首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Auger Project studies the highest energies known in nature with an emphasis on energies ≥5 × 1019 eV, which are cosmic rays coming from the outer space reaching the Earth's surface with a very low flux. The questions to be elucidated are what are the origin, energy, production mechanism, and chemical composition of these cosmic rays. Auger aims at building two observatories in both the hemispheres and in 2000 the construction of the austral observatory started. Auger's two distinctive features are its exceptional size and its hybrid nature. It spans over an area of 3000 km2 and is constituted by 24 fluorescence detector telescopes and 1600 surface detectors. As such, it will provide a large number of events with less systematic detection uncertainties. The construction of the Southern Observatory in Argentina is quite advanced and the buildings at the Central Station in Malargüe city are already operational. So are the telescope buildings at Cerros Los Leones and Coihueco (two prototype telescopes were operational at Los Leones, which have now been dismantled), 32 surface detectors, and the telecommunication and data acquisition systems. About 20-hybrid events/months were detected and currently two events/hours are registered with the surface detector array. The detection of hybrid events is the most important issue since it shows that the equipment operates within the design parameters.  相似文献   

2.
A54 Cosmic Ray Acceleration in Galactic Wind Shocks A71 Detection of Ultra‐High Energy Cosmic Rays and Neutrinos with LOFAR A80 Status of the gravitational‐wave detector GEO600 A87 Recent Results and Future of the MAGIC gamma‐ray telescope A92 Cosmic ray detection with the radio technique A93 Cosmic Ray Physics with IceCube A94 The resonance‐like gamma‐ray absorption processes for use in astrophysics A97 Geometry reconstruction of air shower fluorescence detectors revisited A102 Supermassive Binary Black Holes & Radio Jets A108 Muonic Component of Air Showers Measured by KASCADE‐Grande A110 Towards new frontiers: observation of photons with energies above 1018 eV A112 The IceCube Neutrino Telescope A114 The ground‐based gamma‐ray observatory CTA A116 IceCube: Recent Results and Prospects A117 Particle Physics with AMANDA and IceCube A118 Altitude dependence of fluorescence light emission by extensive air showers A120 Neutrino‐induced cascades in AMANDA & IceCube A122 Enhancement Telescopes for the Pierre Auger Southern Observatory in Argentina A123 Proton spectra from relativistic shock environments in AGN and GRBs A124 The Baikal Neutrino Telescope – Physics Results A127 Searches for point‐like sources of cosmic neutrinos with IceCube A128 The MAGIC/IceCube Target of Opportunity Programtest run A131 Supernova detection with IceCube: from low to high energy neutrinos A132 Measurement of the UHECR energy spectrum from hybrid data of the Pierre Auger Observatory A133 Extension of IceCube at Lower Energy: the Use of AMANDA as Nested Array and the Future Prospectives A135 Searching for neutrinos with the Pierre Auger Observatory A138 Search for Transient Emission of Neutrinos in IceCube A140 Acoustic Neutrino Detection in Antarctic Ice A159 AMANDA limits on the diffuse muon‐neutrino flux: physics implications A164 Investigation of the Radio Emission of Cosmic Ray Air Showers with LOPES A168 The Northern Site of the Pierre Auger Observatory A170 Shower reconstruction and size spectra with KASCADE‐Grande data A171 Neutrinos from Gamma Ray Bursts: predictions and limits from AMANDA‐II data A172 Simulation study of shower profiles from ultra‐high energy cosmic rays A174 Upper limit to the photon fraction in cosmic rays above 1019 eV from the Pierre Auger Observatory A176 Astrophysics at MeV energies A180 Study of the Cosmic Ray Composition above 0.4 EeV using the Longitudinal Profiles of Showers observed at the Pierre Auger Observatory A185 Backgrounds for UHE horizontal neutrino showers A186 The Front‐End Cards of the Pierre Auger Surface Detectors: Test Results and Performance in the Field A187 Monte Carlo Studies for MAGIC‐II A194 Measuring the proton‐air cross section from logitudinal air shower profiles A195 The UHECR energy spectrummeasured at the Pierre Auger Observatory A203 Highlights of Observations of Galactic Sources with the MAGIC telescope A207 Adesign study for a 12.5 m ∅︁ Imaging Air Cherenkov Telescope for ground‐based γ ‐ray astronomy A210 The Future of Long‐Wavelengths Radio‐Astronomy in Germany: LOFAR and GLOW A211 Online Monitoring of the Pierre Auger Observatory A216 OPTIMA‐Burst – Catching GRB Afterglows (and other Transients) with High Time Resolution A227 JEM‐EUSO mission A232 Rapid Variations in AGN: Clues on Particle Accelerators A235 Systematic search forVHEgamma‐ray emission from X‐ray bright high‐frequency peaked BL Lac objects A237 Prospects for GeV Astronomy in the Era of GLAST A241 Improvements of the energy reconstruction for the MAGIC telescope by means of analysis and Monte Carlo techniques A265 Discovery of VHE γ ‐rays from BL Lacertae with the MAGIC telescope A266 Results of two observation cycles of LS I+61°303 with the MAGIC telescope A267 Wide Range Multifrequency Observations of Northern TeV Blazars A269 Diffusive and convective cosmic ray transport in elliptical galaxies  相似文献   

3.
《Astroparticle Physics》2011,35(5):266-276
In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an Extensive Air Shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 1017 and 1019 eV and zenith angles up to 65°. A parametrization combining a step function with an exponential is found to reproduce them very well in the considered range of energies and zenith angles. The LTP functions can also be obtained from data using events simultaneously observed by the fluorescence and the surface detector of the Pierre Auger Observatory (hybrid events). We validate the Monte Carlo results showing how LTP functions from data are in good agreement with simulations.  相似文献   

4.
The Telescope Array experiment studies ultra high energy cosmic rays using a hybrid detector. Fluorescence telescopes measure the longitudinal development of the extensive air shower generated when a primary cosmic ray particle interacts with the atmosphere. Meanwhile, scintillator detectors measure the lateral distribution of secondary shower particles that hit the ground. The Middle Drum (MD) fluorescence telescope station consists of 14 telescopes from the High Resolution Fly’s Eye (HiRes) experiment, providing a direct link back to the HiRes measurements. Using the scintillator detector data in conjunction with the telescope data improves the geometrical reconstruction of the showers significantly, and hence, provides a more accurate reconstruction of the energy of the primary particle. The Middle Drum hybrid spectrum is presented and compared to that measured by the Middle Drum station in monocular mode. Further, the hybrid data establishes a link between the Middle Drum data and the surface array. A comparison between the Middle Drum hybrid energy spectrum and scintillator Surface Detector (SD) spectrum is also shown.  相似文献   

5.
The energy reconstruction of extensive air showers measured with the LOFAR Radboud Air Shower Array (LORA) is presented in detail. LORA is a particle detector array located in the center of the LOFAR radio telescope in the Netherlands. The aim of this work is to provide an accurate and independent energy measurement for the air showers measured through their radio signal with the LOFAR antennas. The energy reconstruction is performed using a parameterized relation between the measured shower size and the cosmic-ray energy obtained from air shower simulations. In order to illustrate the capabilities of LORA, the all-particle cosmic-ray energy spectrum has been reconstructed, assuming that cosmic rays are composed only of protons or iron nuclei in the energy range between ∼2 × 1016 and 2 × 1018 eV. The results are compatible with literature values and a changing mass composition in the transition region from a Galactic to an extragalactic origin of cosmic rays.  相似文献   

6.
The extragalactic flux of protons is predicted to be suppressed above the famous Greisen–Zatsepin–Kuzmin cut-off at about EGZK  50 EeV due to the resonant photo-pion production with the cosmic microwave background. Current cosmic ray data do not give a conclusive confirmation of the GZK cut-off and the quest about the origin and the chemical composition of the highest energy cosmic rays is still open. Amongst other particles neutrinos are expected to add to the composition of the cosmic radiation at highest energies. We present an approach to simulate neutrino induced air showers by a full Monte Carlo simulation chain. Starting with neutrinos at the top of the atmosphere, the performed simulations take into account the details of the neutrino propagation inside the Earth and atmosphere as well as inside the surrounding mountains. The products of the interactions are input for air shower simulations. The mountains are modelled by means of a digital elevation map. To exemplify the potential and features of the developed tools we study the possibility to detect neutrino induced extensive air showers with the fluorescence detector set-up of the Pierre Auger Observatory. Both, down-going neutrinos and up-going neutrinos are simulated and their rates are determined. To evaluate the sensitivity, as a function of the incoming direction, the aperture, the acceptance and the total observable event rates are calculated for the Waxman–Bahcall (WB) bound.  相似文献   

7.
The mass composition of high energy cosmic rays depends on their production, acceleration, and propagation. The study of cosmic ray composition can therefore reveal hints of the origin of these particles. At the South Pole, the IceCube Neutrino Observatory is capable of measuring two components of cosmic ray air showers in coincidence: the electromagnetic component at high altitude (2835 m) using the IceTop surface array, and the muonic component above ∼1 TeV using the IceCube array. This unique detector arrangement provides an opportunity for precision measurements of the cosmic ray energy spectrum and composition in the region of the knee and beyond. We present the results of a neural network analysis technique to study the cosmic ray composition and the energy spectrum from 1 PeV to 30 PeV using data recorded using the 40-string/40-station configuration of the IceCube Neutrino Observatory.  相似文献   

8.
《Astroparticle Physics》2009,32(2):89-99
Atmospheric parameters, such as pressure (P), temperature (T) and density (ρP/T), affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a 10% seasonal modulation and 2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of P and ρ. The former affects the longitudinal development of air showers while the latter influences the Molière radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.  相似文献   

9.
极高能宇宙线一般指来自地外的能量高于1018电子伏特(eV)的高能质子与原子核,其起源的研究一直是高能天体物理和粒子天体物理领域的热点问题.近年随着一些大型探测器(如Pierre Auger天文台)的运行,极高能宇宙线的研究取得很大进展.然而由于极高能宇宙线事例相对较少及其在从源到地球传播过程中的复杂性(如与宇宙微波背景辐射以及磁场的作用),需要通过观测这些宇宙线在强子反应中产生的次级粒子(如中微子)来获得其起源的额外信息.最近,位于南极的IceCube中微子天文台探测到了54个能量分布在60TeV{3PeV内的中微子事例,开启了高能中微子天文学的新时代.在本文中,我们研究了高能中微子、极高能宇宙线的天体物理起源以及它们之间可能的联系.  相似文献   

10.
A method of absolute calibration for the air shower fluorescence detectors of the Pierre Auger Observatory is presented, along with preliminary results from prototype equipment. A 2.5 m diameter light source uniformly illuminated by ultra-violet light emitting diodes is calibrated and mounted at the detector aperture. The resulting end-to-end measurement provides a 7% absolute photon calibration at a wavelength of 375 nm.  相似文献   

11.
《Astroparticle Physics》2012,35(6):354-361
We present the results of an analysis of data recorded at the Pierre Auger Observatory in which we search for groups of directionally-aligned events (or ‘multiplets’) which exhibit a correlation between arrival direction and the inverse of the energy. These signatures are expected from sets of events coming from the same source after having been deflected by intervening coherent magnetic fields. The observation of several events from the same source would open the possibility to accurately reconstruct the position of the source and also measure the integral of the component of the magnetic field orthogonal to the trajectory of the cosmic rays. We describe the largest multiplets found and compute the probability that they appeared by chance from an isotropic distribution. We find no statistically significant evidence for the presence of multiplets arising from magnetic deflections in the present data.  相似文献   

12.
伽马射线作为宇宙中极端事件的独特探针,探测伽马射线是人们了解宇宙构成、星体演化和宇宙线起源等的重要途经.伽马天文涉及了宇宙中的各种前沿科学问题并且观测所需能谱跨度极宽(102 keV–102 TeV),针对不同的科学目标和细分谱段,必须利用不同的伽马望远镜探测技术.总结了空间和地面的共5大类伽马射线观测技术,分别是编码孔径望远镜、康普顿望远镜、电子对望远镜、成像大气切伦科夫望远镜和广延大气簇射阵列;回顾了70 yr来在观测设备和技术进步的推动下伽马射线天文学领域的巨大进展,其中包含高能和甚高能谱段取得的大量成就,中低能段由于已有观测任务有限以及灵敏度低,超高能和极高能段由于观测难度大、起步时间晚,数据和成果相对其他谱段产出较少;展望了未来已经规划的伽马望远镜任务、能力及预期科学产出,其中,中低能段空间望远镜增强型ASTROGAM望远镜(e-ASTROGAM)、全天区中能伽马射线观测站(AMEGO)和甚高能段地面望远镜阵列高海拔宇宙线观测站(LHAASO)、切伦科夫望远镜阵列(CTA),由于灵敏度较同谱段已有任务灵敏度有大幅提升,极有可能在20 yr内从不同角度再度扩展人类对伽马宇宙的认知.  相似文献   

13.
14.
Recent reports of superhigh energy cosmic rays beyond the expected spectral cutoff have intensified interest in the unknown origin of the highest energy cosmic rays. There is a need for a much larger data base of more precisely measured air showers. This requires new sensitive detectors of enormous aperture. Combining a ground array of particle counters with an optical detector of atmospheric fluorescence yields a detector of outstanding capability. Such a hybrid detector provides far more accurate measurements of energies, arrival directions, and primary particle atomic masses than can be achieved by either type of detector separately.  相似文献   

15.
The ultra-high energy cosmic rays recently detected by several air shower experiments could have an extragalactic origin. In this case, the nearest active galaxy Centaurus A might be the source of the most energetic particles ever detected on Earth. We have used recent radio observations in order to estimate the arrival energy of the protons accelerated by strong shock fronts in the outer parts of this southern radio source. We expect detections coresponding to particles with energies up to 2.2 × 1021 eV and an arrival direction of (l ≈ 310°, b ≈ 20°) in galactic coordinates. The future Southern Hemisphere Pierre Auger Observatory might provide a decisive test for extragalactic models of the origin of the ultra-high energy cosmic rays.  相似文献   

16.
The origin and nature of the highest energy cosmic ray events is currently the subject of intense investigation by giant air shower arrays and fluorescent detectors. These particles reach energies well beyond what can be achieved in ground-based particle accelerators and hence they are fundamental probes for particle physics as well as astrophysics. One of the main topics today focuses on the high energy end of the spectrum and the potential for the production of high-energy neutrinos. Above about 1020 eV cosmic rays from extragalactic sources are expected to be severely attenuated by pion photoproduction interactions with photons of the cosmic microwave background. Investigating the shape of the cosmic ray spectrum near this predicted cut-off will be very important. In addition, a significant high-energy neutrino background is naturally expected as part of the pion decay chain which also contains much information.Because of the scarcity of these high-energy particles, larger and larger ground-based detectors have been built. The new generation of digital radio telescopes may play an important role in this, if properly designed. Radio detection of cosmic ray showers has a long history but was abandoned in the 1970s. Recent experimental developments together with sophisticated air shower simulations incorporating radio emission give a clearer understanding of the relationship between the air shower parameters and the radio signal, and have led to resurgence in its use. Observations of air showers by the SKA could, because of its large collecting area, contribute significantly to measuring the cosmic ray spectrum at the highest energies. Because of the large surface area of the moon, and the expected excellent angular resolution of the SKA, using the SKA to detect radio Cherenkov emission from neutrino-induced cascades in lunar regolith will be potentially the most important technique for investigating cosmic ray origin at energies above the photoproduction cut-off.  相似文献   

17.
《Astroparticle Physics》2012,35(9):591-607
Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargüe and averaged monthly models, the utility of the GDAS data is shown.  相似文献   

18.
《Astroparticle Physics》2009,32(1):53-60
The High Resolution Fly’s Eye (HiRes) experiment has measured the flux of ultrahigh energy cosmic rays using the stereoscopic air fluorescence technique. The HiRes experiment consists of two detectors that observe cosmic ray showers via the fluorescence light they emit. HiRes data can be analyzed in monocular mode, where each detector is treated separately, or in stereoscopic mode where they are considered together. Using the monocular mode the HiRes collaboration measured the cosmic ray spectrum and made the first observation of the Greisen–Zatsepin–Kuzmin cutoff. In this paper we present the cosmic ray spectrum measured by the stereoscopic technique. Good agreement is found with the monocular spectrum in all details.  相似文献   

19.
We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ∼2.4 km by ∼5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.  相似文献   

20.
Resonant photo-pion production with the cosmic microwave background predicts a suppression of extragalactic protons above the famous Greisen–Zatsepin–Kuzmin cutoff at about EGZK ≈ 5 × 1010 GeV. Current cosmic ray data measured by the AGASA and HiRes Collaborations do not unambiguously confirm the GZK cutoff and leave a window for speculations about the origin and chemical composition of the highest energy cosmic rays. In this work we analyze the possibility of strongly interacting neutrino primaries and derive model-independent quantitative requirements on the neutrino–nucleon inelastic cross section for a viable explanation of the cosmic ray data. Search results on weakly interacting cosmic particles from the AGASA and RICE experiments are taken into account simultaneously. Using a flexible parameterization of the inelastic neutrino–nucleon cross section we find that a combined fit of the data does not favor the Standard Model neutrino–nucleon inelastic cross section, but requires, at 90% confidence level, a steep increase within one energy decade around EGZK by four orders of magnitude. We illustrate such an enhancement within some extensions of the Standard Model. The impact of new cosmic ray data or cosmic neutrino search results on this scenario, notably from the Pierre Auger Observatory soon, can be immediately evaluated within our approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号