首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the NIMS Io Thermal Emission Database (NITED), a collection of over 1000 measurements of radiant flux from Io’s volcanoes (Davies, A.G. et al. [2012]. Geophys. Res. Lett. 39, L01201. doi:10.1029/2011GL049999), we have examined the variability of thermal emission from three of Io’s volcanoes: Pele, Janus Patera and Kanehekili Fluctus. At Pele, the 5-μm thermal emission as derived from 28 night time observations is remarkably steady at 37 ± 10 GW μm?1, re-affirming previous analyses that suggested that Pele an active, rapidly overturning silicate lava lake. Janus Patera also exhibits relatively steady 5-μm thermal emission (≈20 ± 3 GW μm?1) in the four observations where Janus is resolved from nearby Kanehekili Fluctus. Janus Patera might contain a Pele-like lava lake with an effusion rate (QF) of ≈40–70 m3 s?1. It should be a prime target for a future mission to Io in order to obtain data to determine lava eruption temperature. Kanehekili Fluctus has a thermal emission spectrum that is indicative of the emplacement of lava flows with insulated crusts. Effusion rate at Kanehekili Fluctus dropped by an order of magnitude from ≈95 m3 s?1 in mid-1997 to ≈4 m3 s?1 in late 2001.  相似文献   

2.
The planet-encircling springtime storm in Saturn’s troposphere (December 2010–July 2011, Fletcher, L.N. et al. [2011]. Science 332, 1413–1414; Sánchez-Lavega, A. et al. [2011]. Nature 475, 71–74; Fischer, G. et al. [2011]. Nature 475, 75–77) produced dramatic perturbations to stratospheric temperatures, winds and composition at mbar pressures that persisted long after the tropospheric disturbance had abated. Thermal infrared (IR) spectroscopy from the Cassini Composite Infrared Spectrometer (CIRS), supported by ground-based IR imaging from the VISIR instrument on the Very Large Telescope and the MIRSI instrument on NASA’s IRTF, is used to track the evolution of a large, hot stratospheric anticyclone between January 2011 and March 2012. The evolutionary sequence can be divided into three phases: (I) the formation and intensification of two distinct warm airmasses near 0.5 mbar between 25 and 35°N (B1 and B2) between January–April 2011, moving westward with different zonal velocities, B1 residing directly above the convective tropospheric storm head; (II) the merging of the warm airmasses to form the large single ‘stratospheric beacon’ near 40°N (B0) between April and June 2011, disassociated from the storm head and at a higher pressure (2 mbar) than the original beacons, a downward shift of 1.4 scale heights (approximately 85 km) post-merger; and (III) the mature phase characterised by slow cooling (0.11 ± 0.01 K/day) and longitudinal shrinkage of the anticyclone since July 2011. Peak temperatures of 221.6 ± 1.4 K at 2 mbar were measured on May 5th 2011 immediately after the merger, some 80 K warmer than the quiescent surroundings. From July 2011 to the time of writing, B0 remained as a long-lived stable stratospheric phenomenon at 2 mbar, moving west with a near-constant velocity of 2.70 ± 0.04 deg/day (?24.5 ± 0.4 m/s at 40°N relative to System III longitudes). No perturbations to visible clouds and hazes were detected during this period.With no direct tracers of motion in the stratosphere, we use thermal windshear calculations to estimate clockwise peripheral velocities of 200–400 m/s at 2 mbar around B0. The peripheral velocities of the two original airmasses were smaller (70–140 m/s). In August 2011, the size of the vortex as defined by the peripheral collar was 65° longitude (50,000 km in diameter) and 25° latitude. Stratospheric acetylene (C2H2) was uniformly enhanced by a factor of three within the vortex, whereas ethane (C2H6) remained unaffected. The passage of B0 generated a new band of warm stratospheric emission at 0.5 mbar at its northern edge, and there are hints of warm stratospheric structures associated with the beacons at higher altitudes (p < 0.1 mbar) than can be reliably observed by CIRS nadir spectroscopy. Analysis of the zonal windshear suggests that Rossby wave perturbations from the convective storm could have propagated vertically into the stratosphere at this point in Saturn’s seasonal cycle, one possible source of energy for the formation of these stratospheric anticyclones.  相似文献   

3.
Here we report the serendipitous identification of a bright optical transient in the vicinity of the dwarf elliptical galaxy M 32 (NGC 221). This transient (MONS OT J004240.69+405142.0) was detected using filtered CCD imaging, about 20 arcsec southwest from the core of M 32, at equatorial coordinates α = 00:42:40.69 ± 0.05, δ = +40:51:42.0 ± 0.5, between 04:20:16 and 04:21:46 UT on June 22, 2007. A detailed analysis of the intensity profile of the feature suggests that it is of stellar nature with apparent visual magnitude 9.69 ± 0.15 which gives an absolute magnitude of ?14.7 ± 0.3 if the feature is located in M 31/M 32. Under the assumption of the event reported here being of cosmic origin and although no correlation with GRBs in time or space has been found, the behaviour of the optical transient appears to resemble that of the recently observed GRB 080319B: very fast ascent and decay of several magnitudes within a few minutes. If this interpretation is correct, the afterglow decay was extremely rapid, decreasing by more than 5 mag. in about 2 min, α = 2.4. Given its properties, the event is a possible orphan GRB optical afterglow candidate originated beyond the Local Group. Alternative explanations are also discussed.  相似文献   

4.
An automated cloud tracking algorithm is applied to Cassini Imaging Science Subsystem high-resolution apoapsis images of Saturn from 2005 and 2007 and moderate resolution images from 2011 and 2012 to define the near-global distribution of zonal winds and eddy momentum fluxes at the middle troposphere cloud level and in the upper troposphere haze. Improvements in the tracking algorithm combined with the greater feature contrast in the northern hemisphere during the approach to spring equinox allow for better rejection of erroneous wind vectors, a more objective assessment at any latitude of the quality of the mean zonal wind, and a population of winds comparable in size to that available for the much higher contrast atmosphere of Jupiter. Zonal winds at cloud level changed little between 2005 and 2007 at all latitudes sampled. Upper troposphere zonal winds derived from methane band images are ~10 m s?1 weaker than cloud level winds in the cores of eastward jets and ~5 m s?1 stronger on either side of the jet core, i.e., eastward jets appear to broaden with increasing altitude. In westward jet regions winds are approximately the same at both altitudes. Lateral eddy momentum fluxes are directed into eastward jet cores, including the strong equatorial jet, and away from westward jet cores and weaken with increasing altitude on the flanks of the eastward jets, consistent with the upward broadening of these jets. The conversion rate of eddy to mean zonal kinetic energy at the visible cloud level is larger in eastward jet regions (5.2 × 10?5 m2 s?3) and smaller in westward jet regions (1.6 × 10?5 m2 s?3) than the global mean value (4.1 × 10?5 m2 s?3). Overall the results are consistent with theories that suggest that the jets and the overturning meridional circulation at cloud level on Saturn are maintained at least in part by eddies due to instabilities of the large-scale flow near and/or below the cloud level.  相似文献   

5.
We describe the science motivation and development of a pair production telescope for medium-energy (∼5–200 MeV) gamma-ray polarimetry. Our instrument concept, the Advanced Energetic Pair Telescope (AdEPT), takes advantage of the Three-Dimensional Track Imager, a low-density gaseous time projection chamber, to achieve angular resolution within a factor of two of the pair production kinematics limit (∼0.6° at 70 MeV), continuum sensitivity comparable with the Fermi-LAT front detector (<3 × 10−6 MeV cm−2 s−1 at 70 MeV), and minimum detectable polarization less than 10% for a 10 mCrab source in 106 s.  相似文献   

6.
The Visible and Infra-Red Thermal Imaging Spectrometer (VIRTIS) instrument on board the Venus Express spacecraft has measured the O2(a1Δ) nightglow distribution at 1.27 μm in the Venus mesosphere for more than two years. Nadir observations have been used to create a statistical map of the emission on Venus nightside. It appears that the statistical 1.6 MR maximum of the emission is located around the antisolar point. Limb observations provide information on the altitude and on the shape of the emission layer. We combine nadir observations essentially covering the southern hemisphere, corrected for the thermal emission of the lower atmosphere, with limb profiles of the northern hemisphere to generate a global map of the Venus nightside emission at 1.27 μm. Given all the O2(a1Δ) intensity profiles, O2(a1Δ) and O density profiles have been calculated and three-dimensional maps of metastable molecular and atomic oxygen densities have been generated. This global O density nightside distribution improves that available from the VTS3 model, which was based on measurements made above 145 km. The O2(a1Δ) hemispheric average density is 2.1 × 109 cm?3, with a maximum value of 6.5 × 109 cm?3 at 99.2 km. The O density profiles have been derived from the nightglow data using CO2 profiles from the empirical VTS3 model or from SPICAV stellar occultations. The O hemispheric average density is 1.9 × 1011 cm?3 in both cases, with a mean altitude of the peak located at 106.1 km and 103.4 km, respectively. These results tend to confirm the modeled values of 2.8 × 1011 cm?3 at 104 km and 2.0 × 1011 cm?3 at 110 km obtained by Brecht et al. [Brecht, A., Bougher, S.W., Gérard, J.-C., Parkinson, C.D., Rafkin, S., Foster, B., 2011a. J. Geophys. Res., in press] and Krasnopolsky [Krasnopolsky, V.A., 2010. Icarus 207, 17–27], respectively. Comparing the oxygen density map derived from the O2(a1Δ) nightglow observations, it appears that the morphology is very different and that the densities obtained in this study are about three times higher than those predicted by the VTS3 model.  相似文献   

7.
《Astroparticle Physics》2007,26(6):402-411
We constrain the possibility of a non-trivial refractive index in free space corresponding to an energy-dependent velocity of light: c(E)  c0(1  E/M), where M is a mass scale that might represent effect of quantum-gravitational space-time foam, using the arrival times of sharp features observed in the intensities of radiation with different energies from a large sample of gamma-ray bursters (GRBs) with known redshifts. We use wavelet techniques to identify genuine features, which we confirm in simulations with artificial added noise. Using the weighted averages of the time-lags calculated using correlated features in all the GRB light curves, we find a systematic tendency for more energetic photons to arrive earlier. However, there is a very strong correlation between the parameters characterizing an intrinsic time-lag at the source and a distance-dependent propagation effect. Moreover, the significance of the earlier arrival times is less evident for a subsample of more robust spectral structures. Allowing for intrinsic stochastic time-lags in these features, we establish a statistically robust lower limit: M > 0.9 × 1016 GeV on the scale of violation of Lorentz invariance.  相似文献   

8.
Vladimir Krasnopolsky 《Icarus》2012,219(1):244-249
To search for DCl in the Venus atmosphere, a spectrum near the D35Cl (1–0) R4 line at 2141.54 cm?1 was observed using the CSHELL spectrograph at NASA IRTF. Least square fitting to the spectrum by a synthetic spectrum results in a DCl mixing ratio of 17.8 ± 6.8 ppb. Comparing to the HCl abundance of 400 ± 30 ppb (Krasnopolsky [2010a] Icarus, 208, 314–322), the DCl/HCl ratio is equal to 280 ± 110 times the terrestrial D/H = 1.56 × 10?4. This ratio is similar to that of HDO/H2O = 240 ± 25 times the terrestrial HDO/H2O from the VEX/SOIR occultations at 70–110 km. Photochemistry in the Venus mesosphere converts H from HCl to that in H2O with a rate of 1.9 × 109 cm?2 s?1 (Krasnopolsky [2012] Icarus, 218, 230–246). The conversion involves photolysis of HCl; therefore, the photochemistry tends to enrich D/H in HCl and deplete in H2O. Formation of the sulfuric acid clouds may affect HDO/H2O as well. The enriched HCl moves down by mixing to the lower atmosphere where thermodynamic equilibriums for H2 and HCl near the surface correspond to D/H = 0.71 and 0.74 times that in H2O, respectively. Time to establish these equilibriums is estimated at ~3 years and comparable to the mixing time in the lower atmosphere. Therefore, the enriched HCl from the mesosphere gives D back to H2O near the surface. Comparison of chemical and mixing times favors a constant HDO/H2O up to ~100 km and DCl/HCl equal to D/H in H2O times 0.74.Ammonia is an abundant form of nitrogen in the reducing environments. Thermodynamic equilibriums with N2 and NO near the surface of Venus give its mixing ratio of 10?14 and 6 × 10?7, respectively. A spectrum of Venus near the NH3 line at 4481.11 cm?1 was observed at NASA IRTF and resulted in a two-sigma upper limit of 6 ppb for NH3 above the Venus clouds. This is an improvement of the previous upper limit by a factor of 5. If ammonia exists at the ppb level or less in the lower atmosphere, it quickly dissociates in the mesosphere and weakly affects its photochemistry.  相似文献   

9.
Primordial Black Holes (PBHs) are gravitationally collapsed objects that may have been created by density fluctuations in the early universe and could have arbitrarily small masses down to the Planck scale. Hawking showed that due to quantum effects, a black hole has a temperature inversely proportional to its mass and will emit all species of fundamental particles thermally. PBHs with initial masses of ∼5.0 × 1014 g should be expiring in the present epoch with bursts of high-energy particles, including gamma radiation in the GeV–TeV energy range. The Milagro high energy observatory, which operated from 2000 to 2008, is sensitive to the high end of the PBH evaporation gamma-ray spectrum. Due to its large field-of-view, more than 90% duty cycle and sensitivity up to 100 TeV gamma rays, the Milagro observatory is well suited to perform a search for PBH bursts. Based on a search on the Milagro data, we report new PBH burst rate density upper limits over a range of PBH observation times. In addition, we report the sensitivity of the Milagro successor, the High Altitude Water Cherenkov (HAWC) observatory, to PBH evaporation events.  相似文献   

10.
Sub-millimeter 12CO (346 GHz) and 13CO (330 GHz) line absorptions, formed within the mesospheric to lower thermospheric altitude (70–120 km) region of the Venus atmosphere, have been mapped across the nightside disk of Venus during 2001–2009 inferior conjunctions, employing the James Clerk Maxwell Telescope (JCMT). Radiative transfer analysis of these thermal line absorptions supports temperature and CO mixing profile retrievals, as described in a companion paper (Clancy et al., 2012). Here, we consider the analysis of the sharp line absorption cores of these CO spectra in terms of accurate Doppler wind profile measurements at 95–115 km altitudes versus local time (~8 pm–4 am) and latitude (~60N–60S). These Doppler wind measurements support determinations of the nightside zonal and subsolar-to-antisolar (SSAS) circulation components over a variety of timescales. The average behavior fitted from 21 retrieved maps of 12CO Doppler winds (obtained over hourly, daily, weekly, and interannual intervals) indicates stronger average zonal (85 m/s retrograde) versus SSAS (65 m/s) circulation at the 1 μbar pressure (108–110 km altitude) level. However, the absolute and relative magnitudes of these circulation components exhibit extreme variability over daily to weekly timescales. Furthermore, the individual Doppler wind measurements within each nightside mapping observation generally show significant deviations (20–50 m/s, averaged over 5000 km horizontal scales) from the simple zonal/SSAS solution, with distinct local time and latitudinal characters that are also time variable. These large scale residual circulations contribute 30–70% of the observed nightside Doppler winds at any given time, and may be most responsible for global variations in nightside lower thermospheric trace composition and temperatures, as coincidentally retrieved CO abundance and temperature distributions do not correlate with solution retrograde zonal and SSAS winds (see companion paper, Clancy et al., 2012). Limited comparisons of these nightside submillimeter results with dayside infrared Doppler wind measurements suggest distinct dayside versus nightside circulations, in terms of zonal winds in particular. Combined 12CO and 13CO Doppler wind mapping observations obtained since 2004 indicate that the average zonal and SSAS wind components increase by 50–100% between altitudes of 100 and 115 km. If gravity waves originating from the cloud levels are responsible for the extension of zonal winds into the thermosphere (Alexander, M.J. [1992]. Geophys. Res. Lett. 19, 2207–2210), such waves deposit substantial momentum (i.e., break) in the lower nightside thermosphere.  相似文献   

11.
We present numerical simulations of the axisymmetric accretion of a massive magnetized plasma torus on a rotating black hole. We use a realistic equation of state, which takes into account neutrino cooling and energy loss due to nucleus dissociations. The calculation are performed in the ideal relativistic MHD approximation using an upwind conservative scheme that is based on a linear Riemann solver and the constrained transport method to evolve the magnetic field. The gravitational attraction of the black hole is introduced via the Kerr metric in the Kerr–Schild coordinates. We simulate various magnetic field configurations and torus models, both optically thick and thin for neutrinos.We have found an effect of alternation of the magnetic field orientation in the ultrarelativistic jet formed as a result of the collapse. The calculations show evidence for heating of the wind surrounding the collapsar by the shock waves generated at the jet–wind border. It is shown that the neutrino cooling does not significantly change either the structure of the accretion flow or the total energy release of the system. The angular momentum of the accreting matter defines the time scale of the accretion. Due to the absence of the magnetic dynamo in our calculations, the initial strength and topology of the magnetic field determines the magnetization of the black hole, jet formation properties and the total energy yield. We estimate the total energy of accretion which transformed to jets as 1.3 × 1052 ergs which was sufficient to explain hypernova explosions like GRB 980425 or GRB 030329.  相似文献   

12.
Ultraviolet spectra from the International Ultraviolet Explorer (IUE) and from the Hubble Space Telescope (HST) of the symbiotic novae AG Peg during the period 1978–1996 are analyzed. Some spectra showing the modulations of spectral lines at different times are presented. We determined the reddening from the 2200 Å feature, finding that E(B−V) = 0.10 ± 0.02. We studied N IV] at 1486 Å, C IV 1550 Å, and O III] at 1660 Å, produced in the fast wind from the hot white dwarf. The mean wind velocity of the three emission lines is 1300 km s−1 (FWHM). The mean wind mass loss rate is ∼6 × 10−7 M yr−1. The mean temperature is ∼6.5 × 105 K. The mean ultraviolet luminosity is ∼5 × 1033 erg s−1. The modulations of line fluxes in the emitting region at different times are attributed to the variations of density and temperature of the ejected matter as a result of variations in the rate of mass loss.  相似文献   

13.
The European Space Agency’s Rosetta spacecraft is the first Solar System mission to include instrumentation capable of measuring planetary thermal fluxes at both near-IR (VIRTIS) and submillimeter–millimeter (smm–mm, MIRO) wavelengths. Its primary mission is a 1 year reconnaissance of Comet 67P/Churyumov–Gerasimenko beginning in 2014. During a 2010 close fly-by of Asteroid 21 Lutetia, the VIRTIS and MIRO instruments provided complementary data that have been analyzed to produce a consistent model of Lutetia’s surface layer thermal and electrical properties, including a physical model of self-heating. VIRTIS dayside measurements provided highly resolved 1 K accuracy surface temperatures that required a low thermal inertia, I < 30 J/(K m2 s0.5). MIRO smm and mm measurements of polar night thermal fluxes produced constraints on Lutetia’s subsurface thermal properties to depths comparable to the seasonal thermal wave, yielding a model of I < 20 J/(K m2 s0.5) in the upper few centimeters, increasing with depth in a manner very similar to that of Earth’s Moon. Subsequent MIRO-based model predictions of the dayside surface temperatures reveal negative offsets of ~5–30 K from the higher VIRTIS-measurements. By adding surface roughness in the form of 50% fractional coverage of hemispherical mini-craters to the MIRO-based thermal model, sufficient self-heating is produced to largely remove the offsets relative to the VIRTIS measurements and also reproduce the thermal limb brightening features (relative to a smooth surface model) seen by VIRTIS. The Lutetia physical property constraints provided by the VIRTIS and MIRO data sets demonstrate the unique diagnostic capabilities of combined infrared and submillimeter/millimeter thermal flux measurements.  相似文献   

14.
The mass composition of high energy cosmic rays depends on their production, acceleration, and propagation. The study of cosmic ray composition can therefore reveal hints of the origin of these particles. At the South Pole, the IceCube Neutrino Observatory is capable of measuring two components of cosmic ray air showers in coincidence: the electromagnetic component at high altitude (2835 m) using the IceTop surface array, and the muonic component above ∼1 TeV using the IceCube array. This unique detector arrangement provides an opportunity for precision measurements of the cosmic ray energy spectrum and composition in the region of the knee and beyond. We present the results of a neural network analysis technique to study the cosmic ray composition and the energy spectrum from 1 PeV to 30 PeV using data recorded using the 40-string/40-station configuration of the IceCube Neutrino Observatory.  相似文献   

15.
Determining the optical constants of Titan aerosol analogues, or tholins, has been a major concern for the last three decades because they are essential to constrain the numerical models used to analyze Titan’s observational data (albedo, radiative transfer, haze vertical profile, surface contribution, etc.). Here we present the optical constant characterization of tholins produced with an RF plasma discharge in a (95%N2–5%CH4) gas mixture simulating Titan’s main atmospheric composition, and deposited as a thin film on an Al–SiO2 substrate. The real and imaginary parts, n and k, of the tholin complex refractive index have been determined from 370 nm to 900 nm wavelength using spectroscopic ellipsometry. The values of n decrease from n = 1.64 (at 370 nm) to n = 1.57 (at 900 nm) as well as the values of k which feature two behaviors: an exponential decay from 370 nm to 500 nm, with k = 12.4 × e?0.018λ (where λ is expressed in nm), followed by a plateau, with k = (1.8 ± 0.2) × 10?3. The trends observed for the PAMPRE tholins optical constants are compared to those determined for other Titan tholins, as well as to the optical constants of Titan’s aerosols retrieved from observational data.  相似文献   

16.
We present an analysis of 19 μm spectra of Io’s SO2 atmosphere from the TEXES mid-infrared high spectral resolution spectrograph on NASA’s Infrared Telescope Facility, incorporating new data taken between January 2005 and June 2010 and a re-analysis of earlier data taken from November 2001 to January 2004. This is the longest set of contiguous observations of Io’s atmosphere using the same instrument and technique thus far. We have fitted all 16 detected blended absorption lines of the ν2 SO2 vibrational band to retrieve the subsolar values of SO2 column abundance and the gas kinetic temperature. By incorporating an existing model of Io’s surface temperatures and atmosphere, we retrieve sub-solar column densities from the disk-integrated data. Spectra from all years are best fit by atmospheric temperatures <150 K. Best-fit gas kinetic temperatures on the anti-Jupiter hemisphere, where SO2 gas abundance is highest, are low and stable, with a mean of 108 (±18) K. The sub-solar SO2 column density between longitudes of 90–220° varies from a low of 0.61 (±0.145) × 10?17 cm?2, near aphelion in 2004, to a high of 1.51 (±0.215) × 1017 cm?2 in 2010 when Jupiter was approaching its early 2011 perihelion. No correlation in the gas temperature was seen with the increasing SO2 column densities outside the errors.Assuming that any volcanic component of the atmosphere is constant with time, the correlation of increasing SO2 abundance with decreasing heliocentric distance provides good evidence that the atmosphere is at least partially supported by frost sublimation. The SO2 frost thermal inertias and albedos that fit the variation in atmospheric density best are between 150–1250 W m?2 s?1/2 K?1 and 0.613–0.425 respectively. Photometric evidence favors albedos near the upper end of this range, corresponding to thermal inertias near the lower end. This relatively low frost thermal inertia produces larger amplitude seasonal variations than are observed, which in turn implies a substantial additional volcanic atmospheric component to moderate the amplitude of the seasonal variations of the total atmosphere on the anti-Jupiter hemisphere. The seasonal thermal inertia we measure is unique both because it refers exclusively to the SO2 frost surface component, and also because it refers to relatively deep subsurface layers (few meters) due to the timescales of many years, while previous studies have determined thermal inertias at shallower levels (few centimeters), relevant for timescales of ~2 h (eclipse) or ~2 days (diurnal curves).  相似文献   

17.
We obtained estimates of the Johnson V absolute magnitudes (H) and slope parameters (G) for 583 main-belt and near-Earth asteroids observed at Ond?ejov and Table Mountain Observatory from 1978 to 2011. Uncertainties of the absolute magnitudes in our sample are <0.21 mag, with a median value of 0.10 mag. We compared the H data with absolute magnitude values given in the MPCORB, Pisa AstDyS and JPL Horizons orbit catalogs. We found that while the catalog absolute magnitudes for large asteroids are relatively good on average, showing only little biases smaller than 0.1 mag, there is a systematic offset of the catalog values for smaller asteroids that becomes prominent in a range of H greater than ~10 and is particularly big above H  12. The mean (Hcatalog ? H) value is negative, i.e., the catalog H values are systematically too bright. This systematic negative offset of the catalog values reaches a maximum around H = 14 where the mean (Hcatalog ? H) is ?0.4 to ?0.5. We found also smaller correlations of the offset of the catalog H values with taxonomic types and with lightcurve amplitude, up to ~0.1 mag or less. We discuss a few possible observational causes for the observed correlations, but the reason for the large bias of the catalog absolute magnitudes peaking around H = 14 is unknown; we suspect that the problem lies in the magnitude estimates reported by asteroid surveys. With our photometric H and G data, we revised the preliminary WISE albedo estimates made by Masiero et al. (Masired, J.R. et al. [2011]. Astrophys. J. 741, 68–89) and Mainzer et al. (Mainzer, A. et al. [2011b]. Astrophys. J. 743, 156–172) for asteroids in our sample. We found that the mean geometric albedo of Tholen/Bus/DeMeo C/G/B/F/P/D types with sizes of 25–300 km is pV = 0.057 with the standard deviation (dispersion) of the sample of 0.013 and the mean albedo of S/A/L types with sizes 0.6–200 km is 0.197 with the standard deviation of the sample of 0.051. The standard errors of the mean albedos are 0.002 and 0.006, respectively; systematic observational or modeling errors can predominate over the quoted formal errors. There is apparent only a small, marginally significant difference of 0.031 ± 0.011 between the mean albedos of sub-samples of large and small (divided at diameter 25 km) S/A/L asteroids, with the smaller ones having a higher albedo. The difference will have to be confirmed and explained; we speculate that it may be either a real size dependence of surface properties of S type asteroids or a small size-dependent bias in the data (e.g., a bias towards higher albedos in the optically-selected sample of asteroids). A trend of the mean of the preliminary WISE albedo estimates increasing with asteroid size decreasing from D  30 down to ~5 km (for S types) showed in Mainzer et al. (Mainzer, A. et al. [2011a]. Astrophys. J. 741, 90–114) appears to be mainly due to the systematic bias in the MPCORB absolute magnitudes that progressively increases with H in the corresponding range H = 10–14.  相似文献   

18.
An indoor and an outdoor radio frequency survey was conducted in Universiti Malaya, Malaysia, as a test site, for the purpose of developing radio astronomy research in Malaysia. This is the first radio astronomical survey of any such done in Malaysia. Observation and analysis were done in the radio frequency spectrum between 1 MHz and 2060 MHz. In this paper, the experimental setup and procedure of surveying are outlined and the measured data are interpreted. The eight radio astronomical windows were investigated from a 24 h observation, with the emphasis on two of the most important radio astronomical windows which are protected by the Malaysian Communications and Multimedia Commission (MCMC). Some intermittent observations were also done for referencing purposes. The radio frequency interferences (RFIs) are found to be relatively low. The overall relative Interference-to-Noise ratio (INR) at this test site ranges between 5.72% and 11.74%. The average strength of RFI in the eight focused radio astronomical windows at this site ranges between ?100 dBm and ?90 dBm (equivalently between 9.23 × 104 Jy and 93.29 × 104 Jy at resolution bandwidth of 125 kHz).  相似文献   

19.
We have examined thermal emission from 240 active or recently-active volcanic features on Io and quantified the magnitude and distribution of their volcanic heat flow during the Galileo epoch. We use spacecraft data and a geological map of Io to derive an estimate of the maximum possible contribution from small dark areas not detected as thermally active but which nevertheless appear to be sites of recent volcanic activity. We utilize a trend analysis to extrapolate from the smallest detectable volcanic heat sources to these smallest mapped dark areas. Including the additional heat from estimates for “outburst” eruptions and for a multitude of very small (“myriad”) hot spots, we account for ~62 × 1012 W (~59 ± 7% of Io’s total thermal emission). Loki Patera contributes, on average, 9.6 × 1012 W (~9.1 ± 1%). All dark paterae contribute 45.3 × 1012 W (~43 ± 5%). Although dark flow fields cover a much larger area than dark paterae, they contribute only 5.6 × 1012 W (~5.3 ± 0.6%). Bright paterae contribute ~2.6 × 1012 W (~2.5 ± 0.3%). Outburst eruption phases and very small hot spots contribute no more than ~4% of Io’s total thermal emission: this is probably a maximum value. About 50% of Io’s volcanic heat flow emanates from only 1.2% of Io’s surface. Of Io’s heat flow, 41 ± 7.0% remains unaccounted for in terms of identified sources. Globally, volcanic heat flow is not uniformly distributed. Power output per unit surface area is slightly biased towards mid-latitudes, although there is a stronger bias toward the northern hemisphere when Loki Patera is included. There is a slight favoring of the northern hemisphere for outbursts where locations were well constrained. Globally, we find peaks in thermal emission at ~315°W and ~105°W (using 30° bins). There is a minimum in thermal emission at around 200°W (almost at the anti-jovian longitude) which is a significant regional difference. These peaks and troughs suggest a shift to the east from predicted global heat flow patterns resulting from tidal heating in an asthenosphere. Global volcanic heat flow is dominated by thermal emission from paterae, especially from Loki Patera (312°W, 12°N). Thermal emission from dark flows maximises between 165°W and 225°W. Finally, it is possible that a multitude of very small hot spots, smaller than the present angular resolution detection limits, and/or cooler, secondary volcanic processes involving sulphurous compounds, may be responsible for at least part of the heat flow that is not associated with known sources. Such activity should be sought out during the next mission to Io.  相似文献   

20.
Hubble Space Telescope/Wide Field and Planetary Camera 2 (HST/WFPC2) images of Io obtained between 1995 and 2007 between 0.24 and 0.42 μm led to the detection of the Pele plume in reflected sunlight in 1995 and 1999; imaging of the Pele plume via absorption of jovian light in 1996 and 1999; detection of the Prometheus-type Pillan plume in reflected sunlight in 1997; and detection of the 2007 Pele-type Tvashtar plume eruption in reflected sunlight and via absorption of jovian light. Based on a detailed analysis of these observations we characterize and compare the gas and dust properties of each of the detected plumes. In each case, the brightness of the plumes in reflected sunlight is less at 0.26 μm than at 0.33 μm. Mie scattering analysis of the wavelength dependence of each plume’s reflectance signature suggests that range of particle sizes within the plumes is quite narrow. Assuming a normal distribution of particle sizes, the range of mean particle sizes is ~0.035–0.12 μm for the 1997 Pillan eruption, ~0.05–0.08 μm for the 1999 Pele and 2007 Tvasthar plumes, and ~0.05–0.11 μm for the 1995 Pele plume, and in each case the standard deviation in the particle size distribution is <15%. The Mie analysis also suggests that the 2007 Tvashtar eruption released ~109 g of sulfur dust, the 1999 Pele eruption released ~109 g of SO2 dust, the 1997 Pillan eruption released ~1010 g of SO2 dust, and the 1995 Pele plume may have released ~1010 g of SO2 dust. Analysis of the plume absorption signatures recorded in the F255W filter bandpass (0.24–0.28 μm) indicates that the opacity of the 2007 Tvashtar plume was 2× that of the 1996 and 1999 Pele plume eruptions. While the sulfur dust density estimated for the Tvashtar from the reflected sunlight data could have produced 61% of the observed plume opacity, <10% of the 1999 Pele F255W plume opacity could have resulted from the SO2 dust detected in the eruption. Accounting for the remaining F255W opacity level of the Pele and Tvasthar plumes based on SO2 and S2 gas absorption, the SO2 and S2 gas density inferred for each plume is almost equivalent corresponding to ~2–6 × 1016 cm?2 and 3–5 × 1015 cm?2, respectively, producing SO2 and S2 gas resurfacing rates ~0.04–0.2 cm yr?1 and 0.007–0.01 cm yr?1; and SO2 and S2 gas masses ~1–4 × 1010 g and ~2–3 × 109 g; for a total dust to gas ratio in the plumes ~10?1–10?2. The 2007 Tvashtar plume was detected by HST at ~380 ± 40 km in both reflected sunlight and absorbed jovian light; in 1999, the detected Pele plume altitude was 500 km in absorbed jovian light, but in reflected sunlight the detected height was ~2× lower. Thus, for the 1999 Pele plume, similar to the 1979 Voyager Pele plume observations, the most efficient dust reflections occurred in the region closest to the plume vent. The 0.33–0.42 μm brightness of the 1997 Pillan plume was 10–20× greater than the Pele or Tvashtar plumes, exceeding by a factor of 3 the average brightness levels observed within 200 km of 1979 Loki eruption vent. But, the 0.26 μm brightness of the 1997 Pillan plume in reflected sunlight was significantly lower than would be predicted by the dust scattering model. Presuming that the 0.26 μm brightness of the 1997 Pillan plume was attenuated by the eruption plume’s gas component, then an SO2 gas density ~3–6 × 1018 cm?2 is inferred from the data (for S2/SO2 ratios ?4%), comparable to the 0.3–2 × 1018 cm?2 SO2 density detected at Loki in 1979 (Pearl, J.C. et al. [1979]. Nature 280, 755; Lellouch et al., 1992), and producing an SO2 gas mass ~3–8 × 1011 g and an SO2 resurfacing rate ~8–23 cm yr?1. These results confirm the connection between high (?1017 cm?2) SO2 gas content and plumes that scatter strongly at nearly blue wavelengths, and it validates the occurrence of high density SO2 gas eruptions on Io. Noting that the SO2 gas content inferred from a spectrum of the 2003 Pillan plume was significantly lower ~2 × 1016 cm?2 (Jessup, K.L., Spencer, J., Yelle, R. [2007]. Icarus 192, 24–40); and that the Pillan caldera was flooded with fresh SO2 frost/slush just prior to the 1997 Pillan plume eruption (Geissler, P., McEwen, A., Phillips, C., Keszthelyi, L., Spencer, J. [2004a]. Icarus 169, 29–64; Phillips, C.B. [2000]. Voyager and Galileo SSI Views of Volcanic Resurfacing on Io and the Search for Geologic Activity at Europa. Ph.D. Thesis, Univ. of Ariz., Tucson); we propose that the density of SO2 gas released by this volcano is directly linked to the local SO2 frost abundance at the time of eruption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号