首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent reports of superhigh energy cosmic rays beyond the expected spectral cutoff have intensified interest in the unknown origin of the highest energy cosmic rays. There is a need for a much larger data base of more precisely measured air showers. This requires new sensitive detectors of enormous aperture. Combining a ground array of particle counters with an optical detector of atmospheric fluorescence yields a detector of outstanding capability. Such a hybrid detector provides far more accurate measurements of energies, arrival directions, and primary particle atomic masses than can be achieved by either type of detector separately.  相似文献   

2.
袁强 《天文学报》2023,64(5):49-11
高能宇宙线的起源、加速和传播是重大的前沿科学问题,回答该问题需要对宇宙线的能谱、各向异性以及各类高能天体电磁辐射进行精确观测.通过空间粒子探测器对宇宙线各成分能谱的直接测量是研究宇宙线物理问题的重要手段.中国于2015年底发射并持续运行至今的暗物质粒子探测卫星以其大接受度、高能量分辨率等特点,在宇宙线直接探测方面取得了系列重要成果,揭示出质子、氦核、硼碳和硼氧比例等宇宙线能谱的新结构,为理解宇宙线起源等科学问题提供了新的依据.介绍了暗物质粒子探测卫星的仪器设置、运行状况、科学成果及其物理意义.  相似文献   

3.
At present there are still several open questions about the origin of the ultra high energy cosmic rays. However, great progress in this area has been made in recent years due to the data collected by the present generation of ground based detectors like the Pierre Auger Observatory and Telescope Array. In particular, it is believed that the study of the composition of the cosmic rays as a function of energy can play a fundamental role for the understanding of the origin of the cosmic rays.The observatories belonging to this generation are composed of arrays of surface detectors and fluorescence telescopes. The duty cycle of the fluorescence telescopes is ∼10% in contrast with the ∼100% of the surface detectors. Therefore, the energy calibration of the events observed by the surface detectors is performed by using a calibration curve obtained from a set of high quality events observed in coincidence by both types of detectors. The advantage of this method is that the reconstructed energy of the events observed by the surface detectors becomes almost independent of simulations of the showers because just a small part of the reconstructed energy (the missing energy), obtained from the fluorescence telescopes, comes from simulations. However, the calibration curve obtained in this way depends on the composition of the cosmic rays, which can introduce biases in composition analyses when parameters with a strong dependence on primary energy are considered. In this work we develop an analytical method to study these effects. We consider AMIGA (Auger Muons and Infill for the Ground Array), the low energy extension of the Pierre Auger Observatory corresponding to the surface detectors, to illustrate the use of the method. In particular, we study the biases introduced by an energy calibration dependent on composition on the determination of the mean value of the number of muons, at a given distance to the showers axis, which is one of the parameters most sensitive to primary mass and has an almost linear dependence with primary energy.  相似文献   

4.
Molecular clouds are expected to emit non-thermal radiation due to cosmic ray interactions in the dense magnetized gas. Such emission is amplified if a cloud is located close to an accelerator of cosmic rays and if energetic particles can leave the accelerator site and diffusively reach the cloud. We consider here a situation in which a molecular cloud is located in the proximity of a supernova remnant which is efficiently accelerating cosmic rays and gradually releasing them in the interstellar medium. We calculate the multiwavelength spectrum from radio to gamma rays which is emerging from the cloud as the result of cosmic ray interactions. The total energy output is dominated by the gamma-ray emission, which can exceed the emission in other bands by an order of magnitude or more. This suggests that some of the unidentified TeV sources detected so far, with no obvious or very weak counterparts in other wavelengths, might be in fact associated with clouds illuminated by cosmic rays coming from a nearby source. Moreover, under certain conditions, the gamma-ray spectrum exhibits a concave shape, being steep at low energies and hard at high energies. This fact might have important implications for the studies of the spectral compatibility of GeV and TeV gamma-ray sources.  相似文献   

5.
Most of what we know of cosmic gamma rays has come from spacecraft, but at energies above tens of GeV it has become possible to make observations with ground-based detectors of enormously greater collecting area. In recent years one such detector type, the cluster of imaging air Cherenkov telescopes, has reached a very productive state, whilst several alternative approaches have been explored, including converted solar power collectors and novel high-altitude particle shower detectors which promised to extend the energy range covered. Key examples of development from 1952 to 2011 are followed, noting the problems and discoveries that stimulated the current work, explaining the logic of the alternative approaches that were taken. The merits of the current major Cherenkov observatories and of other viable detectors are examined and compared, with examples of the astrophysical information they are beginning to provide. The detectors are still evolving, as we still do not understand the processes onto which the gamma rays provide a window. These include the acceleration of Galactic cosmic rays (in particular, the wide-band spectra of radiation from some individual supernova remnants are still hard to interpret), the highly relativistic and variable jets from active galactic nuclei, and aspects of the electrodynamics of pulsars. Larger groups of Cherenkov telescopes still offer the possibility of an increase in power of the technique for resolvable Galactic sources especially.  相似文献   

6.
Using the standard GEANT4 code, we calculated the ionization rate of the Mars atmosphere and the dose absorbed by the planet’s soil caused by the galactic cosmic rays and the anomalous cosmic ray component in the heliosphere. Cases of the solar system passing through dense molecular clouds leading to an increase of the energetic particle flux at the orbit of Mars and cases of thickness variation of the atmosphere itself are considered.  相似文献   

7.
It is believed that the observed diffuse gamma-ray emission from the galactic plane is the result of interactions between cosmic rays and the interstellar gas. Such emission can be amplified if cosmic rays penetrate into dense molecular clouds. The propagation of cosmic rays inside a molecular cloud has been studied assuming an arbitrary energy and space dependent diffusion coefficient. If the diffusion coefficient inside the cloud is significantly smaller compared to the average one derived for the galactic disk, the observed gamma-ray spectrum appears harder than the cosmic ray spectrum, mainly due to the slower penetration of the low energy particles towards the core of the cloud. This may produce a great variety of gamma-ray spectra.  相似文献   

8.
The origin of cosmic rays is one of the key questions in high-energy astrophysics. Supernovae have been always considered as the dominant sources of cosmic rays below the energy spectrum knee. Multi-wavelength observations indeed show that supernova remnants are capable for accelerating particles into sub-PeV (1015 eV) energies. Diffusive shock acceleration is considered as one of the most efficient acceleration mechanisms of astrophysical high-energy particles, which may just operate effectively in the large-scale shocks of supernova remnants. Recently, a series of high-precision ground and space experiments have greatly promoted the study of cosmic rays and supernova remnants. New observational features challenge the classical acceleration model by diffusive shock and the application to the scenario of supernova remnants for the origin of Galactic cosmic rays, and have deepened our understanding to the cosmic high-energy phenomena. In combination with the time evolution of radiation energy spectrum of supernova remnants, a time-dependent particle acceleration model is established, which can not only explain the anomalies in cosmic-ray distributions around 200 GV, but also naturally form the cosmic-ray spectrum knee, even extend the contribution of supernova particle acceleration to cosmic ray flux up to the spectrum ankle. This model predicts that the high-energy particle transport behavior is dominated by the turbulent convection, which needs to be verified by future observations and plasma numerical simulations relevant to the particle transport.  相似文献   

9.
The origin and nature of the highest energy cosmic ray events is currently the subject of intense investigation by giant air shower arrays and fluorescent detectors. These particles reach energies well beyond what can be achieved in ground-based particle accelerators and hence they are fundamental probes for particle physics as well as astrophysics. One of the main topics today focuses on the high energy end of the spectrum and the potential for the production of high-energy neutrinos. Above about 1020 eV cosmic rays from extragalactic sources are expected to be severely attenuated by pion photoproduction interactions with photons of the cosmic microwave background. Investigating the shape of the cosmic ray spectrum near this predicted cut-off will be very important. In addition, a significant high-energy neutrino background is naturally expected as part of the pion decay chain which also contains much information.Because of the scarcity of these high-energy particles, larger and larger ground-based detectors have been built. The new generation of digital radio telescopes may play an important role in this, if properly designed. Radio detection of cosmic ray showers has a long history but was abandoned in the 1970s. Recent experimental developments together with sophisticated air shower simulations incorporating radio emission give a clearer understanding of the relationship between the air shower parameters and the radio signal, and have led to resurgence in its use. Observations of air showers by the SKA could, because of its large collecting area, contribute significantly to measuring the cosmic ray spectrum at the highest energies. Because of the large surface area of the moon, and the expected excellent angular resolution of the SKA, using the SKA to detect radio Cherenkov emission from neutrino-induced cascades in lunar regolith will be potentially the most important technique for investigating cosmic ray origin at energies above the photoproduction cut-off.  相似文献   

10.
宇宙线的起源是高能天体物理的核心问题之一.一直以来,超新星爆发被认为是能谱膝区以下宇宙线的主要来源.多波段观测表明,超新星遗迹有能力加速带电粒子至亚PeV (10~(15)eV)能量.扩散激波加速被认为是最有效的天体高能粒子加速机制之一,而超新星遗迹的大尺度激波正好为这一机制提供平台.近年来,一系列较高精度的地面和空间实验极大地推动了对宇宙线以及超新星遗迹的研究.新的观测事实挑战着传统的扩散激波加速模型以及其在银河系宇宙线超新星遗迹起源学说上的应用,深化了人们对宇宙高能现象的认识.结合超新星遗迹辐射能谱的时间演化特性,构建的时间依赖的超新星遗迹粒子加速模型,不仅能够解释200 GV附近宇宙线的能谱反常,还自然地形成能谱膝区,甚至可以将超新星遗迹粒子加速对宇宙线能谱的贡献延伸至踝区.该模型预期超新星遗迹中粒子的输运行为表现为湍流扩散,这需要未来的观测以及与粒子输运相关的等离子体数值模拟工作来进一步验证.  相似文献   

11.
Of great importance in distinguishing between models for gamma-ray bursts (GRBs) is the experimental determination of the highest energy gamma rays associated with bursts. The EGRET detection of a 15 GeV gamma ray indicates that the spectra of at least some bursts extend well beyond the several MeV limit of the BATSE detectors (Hurleyet al., 1994). The low expected flux means that the collecting area of the present generation of satellite-based detectors is too small to detect gamma rays much above this energy efficiently, and such searches are currently undertaken with ground based detectors. In this paper searches made for very high energy GRBs with a southern hemisphere air shower particle array are described.  相似文献   

12.
The process of heliospheric modulation of intensity of galactic cosmic rays is investigated by solving the transport equation. The spatial-energetic distribution of cosmic rays in the present epoch and in the past is analyzed. It is demonstrated that the particle density and the energy density of cosmic rays in the Solar System in the distant past were much lower than the corresponding current values. The cosmic ray intensity modulation in the early heliosphere was especially strong in the case of low-energy particles.  相似文献   

13.
A theoretical model for the interstellar turbulence is developed. In this model the fluctuation spectrum is formed due to reflection of shocks, produced by supernovae, on interstellar clouds. The spectra of turbulence and the diffusion coefficient of cosmic rays are derived. It is demonstrated that local enhancements of the ionization rate by cosmic rays accelerated by supernova shocks may be responsible for fast renewal of warm ionized envelopes around cores of standard ISM clouds.  相似文献   

14.
The Telescope Array experiment studies ultra high energy cosmic rays using a hybrid detector. Fluorescence telescopes measure the longitudinal development of the extensive air shower generated when a primary cosmic ray particle interacts with the atmosphere. Meanwhile, scintillator detectors measure the lateral distribution of secondary shower particles that hit the ground. The Middle Drum (MD) fluorescence telescope station consists of 14 telescopes from the High Resolution Fly’s Eye (HiRes) experiment, providing a direct link back to the HiRes measurements. Using the scintillator detector data in conjunction with the telescope data improves the geometrical reconstruction of the showers significantly, and hence, provides a more accurate reconstruction of the energy of the primary particle. The Middle Drum hybrid spectrum is presented and compared to that measured by the Middle Drum station in monocular mode. Further, the hybrid data establishes a link between the Middle Drum data and the surface array. A comparison between the Middle Drum hybrid energy spectrum and scintillator Surface Detector (SD) spectrum is also shown.  相似文献   

15.
We investigate the problem of transition from galactic cosmic rays to extragalactic ultra-high energy cosmic rays. Using the model for extragalactic ultra-high energy cosmic rays and observed all-particle cosmic ray spectrum, we calculate the galactic spectrum of iron nuclei in the energy range 108–109 GeV. The flux and spectrum predicted at lower energies agree well with the KASCADE data. The transition from galactic to extragalactic cosmic rays is distinctly seen in spectra of protons and iron nuclei, when they are measured separately. The shape of the predicted iron spectrum agrees with the Hall diffusion.  相似文献   

16.
The role of nearby galactic sources, the supernova remnants, in formation of observed energy spectrum and large-scale anisotropy of high-energy cosmic rays is studied. The list of these sources is made up based on radio, X-ray and gamma-ray catalogues. The distant sources are treated statistically as ensemble of sources with random positions and ages. The source spectra are defined based on the modern theory of cosmic ray acceleration in supernova remnants while the propagation of cosmic rays in the interstellar medium is described in the frameworks of galactic diffusion model. Calculations of dipole component of anisotropy are made to reproduce the experimental procedure of “two-dimensional” anisotropy measurements. The energy dependence of particle escape time in the process of acceleration in supernova remnants and the arm structure of sources defining the significant features of anisotropy are also taken into account. The essential new trait of the model is a decreasing number of core collapse SNRs being able to accelerate cosmic rays up to the given energy, that leads to steeper total cosmic ray source spectrum in comparison with the individual source spectrum. We explained simultaneously the new cosmic ray data on the fine structure of all particle spectrum around the knee and the amplitude and direction of the dipole component of anisotropy in the wide energy range 1 TeV–1 EeV. Suggested assumptions do not look exotic, and they confirm the modern understanding of cosmic ray origin.  相似文献   

17.
We consider effects on an (ultra)relativistic jet and its ambient medium caused by high-energy cosmic rays accelerated at the jet side boundary. As illustrated by simple models, during the acceleration process a flat cosmic ray distribution can be created, with gyro-radii for the highest particle energies reaching scales comparable to the jet radius or energy density comparable to the pressure of the ambient medium . In the case of efficient radiative losses, a high-energy bump in the spectrum can dominate the cosmic ray pressure. In extreme cases, the cosmic rays are able to push the ambient medium off, providing a 'cosmic ray cocoon' separating the jet from the surrounding medium. The considered cosmic rays provide an additional jet braking force and lead to a number of consequences for the jet structure and its radiative output. In particular, the dynamic and acceleration time-scales involved are in the range observed in variable active galactic nuclei.  相似文献   

18.
We explore some basic observational consequences of assuming that the dark matter in the Milky Way consists mainly of molecular clouds, and that cosmic rays can penetrate these clouds. In a favoured model of the clouds, this penetration would have the following consequences, all of which agree with observation.
(i) Cosmic ray nuclei would be fragmented when they enter a cloud, giving them a lifetime in the Galaxy of ∼1015 s (for relativistic nuclei).
(ii) Pionic γ -rays emitted by the clouds, after proton–proton (pp) collisions, would have a diffuse flux in the Galactic plane comparable to the flux from known sources for photon energies ≳1 GeV .
(iii) The heat input into the clouds from cosmic rays would be re-radiated mainly in the far-infrared. The resulting radiation background agrees, in both intensity and spectrum in different directions, with a known excess in the far‐infrared background of the galaxy over emission by warm dust.  相似文献   

19.
The electromagnetic and particle cascade resulting from the absorption of galactic cosmic rays in the atmosphere of Titan is shown to be an important mechanism for driving the photochemistry at pressures of 1 to 50 mbar in the atmosphere. In particular, the cosmic ray cascade dissociates N2, a process necessary for the synthesis of nitrogen organics such as HCN. The important interactions of the cosmic ray cascade with the atmosphere are discussed. The N2 excitation and dissociation rates and the ionization rates of the principal atmospheric constituents are computed for a Titan model atmosphere that is consistent with Voyager 1 observations. It is suggested that HCN may be formed efficiently in the lower atmosphere through the photodissociation of methylamine. It is also argued that models of nitrogen and hydrocarbon photochemistry in the lower atmosphere of Titan should include the absorption of galactic cosmic rays as an important energy source.  相似文献   

20.
We have used Monte Carlo simulations to investigate the capabilities of a giant air shower observatory designed to detect showers initiated by cosmic rays with energies exceeding 1019 eV. The observatory is to consist of an array of detectors that will characterise the air shower at ground level, and optical detectors to measure the fluorescence light emitted by the shower in the atmosphere. Using these detectors together in a ‘hybrid’ configuration, we find that precise geometrical reconstruction of the shower axis is possible, leading to excellent resolution in energy. The technique is also shown to provide very good reconstruction below 1019 eV, at energies where the ground array is not fully efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号