the deep water formation in the North Atlantic on the atmospheric CO2 concentration turned out to be relatively small. The volume of the Greenland ice sheet is reduced, but its contribution to global mean sea level is almost counterbalanced by the growth of the Antarctic ice sheet due to enhanced snowfall. The modifications of the high latitude freshwater input due to the simulated changes in mass balance of the ice sheet are one order of magnitude smaller than the changes due to atmospheric moisture transport. After the year 3000, the global mean surface temperature is predicted to be almost constant due to the compensating effects of decreasing atmospheric CO2 concentrations due to oceanic uptake and delayed response to increasing atmospheric CO2 concentrations before.  相似文献   

8.
We have undertaken a comparative study of the mechanisms which drive the response of the Atlantic thermohaline circulation (THC) to a fourfold increase in CO2 over 70 years with stabilisation thereafter in HadCM2 and HadCM3. In both models, the THC changes are driven by surface flux forcing, with advection (and diffusion in HadCM2) acting in the opposite sense to limit the circulation change. In both cases, heat fluxes are more important than those of freshwater. We find that different patterns of heat flux forcing in HadCM2 and HadCM3 are the prime determinants of the differing response in the two models. The increased northerly component to the near surface winds (associated with an increase in reflective low level cloud), leads to enhanced heat loss in the west-central North Atlantic, which in turn tends to steepen the steric gradient and strengthen the THC. By contrast, in HadCM3 the winds become more westerly rather than northerly, there is no dynamically-forced enhancement of surface heat loss, and the heat flux in the North Atlantic continues to be strongly positive, relative to the control, leading to a reduction in the meridional steric gradient, and a weaker overturning circulation. Differences in atmospheric response patterns appear to be caused by improvements to atmospheric and land surface physics, and suggest that the THC response in HadCM2 is less credible than in HadCM3.  相似文献   

9.
A three-dimensional ocean model with an idealized geometry and coarse resolution coupled to a two-dimensional (zonally averaged) statistical-dynamical atmospheric model is used to simulate the response of the thermohaline circulation to increasing CO 2 concentration in the atmosphere. The relative roles of different factors in the slowing down and recovery of the thermohaline circulation were studied by performing simulations with ocean only and partially coupled models. The computational efficiency of the model allows an extensive and thorough study of the causes of changes in the strength of the thermohaline circulation, through a large number of extended runs. The evolution of the atmosphere-to-ocean surface heat fluxes is shown to be the dominant factor in causing the weakening of the circulation in response to an increasing external forcing as well as in controlling the subsequent recovery. The feedback between heat flux and the sea surface temperature is necessary for the ocean circulation to recover. The rate of the recovery, however, is not sensitive to the magnitude of the feedback, and changes in the atmosphere, while contributing to the recovery, play a secondary role. In the case of very strong feedback, substantial changes in the SST structure are shown not to be a necessary condition for the recovery of the circulation. Subsurface changes in the density structure accompany recovery despite nearly fixed SST in one of the uncoupled experiments. Changes in the zonal distribution of heat fluxes serve as a positive feedback for both decrease and recovery of the meridional overturning, and are as important as changes in the zonal-mean values of heat fluxes. The secondary role of the moisture fluxes is explained by a smaller magnitude of their contribution to the surface buoyancy flux. Imposing amplified changes in the moisture fluxes leads to a significant slow down of the circulation, accompanied, however, by changes in the heat flux. The changed heat flux, in its turn, makes a significant contribution to the future slow down. This feedback complicates the evaluation of the relative roles of the different fluxes.  相似文献   

10.
Climate fluctuations in the North Atlantic Ocean have wide-spread implications for Europe, Africa, and the Americas. This study assesses the relative contribution of the long-term trend and variability of North Atlantic warming using EOF analysis of deep-ocean and near-surface observations. Our analysis demonstrates that the recent warming over the North Atlantic is linked to both long-term (including anthropogenic and natural) climate change and multidecadal variability (MDV, ~50–80 years). Our results suggest a general warming trend of 0.031 ± 0.006°C/decade in the upper 2,000 m North Atlantic over the last 80 years of the twentieth century, although during this time there are periods in which short-term trends were strongly amplified by MDV. For example, MDV accounts for ~60% of North Atlantic warming since 1970. The single-sign basin-scale pattern of MDV with prolonged periods of warming (cooling) in the upper ocean layer and opposite tendency in the lower layer is evident from observations. This pattern is associated with a slowdown (enhancement) of the North Atlantic thermohaline overturning circulation during negative (positive) MDV phases. In contrast, the long-term trend exhibits warming in tropical and mid-latitude North Atlantic and a pattern of cooling in regions associated with major northward heat transports, consistent with a slowdown of the North Atlantic circulation as evident from observations and confirmed by selected modeling results. This localized cooling has been masked in recent decades by warming during the positive phase of MDV. Finally, since the North Atlantic Ocean plays a crucial role in establishing and regulating the global thermohaline circulation, the multidecadal fluctuations discussed here should be considered when assessing long-term climate change and variability, both in the North Atlantic and at global scales.  相似文献   

11.
S. J. Kim 《Climate Dynamics》2004,22(6-7):639-651
The role of reduced atmospheric CO2 concentration and ice sheet topography plus its associated land albedo on the LGM climate is investigated using a coupled atmosphere-ocean-sea ice climate system model. The surface cooling induced by the reduced CO2 concentration is larger than that by the ice sheet topography plus other factors by about 30% for the surface air temperature and by about 100% for the sea surface temperature. A large inter-hemispheric asymmetry in surface cooling with a larger cooling in the Northern Hemisphere is found for both cases. This asymmetric inter-hemispheric temperature response is consistent in the ice sheet topography case with earlier studies using an atmospheric model coupled with a mixed-layer ocean representation, but contrasts with these results in the reduced CO2 case. The incorporation of ocean dynamics presumably leads to a larger snow and sea ice feedback as a result of the reduction in northward ocean heat transport, mainly as a consequence of the decrease in the North Atlantic overturning circulation by the substantial freshening of the North Atlantic convection regions. A reversed case is found in the Southern Ocean. Overall, the reduction in atmospheric CO2 concentration accounts for about 60% of the total LGM climate change.  相似文献   

12.
An ocean general circulation model coupled to an energy-moisture balance atmosphere model is used to investigate the sensitivity of global warming experiments to the parametrisation of sub-grid scale ocean mixing. The climate sensitivity of the coupled model using three different parametrisations of sub-grid scale mixing is 3°C for a doubling of CO2 (6°C for a quadrupling of CO2). This suggests that the ocean has only a weak feedback on global mean surface air temperature although significant regional differences, notably at high latitudes, exist with different sub-grid scale parametrisations. In the experiment using the Gent and McWilliams parametrisation for mixing associated with mesoscale eddies, an enhancement of the surface response in the Southern Ocean is found. This enhancement is largely due to the existence of more realistic sea-ice in the climatological control integration and the subsequent enhanced ice-albedo feedback upon warming. In accordance with earlier analyses, the Gent and McWilliams scheme decreases the global efficiency of ocean heat uptake. During the transient phase of all experiments, the North Atlantic overturning initially weakened but ultimately recovered, surpassing its former strength. This suggests that in the region around the North Atlantic the ocean acts as a negative feedback on local warming during the transient phase but a positive feedback at equilibrium. During the transient phase of the experiments with a more sophisticated and realistic parametrisation of sub-grid scale mixing, warmed Atlantic water was found to penetrate at depth into the Arctic, consistent with recent observations in the region. Received: 14 October 1998 / Accepted: 27 April 1999  相似文献   

13.
We have used the Grid ENabled Integrated Earth system modelling (GENIE) framework to undertake a systematic search for bi-stability of the ocean thermohaline circulation (THC) for different surface grids and resolutions of 3-D ocean (GOLDSTEIN) under a 3-D dynamical atmosphere model (IGCM). A total of 407,000 years were simulated over a three month period using Grid computing. We find bi-stability of the THC despite significant, quasi-periodic variability in its strength driven by variability in the dynamical atmosphere. The position and width of the hysteresis loop depends on the choice of surface grid (longitude-latitude or equal area), but is less sensitive to changes in ocean resolution. For the same ocean resolution, the region of bi-stability is broader with the IGCM than with a simple energy-moisture balance atmosphere model (EMBM). Feedbacks involving both ocean and atmospheric dynamics are found to promote THC bi-stability. THC switch-off leads to increased import of freshwater at the southern boundary of the Atlantic associated with meridional overturning circulation. This is counteracted by decreased freshwater import associated with gyre and diffusive transports. However, these are localised such that the density gradient between North and South is reduced tending to maintain the THC off state. THC switch-off can also generate net atmospheric freshwater input to the Atlantic that tends to maintain the off state. The ocean feedbacks are present in all resolutions, across most of the bi-stable region, whereas the atmosphere feedback is strongest in the longitude–latitude grid and around the transition where the THC off state is disappearing. Here the net oceanic freshwater import due to the overturning mode weakens, promoting THC switch-on, but the atmosphere counteracts this by increasing net freshwater input. This increases the extent of THC bi-stability in this version of the model. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
 A set of sensitivity experiments with the climate system model of intermediate complexity CLIMBER-2 was performed to compare its sensitivity to changes in different types of forcings and boundary conditions with the results of comprehensive models (GCMs). We investigated the climate system response to changes in freshwater flux into the Northern Atlantic, CO2 concentration, solar insolation, and vegetation cover in the boreal zone and in the tropics. All these experiments were compared with the results of corresponding experiments performed with different GCMs. Qualitative, and in many respects, quantitative agreement between the results of CLIMBER-2 and GCMs demonstrate the ability of our climate system model of intermediate complexity to address diverse aspects of the climate change problem. In addition, we used our model for a series of experiments to assess the impact of some climate feedbacks and uncertainties in model parameters on the model sensitivity to different forcings. We studied the role of freshwater feedback and vertical ocean diffusivity for the stability properties of the thermohaline ocean circulation. We show that freshwater feedback plays a minor role, while changes of vertical diffusivity in the ocean considerably affect the circulation stability. In global warming experiments we analysed the impact of hydrological sensitivity and vertical diffusivity on the long-term evolution of the thermohaline circulation. In the boreal and tropical deforestation experiments we assessed the role of an interactive ocean and showed that for both types of deforestation scenarios, an interactive ocean leads to an additional cooling due to albedo and water vapour feedbacks. Received: 28 May 2000 / Accepted: 9 November 2000  相似文献   

15.
 To understand the influence of the Bering Strait on the World Ocean’s circulation, a model sensitivity analysis is conducted. The numerical experiments are carried out with a global, coupled ice–ocean model. The water transport through the Bering Strait is parametrized according to the geostrophic control theory. The model is driven by surface fluxes derived from bulk formulae assuming a prescribed atmospheric seasonal cycle. In addition, a weak restoring to observed surface salinities is applied to compensate for the global imbalance of the imposed surface freshwater fluxes. The freshwater flux from the North Pacific to the North Atlantic associated with the Bering Strait throughflow seems to be an important element in the freshwater budget of the Greenland and Norwegian seas and of the Atlantic. This flux induces a freshening of the North Atlantic surface waters, which reduces the convective activity and leads to a noticeable (6%) weakening of the thermohaline conveyor belt. It is argued that the contrasting results obtained by Reason and Power are due to the type of surface boundary conditions they used. Received: 27 October 1995/Accepted: 20 November 1996  相似文献   

16.
 The Younger Dryas (YD, dated between 12.7–11.6 ky BP in the GRIP ice core, Central Greenland) is a distinct cold period in the North Atlantic region during the last deglaciation. A popular, but controversial hypothesis to explain the cooling is a reduction of the Atlantic thermohaline circulation (THC) and associated northward heat flux as triggered by glacial meltwater. Recently, a CH4-based synchronization of GRIP δ18O and Byrd CO2 records (West Antarctica) indicated that the concentration of atmospheric CO2 (COatm 2) rose steadily during the YD, suggesting a minor influence of the THC on COatm 2 at that time. Here we show that the COatm 2 change in a zonally averaged, circulation-biogeochemistry ocean model when THC is collapsed by freshwater flux anomaly is consistent with the Byrd record. Cooling in the North Atlantic has a small effect on COatm 2 in this model, because it is spatially limited and compensated by far-field changes such as a warming in the Southern Ocean. The modelled Southern Ocean warming is in agreement with the anti-phase evolution of isotopic temperature records from GRIP (Northern Hemisphere) and from Byrd and Vostok (East Antarctica) during the YD. δ13C depletion and PO4 enrichment are predicted at depth in the North Atlantic, but not in the Southern Ocean. This could explain a part of the controversy about the intensity of the THC during the YD. Potential weaknesses in our interpretation of the Byrd CO2 record in terms of THC changes are discussed. Received: 27 May 1998 / Accepted: 5 November 1998  相似文献   

17.
A version of the National Center for Atmospheric Research community climate model — a global, spectral (R15) general circulation model — is coupled to a coarse-grid (5° latitude-] longitude, four-layer) ocean general circulation model to study the response of the climate system to increases of atmospheric carbon dioxide (CO2). Three simulations are run: one with an instantaneous doubling of atmospheric CO2 (from 330 to 660 ppm), another with the CO2 concentration starting at 330 ppm and increasing linearly at a rate of 1% per year, and a third with CO2 held constant at 330 pm. Results at the end of 30 years of simulation indicate a globally averaged surface air temperature increase of 1.6° C for the instantaneous doubling case and 0.7°C for the transient forcing case. Inherent characteristics of the coarse-grid ocean model flow sea-surface temperatures (SSTs) in the tropics and higher-than-observed SSTs and reduced sea-ice extent at higher latitudes] produce lower sensitivity in this model after 30 years than in earlier simulations with the same atmosphere coupled to a 50-m, slab-ocean mixed layer. Within the limitations of the simulated meridional overturning, the thermohaline circulation weakens in the coupled model with doubled CO2 as the high-latitude ocean-surface layer warms and freshens and westerly wind stress is decreased. In the transient forcing case with slowly increasing CO2 (30% increase after 30 years), the zonal mean warming of the ocean is most evident in the surface layer near 30°–50° S. Geographical plots of surface air temperature change in the transient case show patterns of regional climate anomalies that differ from those in the instantaneous CO2 doubling case, particularly in the North Atlantic and northern European regions. This suggests that differences in CO2 forcing in the climate system are important in CO2 response in regard to time-dependent climate anomaly regimes. This confirms earlier studies with simple climate models that instantaneous CO2 doubling simulations may not be analogous in all respects to simulations with slowly increasing CO2.A portion of this study is supported by the US Department of Energy as part of its Carbon Dioxide Research Program  相似文献   

18.
A box model of the inter-hemispheric Atlantic meridional overturning circulation is developed, including a variable pycnocline depth for the tropical and subtropical regions. The circulation is forced by winds over a periodic channel in the south and by freshwater forcing at the surface. The model is aimed at investigating the ocean feedbacks related to perturbations in freshwater forcing from the atmosphere, and to changes in freshwater transport in the ocean. These feedbacks are closely connected with the stability properties of the meridional overturning circulation, in particular in response to freshwater perturbations. A separate box is used for representing the region north of the Antarctic circumpolar current in the Atlantic sector. The density difference between this region and the north of the basin is then used for scaling the downwelling in the north. These choices are essential for reproducing the sensitivity of the meridional overturning circulation observed in general circulation models, and therefore suggest that the southernmost part of the Atlantic Ocean north of the Drake Passage is of fundamental importance for the stability of the meridional overturning circulation. With this configuration, the magnitude of the freshwater transport by the southern subtropical gyre strongly affects the response of the meridional overturning circulation to external forcing. The role of the freshwater transport by the overturning circulation (M ov ) as a stability indicator is discussed. It is investigated under which conditions its sign at the latitude of the southern tip of Africa can provide information on the existence of a second, permanently shut down, state of the overturning circulation in the box model. M ov will be an adequate indicator of the existence of multiple equilibria only if salt-advection feedback dominates over other processes in determining the response of the circulation to freshwater anomalies. M ov is a perfect indicator if feedbacks other than salt-advection are negligible.  相似文献   

19.
The response of a two-dimensional thermohaline ocean circulation model to a random freshwater flux superimposed on the usual mixed boundary conditions for temperature and salinity is considered. It is shown that for a wide range of vertical and horizontal diffusivities and a box geometry that approximates the Atlantic Ocean, 200–300 yr period oscillations exist in the basic-state, interhemispheric meridional overturning circulation with deep convection in the north. These fluctuations can also be described in terms of propagating salinity anomalies which travel in the direction of the thermohaline flow. For large horizontal (K h = 15 × 103 m2/s) and small vertical (K v = 0.5 × 10–4 m2/s) diffusivities, the random forcing also excites deca-millennial oscillations in the basic structure of the thermohaline circulation. In this case, the meridional circulation pattern slowly oscillates between three different stages: a large positive cell, with deep convection in the North Atlantic and upwelling in the south; a symmetric two-cell circulation, with deep convection in both polar regions and upwelling near the equator; and a large negative cell, with deep convection in the South Atlantic and upwelling in the north. Each state can persist for 0 (10 kyr).  相似文献   

20.
The effect of idealized wind-driven circulation changes in the Southern Ocean on atmospheric CO2 and the ocean carbon inventory is investigated using a suite of coarse-resolution, global coupled ocean circulation and biogeochemistry experiments with parameterized eddy activity and only modest changes in surface buoyancy forcing, each experiment integrated for 5,000 years. A positive correlation is obtained between the meridional overturning or residual circulation in the Southern Ocean and atmospheric CO2: stronger or northward-shifted westerly winds in the Southern Hemisphere result in increased residual circulation, greater upwelling of carbon-rich deep waters and oceanic outgassing, which increases atmospheric pCO2 by ~20 μatm; weaker or southward-shifted winds lead to the opposing result. The ocean carbon inventory in our model varies through contrasting changes in the saturated, disequilibrium and biogenic (soft-tissue and carbonate) reservoirs, each varying by O(10–100) PgC, all of which contribute to the net anomaly in atmospheric CO2. Increased residual overturning deepens the global pycnocline, warming the upper ocean and decreasing the saturated carbon reservoir. Increased upwelling of carbon- and nutrient-rich deep waters and inefficient biological activity results in subduction of unutilized nutrients into the ocean interior, decreasing the biogenic carbon reservoir of intermediate and mode waters ventilating the Northern Hemisphere, and making the disequilibrium carbon reservoir more positive in the mode waters due to the reduced residence time at the surface. Wind-induced changes in the model carbon inventory are dominated by the response of the global pycnocline, although there is an additional abyssal response when the peak westerly winds change their latitude, altering their proximity to Drake Passage and changing the depth extent of the southward return flow of the overturning: a northward shift of the westerly winds isolates dense isopycnals, allowing biogenic carbon to accumulate in the deep ocean of the Southern Hemisphere, while a southward shift shoals dense isopycnals that outcrop in the Southern Ocean and reduces the biogenic carbon store in the deep ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号