首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antiproton flux measured by PAMELA experiment might have originated from Galactic sources of cosmic rays. These antiprotons are expected to be produced in the interactions of cosmic ray protons and nuclei with cold protons. Gamma rays are also produced in similar interactions inside some of the cosmic accelerators. We consider a few nearby supernova remnants observed by Fermi LAT. Many of them are associated with molecular clouds. Gamma rays have been detected from these sources which most likely originate in decay of neutral pions produced in hadronic interactions. The observed gamma ray fluxes from these SNRs are used to find out their contributions to the observed diffuse cosmic ray antiproton flux near the earth.  相似文献   

2.
An analytical model which generalizes the equations describing the intensity of galactic cosmic rays (CR), including both processes, making it applicable in the inner heliosphere (where energy losses dominate) and outer heliosphere (influenced primarily by convection-diffusion processes) is derived. By a suitable choice of a parameter, the proposed model turns into two approximations: solution close to “force-field” model (describing the energy losses of CR in the inner heliosphere) and “convection-diffusion” equation (giving the reduction of CR intensity in the outer heliosphere). A mathematical relation between parameters in the proposed model and the modulation parameter Φ is derived.  相似文献   

3.
All the components of Cosmic Rays (CR) have ‘structure’ in their energy spectra at some level, i.e. deviations from a simple power law, and their examination is relevant to the origin of the particles. Emphasis, here, is placed on the large-scale structures in the spectra of nuclei (the ‘knee’ at about 3 PeV), that of electrons plus positrons (a shallow ‘upturn’ at about 100 GeV) and the positron to electron plus positron ratio (an upturn starting at about 5 GeV).Fine structure is defined as deviations from the smooth spectra which already allow for the large-scale structure. Search for the fine structure has been performed in the precise data on positron to electron plus positron ratio measured by the AMS-02 experiment. Although no fine structure is indicated, it could in fact be present at the few percent level.  相似文献   

4.
We study the impact of possible spiral-arm distributions of Galactic cosmic-ray sources on the flux of various cosmic-ray nuclei throughout our Galaxy. We investigate model cosmic-ray spectra at the nominal position of the sun and at different positions within the Galaxy. The modelling is performed using the recently introduced numerical cosmic ray propagation code Picard. Assuming non-axisymmetric cosmic-ray source distributions yields new insights on the behaviour of primary versus secondary nuclei.We find that primary cosmic rays are more strongly confined to the vicinity of the sources, while the distribution of secondary cosmic rays is much more homogeneous compared to the primaries. This leads to stronger spatial variation in secondary to primary ratios when compared to axisymmetric source distribution models. A good fit to the cosmic-ray data at Earth can be accomplished in different spiral-arm models, although leading to decisively different spatial distributions of the cosmic-ray flux. These lead to different cosmic ray anisotropies, where even reproducing the data becomes possible. Consequently, we advocate directions to seek best fit propagation parameters that take into account the higher complexity introduced by the spiral-arm structure on the cosmic-ray distribution. We specifically investigate whether the flux at Earth is representative for a large fraction of the Galaxy. The variance among possible spiral-arm models allows us to quantify the spatial variation of the cosmic-ray flux within the Galaxy in presence of non-axisymmetric source distributions.  相似文献   

5.
A radial anisotropy in the flux of cosmic rays in heliosphere was theoretically predicted by Parker and others within the framework of the diffusion–convection mechanism. The solar wind is responsible for sweeping out the galactic cosmic rays, creating a radial density gradient within the heliosphere. This gradient coupled with the interplanetary magnetic field induces a flow of charged particles perpendicular to the ecliptic plane which was measured and correctly explained by Swinson, and is hereafter referred as ‘Swinson flow’. The large area GRAPES-3 tracking muon telescope offers a powerful probe to measure the Swinson flow and the underlying radial density gradient of the galactic cosmic rays at a relatively high rigidity of ∼100 GV. The GRAPES-3 data collected over a period of six years (2000–2005) were analyzed and the amplitude of the Swinson flow was estimated to be (0.0644 ± 0.0008)% of cosmic ray flux which was an ∼80σ effect. The phase of the maximum flow was at a sidereal time of (17.70 ± 0.05) h which was 18 min earlier than the expected value of 18 h. This small 18 min phase difference had a significance of ∼6σ indicating the inherent precision of the GRAPES-3 measurement. The radial density gradient of the galactic cosmic rays at a median rigidity of 77 GV was found to be 0.65% AU−1.  相似文献   

6.
7.
We report the results of 3D simulations of non-diffusive propagation of Ultra High Energy Cosmic Rays (UHECR) (E > 1020 eV) through the intergalactic and extended halo media. We quantify the expected angular and temporal correlations between the events and the sources, and the temporal delay between protons and gamma-ray counterparts with a common origin for both halo and extragalactic origins. It is shown that the proposed UHECR-supergalactic plane source associations require either extremely high values of the halo magnetic field over as much as 100 kpc length scale or a very large correlation length for the IGM, even for the largest possible values of the intergalactic magnetic field. It can be stated that the UHECR seem to point to the sources even more strongly than previously believed. The simulations also show that the calculated time delays between UHE protons and gamma-ray counterparts do not match the claimed GRB-UHECR associations for either cosmological or extended halo distance scales.  相似文献   

8.
9.
We present the calculation of coherent radio pulses emitted by extensive air showers induced by ultra-high energy cosmic rays accounting for reflection on the Earth’s surface. Results have been obtained with a simulation program that calculates the contributions from shower particles after reflection at a surface plane. The properties of the radiation are discussed in detail emphasizing the effects of reflection. The shape of the frequency spectrum is shown to be closely related to the angle of the observer with respect to shower axis, becoming hardest in the Cherenkov direction. The intensity of the flux at a fixed observation angle is shown to scale with the square of the primary particle energy to very good accuracy indicating the coherent aspect of the emission. The simulation methods of this paper provide the foundations for energy reconstruction of experiments looking at the Earth from balloons and satellites. They can also be used in dedicated studies of existing and future experimental proposals.  相似文献   

10.
In this paper we present a comprehensive study of the heavy quark production in ultra high energy cosmic ray interactions in the atmosphere considering that the primary cosmic ray can be either a photon, neutrino or a proton. The analysis is performed using a unified framework – the dipole formalism – and the saturation effects, associated to the physical process of parton recombination, are taken into account. We demonstrate that the contribution of heavy quarks for cosmic ray interactions is in general non-negligible and can be dominant depending of the process considered. Moreover, our results indicate that new dynamical mechanisms should be included in order to obtain reliable predictions for the heavy quark production in pp collisions at ultra high cosmic ray energies.  相似文献   

11.
We discuss the possibility of accurately estimating the source number density of ultra-high-energy cosmic rays (UHECRs) using small-scale anisotropy in their arrival distribution. The arrival distribution has information on their source and source distribution. We calculate the propagation of UHE protons in a structured extragalactic magnetic field (EGMF) and simulate their arrival distribution at the Earth using our previously developed method. The source number density that can best reproduce observational results by Akeno Giant Air Shower Array is estimated at about 10−5 Mpc−3 in a simple source model. Despite having large uncertainties of about one order of magnitude, due to small number of observed events in current status, we find that more detection of UHECRs in the Auger era can sufficiently decrease this so that the source number density can be more robustly estimated. Two hundred event observation above 4 × 1019 eV in a hemisphere can discriminate between 10−5 and 10−6 Mpc−3. Number of events to discriminate between 10−4 and 10−5 Mpc−3 is dependent on EGMF strength. We also discuss the same in another source model in this paper.  相似文献   

12.
In order to optimise the design of space instruments making use of detection materials with low atomic numbers, an understanding of the atmospheric neutron environment and its dependencies on time and position is needed. To produce a simple equation based model, Monte Carlo simulations were performed to obtain the atmospheric neutron fluxes produced by charged galactic cosmic ray interactions with the atmosphere. Based on the simulation results the omnidirectional neutron environment was parametrized including dependencies on altitude, magnetic latitude and solar activity. The upward- and downward-moving component of the atmospheric neutron flux are considered separately. The energy spectra calculated using these equations were found to be in good agreement with data from a purpose built balloon-borne neutron detector, high altitude aircraft data and previously published simulation based spectra.  相似文献   

13.
The average characteristics of the diurnal and semi-diurnal anisotropy of cosmic ray intensity at relativistic energies have been obtained by using data from the worldwide grid of neutron monitor for the period 1989 to 1996. The complex behaviour of the diurnal amplitudes and time of maxima (phase) and its association with the Ap index on a long-term and day-to-day basis have been studied. Even though the general characteristics, on a yearly average basis, have not changed significantly during this period, both the diurnal and semi-diurnal amplitudes and phases vary significantly, besides significant changes being observed for different interplanetary conditions on a short-term basis. It is found that the relationship between the Ap index and the diurnal vector is out of phase during the period 1991 to 1995. On a long-term basis, the correlation of diurnal variation with Ap index has been found to vary during the solar cycle. On a short-term basis, it has been observed that the high Ap days are usually associated with higher amplitudes with phase shifted to earlier hours.  相似文献   

14.
An analysis is made of the fine structure in the cosmic ray energy spectrum: new facets of present observations and their interpretation and the next step. It is argued that less than about 10% of the intensity of the helium ‘peak’ at the knee at ≈5 PeV is due to just a few sources (SNR) other than the single source. The apparent concavity in the rigidity spectra of protons and helium nuclei which have maximum curvature at about 200 GV is confirmed by a joint analysis of the PAMELA, CREAM and ATIC experiments. The spectra of heavier nuclei also show remarkable structure in the form of ‘ankles’ at several hundred GeV/nucleon. Possible mechanisms are discussed. The search for ‘pulsar peaks’ has not yet proved successful.  相似文献   

15.
Bruno Rossi is considered one of the fathers of modern physics, being also a pioneer in virtually every aspect of what is today called high-energy astrophysics. At the beginning of 1930s he was the pioneer of cosmic ray research in Italy, and, as one of the leading actors in the study of the nature and behavior of the cosmic radiation, he witnessed the birth of particle physics and was one of the main investigators in this fields for many years. While cosmic ray physics moved more and more towards astrophysics, Rossi continued to be one of the inspirers of this line of research. When outer space became a reality, he did not hesitate to leap into this new scientific dimension. Rossi’s intuition on the importance of exploiting new technological windows to look at the universe with new eyes, is a fundamental key to understand the profound unity which guided his scientific research path up to its culminating moments at the beginning of 1960s, when his group at MIT performed the first in situ measurements of the density, speed and direction of the solar wind at the boundary of Earth’s magnetosphere, and when he promoted the search for extra-solar sources of X rays. A visionary idea which eventually led to the breakthrough experiment which discovered Scorpius X-1 in 1962, and inaugurated X-ray astronomy.  相似文献   

16.
At present there are still several open questions about the origin of the ultra high energy cosmic rays. However, great progress in this area has been made in recent years due to the data collected by the present generation of ground based detectors like the Pierre Auger Observatory and Telescope Array. In particular, it is believed that the study of the composition of the cosmic rays as a function of energy can play a fundamental role for the understanding of the origin of the cosmic rays.The observatories belonging to this generation are composed of arrays of surface detectors and fluorescence telescopes. The duty cycle of the fluorescence telescopes is ∼10% in contrast with the ∼100% of the surface detectors. Therefore, the energy calibration of the events observed by the surface detectors is performed by using a calibration curve obtained from a set of high quality events observed in coincidence by both types of detectors. The advantage of this method is that the reconstructed energy of the events observed by the surface detectors becomes almost independent of simulations of the showers because just a small part of the reconstructed energy (the missing energy), obtained from the fluorescence telescopes, comes from simulations. However, the calibration curve obtained in this way depends on the composition of the cosmic rays, which can introduce biases in composition analyses when parameters with a strong dependence on primary energy are considered. In this work we develop an analytical method to study these effects. We consider AMIGA (Auger Muons and Infill for the Ground Array), the low energy extension of the Pierre Auger Observatory corresponding to the surface detectors, to illustrate the use of the method. In particular, we study the biases introduced by an energy calibration dependent on composition on the determination of the mean value of the number of muons, at a given distance to the showers axis, which is one of the parameters most sensitive to primary mass and has an almost linear dependence with primary energy.  相似文献   

17.
Observed events of ultra-high energy cosmic rays may indicate a hard component for the energy spectrum of their flux, which might have origin in the decay of long-lived vortons presumably condensed in the galactic halo. To be consistent with the needed present density, vortons may have been formed during the breaking of an abelian symmetry contained in a large GUT group like E6 and a part of them could have survived the destabilization caused by the electroweak transition.  相似文献   

18.
In this paper, we present high-energy neutrino spectra from 21 Galactic supernova remnants (SNRs), derived from gamma-ray measurements in the GeV–TeV range. We find that only the strongest sources, i.e. G40.5-0.5 in the north and Vela Junior in the south could be detected as single point sources by IceCube or KM3NeT, respectively. For the first time, it is also possible to derive a diffuse signal by applying the observed correlation between gamma-ray emission and radio signal. Radio data from 234 supernova remnants listed in Green’s catalog are used to show that the total diffuse neutrino flux is approximately a factor of 2.5 higher compared to the sources that are resolved so far. We show that the signal at above 10 TeV energies can actually become comparable to the diffuse neutrino flux component from interactions in the interstellar medium. Recently, the IceCube collaboration announced the detection of a first diffuse signal of astrophysical high-energy neutrinos. Directional information cannot unambiguously reveal the nature of the sources at this point due to low statistics. A number of events come from close to the Galactic center and one of the main questions is whether at least a part of the signal can be of Galactic nature. In this paper, we show that the diffuse flux from well-resolved SNRs is at least a factor of 20 below the observed flux.  相似文献   

19.
《Astroparticle Physics》2003,19(6):715-728
The KASCADE experiment measures a high number of EAS observables with a large degree of sampling of the electron–photon, muon, and hadron components. It provides accurate data for an event-by-event analysis of the primary cosmic ray flux in the energy range around the knee. The possibility of selecting samples of enriched proton and iron induced extensive air showers by applying the statistical techniques of multivariate analyses is scrutinized using detailed Monte Carlo simulations of three different primaries. The purity and efficiency of the proton and iron classification probability is investigated. After obtaining enriched samples from the measured data by application of the procedures the reconstructed number of hadrons, hadronic energy and other parameters are investigated in the primary energy range 1015–1016 eV. By comparing these shower parameters for purified proton and iron events, respectively, with simulated distributions an attempt is made to check the validity of strong interaction models at high energies.  相似文献   

20.
The existence of the cosmic ray Halo in our Galaxy has been discussed for more than half a century. If it is real it could help to explain some puzzling features of the cosmic ray flux: its small radial gradient, nearly perfect isotropy and the low level of the fine structure in the energy spectra of the various particles. All these features could be understood if: (a) the Halo has a big size (b) cosmic rays in the Halo have a uniform spatial or radial distribution and (c) the cosmic ray density in the Halo is comparable or even higher than that in the Galactic Disk. The main topic of the paper concerns the present status of the anisotropy and a model for its formation. In our model the extremely small amplitude of the dipole anisotropy is due to the dilution of the anisotropy in the Disk by the dominating isotropic cosmic rays from the Halo. Some minor deviations from complete isotropy in the sub-PeV and PeV energy regions point out to the possible contribution of the Single Source with the phase of its first harmonic opposite to the phase produced by the Disk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号