首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
杭州湾锋区浮游植物现存量和初级生产力   总被引:6,自引:0,他引:6  
1987年12月和1988年7月,对杭州湾锋区附近海域的浮游植物细胞丰度、优势种类、叶绿素a浓度和初级生产力进行了现场测定。结果表明,夏季海域浮游植物细胞丰度(19.95×106个/m3)高于冬季(5.60×106个/m3)。主要为广温低盐河口性类群和近岸广温广盐性类群占优势。夏季表层平均叶绿素a浓度为2.74mg/m3,冬季为1.27mg/m3。其平面分布特征表现为,表层浓度高于中层和底层,小潮汛的浓度高于大潮汛,落潮时的浓度高于涨潮时,跟踪测站的浓度高于E断面。夏季平均初级生产力为150.27mgC/(m2·d)。杭州湾为高悬浮物浓度的海域,光强成为初级生产力的主要限制因素之一。  相似文献   

2.
Coral reefs which are an important resource to coastal communities and nation at large are adversely affected by rate of sediment flux to the reefs. However, there is little information on seasonal trend in sediment flux and its impact at the reefs off Zanzibar. Two years’ monthly data on sedimentation at Chumbe and Bawe reefs were used to assess seasonal variability in sediment flux and its implication on the coral status. Sediment flux to the Bawe reefs for the duration of the study ranged from 0.2 to 41.5 mg cm−2 d−1, while it ranged from 0.8 to 65.8 mg cm−2 d−1 at the Chumbe reefs. Sediment fluxes at Bawe reefs were highest between November and March, while they were highest between April and September at Chumbe reefs. Generally, sediment fluxes at Bawe reefs were low compared to those at Chumbe. The total sediment input to the reefs ranged from 4615 to 123,403 kg d−1 for Bawe reefs and 2750 to 79,636 kg d−1 for Chumbe reefs. High sediment fluxes at Bawe reefs between November and March; and the Chumbe reefs between April and September can be attributed to water currents and wind pattern in the east African region which are under the influence of the monsoons. The observed trend suggests that the period for coral transplant as a management option for the two sites should be different. Coral transplant can be undertaken in such a way that stress of the corals due to sedimentation can be felt after they have overcome stress from transplant process and temperature. The results from this study contribute to the much needed information for coral transplant, restoration, and management.  相似文献   

3.
Abstract. Thirteen sampling cruises were conducted at weekly intervals in the inner part of the Gulf of Naples in the summer of 1983 to investigate the effects of excess nutrient inputs on phytoplankton communities. High surface phytoplankton concentrations (up to 1.15 ×108 cells 1-1) were recorded, particularly near Naples harbour and along the eastern coast, two locations that receive most of the area's sewage and industrial discharge. Phytoplankton populations were generally dominated by small species, mainly diatoms, which were associated with small phytoflagcllatcs. Species diversity values were relatively high (H'≤ 3.62) in most samples. Throughout the sampling period a high spatial and temporal variability for phytoplankton abundances and species composition was observed.  相似文献   

4.
The effects of tropical storm Dennis were documented in the coastal waters of South Carolina during August 1981. Phytoplankton photosynthesis vs. irradiance curves showed initial depression of the parameter a followed by three- to five-fold increase of both a and the asymptotic maximum rate of photosynthesis PmB. Productivity rates were depressed in most samples immediately after the storm. Surface samples at the inshore stations were around 50 mg C m?3 h?1 at saturating light intensities, while the offshore station rates were around 10 mg C m?3 h?1. After a 10-day lag these rates had increased to about 200 mg C m?3 h?1 inshore and 75 mg C m?3 h?1 offshore. These changes are thought to be primarily caused by changes in species composition. Some of the dominant diatom species changed and dinoflagellate species were introduced. No significant changes in nutrient concentrations were observed. Transient depressions of water temperature, salinity and light intensity may have contributed to the observed changes.  相似文献   

5.
热带太平洋西部及赤道暖水区的初级生产力   总被引:1,自引:2,他引:1  
描述了对热带太平洋西部(1991年11月WOCE调查)及赤道暖水区(1992年11月至1993年2月的TOGA-COARE调查)的叶绿素a分布和初级生产力(C),及其与理化环境的关系.西部海域叶绿素a平均总量达19.79mg/m2,暖水区为2.168mg/m2;暖水区的潜在初级生产量高于西部海域,量值分别为228mg/(m2·d)和171mg/(m2·d),次表层最大值成为调查海域水体叶绿素a分布的一个明显特点.叶绿素a总量平面分布趋向表明:高生物量主要位于巴士海峡邻近、菲律宾以及伊里安岛的近岸站位,此外,在2°~4°N之间的观测区.低生物量主要位于外洋海域.生物量的分布与不同海域的物理过程变化有关,而海水涌升可能是导致温度、盐度和营养盐分布产生变化,并因而导致高生物量的一个重要的物理过程.  相似文献   

6.
以深圳沿岸海域为研究区,以MODIS/AQUA卫星遥感产品为数据源,结合实测浮标数据修正了VGPM中叶绿素a含量的估算进而分析深圳沿岸海域净初级生产力的时空分布规律.研究表明:(1)深圳沿岸海域2014年2、5、8、10月的净初级生产力在空间分布上从近海向外逐渐降低,初级生产力整体呈现出"西高东低"的局面,且未有明显的季节性波动.(2)4个海区的叶绿素a含量均表现为夏季最高秋冬季次之,但各海区主要影响因素不同,珠江口主要受季风造成的浮游植物种类与细胞密度的季节变化影响,大亚湾主要受营养盐限制,大鹏湾的主导因素为湾内余流的季节变化,深圳湾的叶绿素a含量主要与浮游植物细胞密度的季节变化有关.(3)珠江口的初级生产力春夏季高于秋冬季;大鹏湾的初级生产力夏季最高,且季节变化趋势与叶绿素a表现一致;深圳湾的初级生产力夏季最高,且季节变化趋势与海表温度表现一致;大亚湾的初级生产力波动明显,夏冬季海洋初级生产力数值总体高于春秋季.  相似文献   

7.
Phytoplankton primary production and its regulation by light and nutrient availability were investigated in the shallow, tropical coastal waters of Bandon Bay, Southern Thailand. The bay was meso‐eutrophicated and highly turbid, receiving river water discharge. Water column stratification was consistently weak during both rainy and dry seasons. Dissolved inorganic nitrogen (DIN) was higher off the river mouth than in the other regions, suggesting that river water discharge was a main source of DIN. By contrast, dissolved inorganic phosphorus (DIP) showed a significant negative correlation with total water depth, implying that regeneration around the sea floor was an important source of DIP. Surface DIN and DIP showed positive correlations with surface primary production (PP) and water column primary productivity (ΣPP*), respectively. The combined correlation and model analyses indicate that total water depth had an ambivalent influence on water column primary production (ΣPP); shallower water depth induced more active regeneration of nutrients, but it also caused higher turbidity and lower light availability as a result of enhanced resuspension of sediments. Furthermore, there was a vertical constraint for phytoplankton during the rainy season: total water depth tended to be shallower than euphotic zone depth. In conclusion, light limitation and vertical constraint owing to shallow water depth appear to be more important than nutrient limitation for water column primary production in Bandon Bay.  相似文献   

8.
The concentration of nutrients was measured during the spring phytoplankton bloom in Funka Bay over a 5-year period (1988–92). During the winter mixing period, nutrient concentrations were similar in every year except in 1990 when a high concentration of silicate was observed. There was interannual variation in the onset of the bloom, presumably depending on the stability of the water column. The bloom developed in early March when the Oyashio water (OW), which has a lower density than the existing winter water, flowed into the bay and the pycnocline formed near the bottom of the euphotic zone. In this case, high chl a was found only in the euphotic zone and nutrient utilization was limited to this zone. In the year when the inflow of OW was not observed by April, the bloom took place at the end of March without strong stratification and high chl a was found in the whole water column, accompanied by a decrease in nutrients. Interannual differences were found not only at the beginning of the decrease, but also in the thickness of the layer which showed a decrease in nutrients. Primary production from the beginning to the end of the spring bloom was estimated from the nutrient budget before and after the spring bloom. The integrated production over the spring bloom period ranged from 25 to 73 g C m-2, which accounts for 19–56% of the annual production in this bay. We found that the timing of the bloom was strongly dependent on the inflow of OW, but the amount of production was not clearly related to this timing.  相似文献   

9.
The light-saturated maximum value (P B max) and initial slope (α) of the photosynthesis-irradiance (P-E) curve were examined in a warm streamer, a cold streamer and a warm core ring off the Sanriku area in the subarctic western North Pacific Ocean during an ADEOS/OCTS Sanriku field campaign in early May 1997. BothP B max and α were within the ranges of temperate populations. A regional difference was apparent inP B max: populations in the warm streamer tended to show higher value ranging between 1.92 and 4.74 mgC (mgChla)−1h−1 than those in the cold streamer and the warm core ring (1.35–2.87 mgC (mgChla)−1h−1). A depth variation was also observed in α in both the warm streamer and the warm core ring: shallow populations tended to have lower α than deep populations. The depth variations in bothP B max and α resulted in a lower light intensity of the light saturation in a deeper population than that of a shallower one. These depth-related variations in the P-E parameters were likely a manifestation of “shade-adaptation” of photosynthesis. Photoinhibition was not observed over in situ surface light intensity varying below ca 1600 μmol photon m−2s−1. Water-column primary productivity was biooptically estimated to be 233 to 949 mgC m−2d−1 using vertical distributions of the P-E parameters, chlorophylla, phytoplankton light absorption and underwater irradiance. Applicability of surface data sets for estimation of water-column productivity is discussed.  相似文献   

10.
The chlorophyll a specific absorption coefficient of phytoplankton, aφ(λ) is an important parameter to determine for primary production models and for the estimation of phytoplankton physiological condition. Knowledge of this parameter at high latitudes where nutrient rich cold water submitted to low incident light is a common environment is almost nonexistent. To address this issue, we investigated the light absorption properties of phytoplankton as a function of irradiance, temperature, and nutrients using a large data set in the southern Beaufort Sea during the open water to ice cover transition period. The aφ(λ) tended to increase from autumn when open water still existed to early winter when sea ice cover was formed, resulting from a biological selection of smaller-size phytoplankton more efficient to absorb light. There was no significant correlation between aφ(λ) and irradiance or temperature for both seasons. However, aφ(λ) showed a significant positive correlation with NO3 + NO2. Implications of the results for phytoplankton community adaptation to changing light levels are discussed.  相似文献   

11.
The distributions of chlorophyll a concentration, primary production and new productionwere observed in the Laizhou Bay of the Bohai Sea in both spring and neap tides during July 1997. The results showed that there were marked features of spatial zonation in the surveyed area, due to the differences between the geographic environment and the hydrological conditions. Chlorophyll a, primary production and new production were all higher in spring tides than that in neap tides in the Laizhou Bay. The highest values of these parameters were encountered in the central regions of the bay. At most stations, chlorophyll a concentrations at the bottom were higher than that at the surface. The results of size-fractionated chlorophyll a and primary production showed that contributions of nano-combining pi-coplankton ( > 20 μm) to total chlorophyll a and primary production were dominant in phytoplankton community biomass and production of the Laizhou Bay. The environmental factors, primary production and new product  相似文献   

12.
13.
The Vertically Generalized Production Model (VGPM) was verified by the primary production data of the Sagami Bay, Japan. The VGPM with open ocean parameters including P B opt , maximum primary production per unit of chlorophyll a in the water column, explained only 40% of the variability of integrated primary production. Formulations of the open ocean P B opt showed no correlation with in situ P B opt . Adjustment of the parameters of chlorophyll a and temperature dependent P B opt improved the estimation of integrated primary production to 47% of the variation. Vertical integration parameters of VGPM also have to be adjusted to improve the estimation. Integrated primary production calculated with a stronger light dependency and with the adjusted P B opt model can explain 74% of the variation. This model was used to estimate primary production of the Sagami Bay during 2003 with satellite data. In situ measurements on cloudy days indicate that the use of satellite data from sunny days only overestimates primary production.  相似文献   

14.
The phytoplankton ecology of Great South Bay, New York, was studied over a 1-year period. The study area, a large barrier island estuary (coastal lagoon with estuarine circulation), was characterized by high levels of inorganic nutrients, high turbidity and a shallow euphotic zone (<2 m). Net annual primary production by phytoplankton was high—450 g C m?2 year?1—and accounted for approximately 85% of the total ecosystem primary production. Chlorophyll a-specific productivity was dependent on mean photic zone light intensity in areas of the bay <1 m in depth from September 1979 through June 1980; 65–95% of the total light extinction in those areas was attibutable to suspended solids. Nitrogenous nutrient concentration did not limit phytoplankton productivity. Diatom and dinoflagellate cell densities varied greatly over time, while cryptomonad and chlorophyte species were abundant throughtout the year. Chlorophytes of 2–4 μm (‘small forms’) were numerically dominant, and contributed approximately half of the total phytoplankton biomass. Dilution of bay water by intruding ocean water appeared to control the spatial distribution of chlorophyll a on the south side of the bay; in other areas, growth appeared to exceed the rate of dilution by flushing. Waters entrained in eelgrass beds were significantly higher in salinity and mean photic zone light intensity, and had lower phytoplankton standing stock and depth-integrated primary production than control areas; waters in the sediment plume of active clamdigging boats were statistically similar to control areas with respect to water quality and phytoplankton community characteristics.  相似文献   

15.
In the coastal and estuarine waters of Goa, particulate organic carbon (POC) varied from 0.52 to 2.51 mg l?1 and from 0.28 to 5.24 mg l?1 and particulate phosphorus (PP) varied from 0.71 to 5.18 μg l?1 and from 0.78 to 20.34 μg l?1, respectively. The mean values of chlorophyll and primary productivity were 1.94 mg m?3 and 938.1 mg C m?2 day?1 in the coastal waters and 4.3 mg m?3 and 636.5 mg C m?1 day?1 in the estuarine waters, respectively.POCchl ratios were low in June and October even when POC values were quite high. The POC in surface waters was linearly correlated with the chlorophyll content. Also PP increased when chlorophyll and primary productivity remained high. The results suggest that the phytoplankton was sharply increasing and contributed to POC and PP content. The percentage of detritus calculated from the intercept values of chlorophyll on POC varied from 46 to 76% depending on season. Results indicate that the major portion of POC and PP during postmonsoon (October–January) is derived from phytoplankton production while the allochthonous matter predominate during monsoon (June–September).  相似文献   

16.
珠江口初级生产力和新生产力研究   总被引:18,自引:2,他引:18  
1996年12月和1997年8月在珠江河口湾及其毗邻海域对浮游植物生物量、初级生产力和新生产力及其环境制约机制的研究.结果表明,调查海区的叶绿素a、初级生产力和新生产力均是夏季高于冬季,冬、夏两季的平均值分别为(0.95±0.41)和(1.08±0.52)μg/dm3,(69.2±75.5)和(198.7±119.1)mg/(m2·d),(1.46±0.79)和(3.05±3.09)mg/(m3·h).冬、夏两季平均f-比分别为0.45和0.38.分级叶绿素a结果显示,冬、夏两季均以微型和微微型级分(<20μm)占优势,其对海区叶绿素a的贡献分别为796%和81.6%,对初级生产力的贡献分别为70.7%和896%.调查海区具显著的空间区域化特征,叶绿素a和潜在初级生产力的高值出现在冲淡水区的中部,向口门区和远岸区逐渐降低.现场初级生产力的高值出现在远岸区,它与复合参数BeZpI0(Be为真光层平均叶绿素a,Zp为真光层深度,I0为海面光辐射强度-PAR)呈很好的正相关,说明光是研究海区初级生产力的主要限制因子.新生产力冬、夏两季的高值分别出现在交椅湾和伶仃洋西南部.  相似文献   

17.
海洋净初级生产力(Net Primary Productivity, NPP)长时间序列分析可获取NPP多年变化趋势、季节变化等动态信息,对海洋环境的监测与预报具有重要意义。本文以2003~2013年月际尺度净初级生产力卫星遥感产品为数据源,通过奇异谱分析提取标准化净初级生产力时间序列的长期趋势和周期振荡特征。研究表明,①浮标监测数据的叶绿素a浓度、海表温度与MODIS的叶绿素a浓度、海表温度产品变化趋势基本一致,NPP时间序列产品可用于分析深圳近岸海域净初级生产力的变化趋势。②空间分布上,深圳西部海域的NPP和叶绿素a浓度远高于大鹏湾和大亚湾,大鹏湾和大亚湾的NPP和叶绿素a浓度均值及变化趋势非常接近。三个海区NPP、叶绿素a浓度、海表温度和光合有效辐射在季风转换期变化剧烈。③长期趋势上,深圳西部海域呈现2 a周期波动趋势,在均值附近以年为周期上下波动。大鹏湾和大亚湾2003~2006年NPP低于平均水平, 2008年后NPP开始以年为周期围绕平均值上下波动, 2012年后NPP整体与均值持平。④周期特征上,深圳西部海域、大鹏湾和大亚湾的NPP呈"W"或"M"型周年变化,存在夏季主高峰(6~7月)和冬季次高峰(12~1月)。  相似文献   

18.
1999年渤海浮游植物生物量的数值模拟   总被引:6,自引:1,他引:6  
以浮游植物量、浮游动物量、营养盐浓度 (包括无机氮和无机磷 )以及碎屑量为生态变量 ,在HAMSOM水动力学模式的基础上构建了 1个三维浮游生态动力学NPZD模型。采用此模型研究了渤海 1999年浮游植物量和初级生产力的变化情况 ,模拟结果与实测基本相符。模拟结果表明 :1999年渤海浮游植物量的变化大致呈双峰分布 ,春季水华出现在4,5月份 ,秋季水华出现在 9,10月份 ;受透明度和局地水深的影响 ,渤海湾和辽东湾北部浮游植物量的年变化呈夏季大、冬季小的单峰分布。 1999年渤海不同海区初级生产力的变化特征是 :除莱州湾一年中有春、夏 2个峰值外 ,其它 3个海区都是夏季高、冬季低的单峰分布 ;1999年整个渤海年平均的初级生产力为 2 5 7mgC/m2 /d。  相似文献   

19.
甲烷是重要的温室气体,近海河口海域是甲烷产生和释放的活跃区域。于2021年对富营养化的九龙江河口(6月)和贫营养化的陆丰近海(8月)表层水进行了受控培养实验。结果显示,在添加碳氮以及甲基膦酸的陆丰近海海水样品中,观测到甲烷浓度增加了两个数量级,说明陆丰近海可能存在依赖甲基膦酸路径的甲烷生产。九龙江河口水体也存在基于甲基膦酸、二甲基巯基丙酸内盐和三甲胺路径生产甲烷的过程,其中以甲基膦酸路径产生的甲烷最多(增长率211.0%)。对比同样条件下的甲基膦酸-甲烷产生实验,陆丰近海水体产生的甲烷约是九龙江河口的22倍,表明贫营养化水体更加有利于基于甲基膦酸路径的甲烷产生。  相似文献   

20.
2010年在黄骅海域进行浮游植物和理化环境的4个季度的生态调查.共发现浮游植物3门28属75种,其中赤潮种34种,种类数量的季节变化为秋季(2010-10)>冬季(2010-12)>夏季(2010-08)>春季(2010-04).浮游植物生态类型可划分为广温近岸类群、暖水类群和暖温类群,广温近岸类群是浮游植物的优势类群.浮游植物细胞数量的季节变动范围为(46.42×104~190.68×104)个/m3,季节变化为秋季>夏季>春季>冬季,浮游植物数量的季节变化呈单峰特征,硅藻是浮游植物的优势种群.Jacard相似度指数的范围为0.19~0.42,季节更替明显.夏季浮游植物细胞数量与磷酸盐显著正相关,相关系数为0.548(p<0.05),地表径流是浮游植物细胞数量的重要影响因素.秋季浮游植物细胞数量与温度极显著负相关,相关系数-0.744(p<0.01);与无机氮显著相关,相关系数0.482.温度和无机氮是影响浮游植物数量的因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号