首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
We report a measurement of intergalactic magnetic fields using combined data from Atmospheric Cherenkov Telescopes and Fermi Gamma-Ray Space Telescope, based on the spectral data alone. If blazars are assumed to produce both gamma rays and cosmic rays, the observed spectra are not sensitive to the intrinsic spectrum of the source, because, for a distant blazar, secondary photons produced along the line of sight dominate the signal. In this case, we set a limit 1 × 10−17 G < B < 3 × 10−14 G. If one excludes the cosmic-ray component, the 10−17 G lower limit remains, but the upper limit depends on the spectral properties of the source. We present the allowed ranges for a variety of model parameters.  相似文献   

2.
A lead-free neutron monitor operating at High Altitude Research Laboratory (HARL), Gulmarg optimized for detecting 2.45 MeV neutron bursts produced during the atmospheric lightning discharges is also concurrently used for studying background neutron component present in the atmosphere. These background neutrons are produced due to the interaction of primary cosmic rays with the atmospheric constituents. In order to study and extract the information about the yield of the neutron production during transient atmospheric lightning discharges, the system is continuously operated to monitor and record the cosmic ray produced background secondary neutrons in the atmosphere. The data analysis of the background neutrons recorded by Lead-Free Gulmarg Neutron Monitor (LFGNM) has convincingly established that the modulation effects due to solar activity phenomena compare very well with those monitored by the worldwide IGY or NM64 type neutron monitors which have optimum energy response relatively towards the higher energy regime of the cosmic rays. The data has revealed various types of modulation phenomena like diurnal variation, Forbush decrease etc. during its entire operational period. However, a new kind of a periodic/seasonal variation pattern is also revealed in the data from September 2007 to September 2012, which is seen to be significantly consistent with the data recorded by Emilio Segre observatory, Israel (ESOI) Neutron Monitor. Interestingly, both these neutron monitors have comparable latitude and altitude. However, the same type of consistency is not observed in the data recorded by the other conventional neutron monitors operating across the globe.  相似文献   

3.
We discuss the possibility of observing ultra high energy cosmic ray sources in high energy gamma rays. Protons propagating away from their accelerators produce secondary electrons during interactions with cosmic microwave background photons. These electrons start an electromagnetic cascade that results in a broad band gamma ray emission. We show that in a magnetized Universe (B≳10−12 G) such emission is likely to be too extended to be detected above the diffuse background. A more promising possibility comes from the detection of synchrotron photons from the extremely energetic secondary electrons. Although this emission is produced in a rather extended region of size ∼10 Mpc, it is expected to be point-like and detectable at GeV energies if the intergalactic magnetic field is at the nanogauss level.   相似文献   

4.
An analytical model which generalizes the equations describing the intensity of galactic cosmic rays (CR), including both processes, making it applicable in the inner heliosphere (where energy losses dominate) and outer heliosphere (influenced primarily by convection-diffusion processes) is derived. By a suitable choice of a parameter, the proposed model turns into two approximations: solution close to “force-field” model (describing the energy losses of CR in the inner heliosphere) and “convection-diffusion” equation (giving the reduction of CR intensity in the outer heliosphere). A mathematical relation between parameters in the proposed model and the modulation parameter Φ is derived.  相似文献   

5.
We argue that the cosmic ray positron excess observed in ATIC-2, Fermi LAT, PAMELA, HESS and recently in the precision AMS-02 experiment can be attributed to production in a local, middle-aged supernova remnant (SNR). Using the prediction of our model of cosmic ray acceleration in SNR we estimate that the SNR responsible for the observed positron excess is located between 250 and 320pc from the Sun and is 170–380 kyear old. The most probable candidate for such a source is the SNR which gave birth to the well-known Geminga pulsar, but is no longer visible. Other contenders are also discussed.  相似文献   

6.
We present the calculation of coherent radio pulses emitted by extensive air showers induced by ultra-high energy cosmic rays accounting for reflection on the Earth’s surface. Results have been obtained with a simulation program that calculates the contributions from shower particles after reflection at a surface plane. The properties of the radiation are discussed in detail emphasizing the effects of reflection. The shape of the frequency spectrum is shown to be closely related to the angle of the observer with respect to shower axis, becoming hardest in the Cherenkov direction. The intensity of the flux at a fixed observation angle is shown to scale with the square of the primary particle energy to very good accuracy indicating the coherent aspect of the emission. The simulation methods of this paper provide the foundations for energy reconstruction of experiments looking at the Earth from balloons and satellites. They can also be used in dedicated studies of existing and future experimental proposals.  相似文献   

7.
All the components of Cosmic Rays (CR) have ‘structure’ in their energy spectra at some level, i.e. deviations from a simple power law, and their examination is relevant to the origin of the particles. Emphasis, here, is placed on the large-scale structures in the spectra of nuclei (the ‘knee’ at about 3 PeV), that of electrons plus positrons (a shallow ‘upturn’ at about 100 GeV) and the positron to electron plus positron ratio (an upturn starting at about 5 GeV).Fine structure is defined as deviations from the smooth spectra which already allow for the large-scale structure. Search for the fine structure has been performed in the precise data on positron to electron plus positron ratio measured by the AMS-02 experiment. Although no fine structure is indicated, it could in fact be present at the few percent level.  相似文献   

8.
The Milky Way is a spiral galaxy with (or without) a bar-like central structure. There is evidence that the distribution of suspected cosmic ray sources, such as supernova remnants, are associated with the spiral arm structure of galaxies. It is yet not clearly understood what effect such a cosmic ray source distribution has on the particle transport in our Galaxy. We investigate and measure how the propagation of Galactic cosmic rays is affected by a cosmic ray source distribution associated with spiral arm structures.We use the PICARD code to perform high-resolution 3D simulations of electrons and protons in galactic propagation scenarios that include four-arm and two-arm logarithmic spiral cosmic ray source distributions with and without a central bar structure as well as the spiral arm configuration of the NE2001 model for the distribution of free electrons in the Milky Way. Results of these simulation are compared to an axisymmetric radial source distribution. Also, effects on the cosmic ray flux and spectra due to different positions of the Earth relative to the spiral structure are studied.We find that high energy electrons are strongly confined to their sources and the obtained spectra largely depend on the Earth’s position relative to the spiral arms. Similar finding have been obtained for low energy protons and electrons albeit at smaller magnitude. We find that even fractional contributions of a spiral arm component to the total cosmic ray source distribution influences the spectra on the Earth. This is apparent when compared to an axisymmetric radial source distribution as well as with respect to the Earth’s position relative to the spiral arm structure. We demonstrate that the presence of a Galactic bar manifests itself as an overall excess of low energy electrons at the Earth.Using a spiral arm geometry as a cosmic ray source distributions offers a genuine new quality of modeling and is used to explain features in cosmic ray spectra at the Earth that are else-wise attributed to other propagation effects. We show that realistic cosmic ray propagation scenarios have to acknowledge non-axisymmetric source distributions.  相似文献   

9.
10.
11.
We examine the possibility that recent data on cosmic ray anisotropies presented by the AGASA group may lead to the conclusion that our Galactic Center is a major source of the highest energy cosmic rays in our galaxy. We discuss how such a source would contribute to the magnitude and directional properties of the observed flux when measured against a background of extragalactic cosmic rays. We do this using the results of previous propagation calculations and our own more recent calculations which are specifically for a Galactic Center source.We find that the AGASA data can indeed be plausibly interpreted in this way and also that an argument can be made that the Galactic Center has the appropriate physical properties for acceleration to energies of the order of 1018 eV. We show that data from the SUGAR array are compatible with the AGASA result.  相似文献   

12.
In this paper we present a comprehensive study of the heavy quark production in ultra high energy cosmic ray interactions in the atmosphere considering that the primary cosmic ray can be either a photon, neutrino or a proton. The analysis is performed using a unified framework – the dipole formalism – and the saturation effects, associated to the physical process of parton recombination, are taken into account. We demonstrate that the contribution of heavy quarks for cosmic ray interactions is in general non-negligible and can be dominant depending of the process considered. Moreover, our results indicate that new dynamical mechanisms should be included in order to obtain reliable predictions for the heavy quark production in pp collisions at ultra high cosmic ray energies.  相似文献   

13.
The presence of nearby discrete cosmic ray (CR) sources can lead to many interesting effects on the observed properties of CRs. In this paper, we study about the possible effects on the CR primary and secondary spectra and also the subsequent effects on the CR secondary-to-primary ratios. For the study, we assume that CRs undergo diffusive propagation in the Galaxy and we neglect the effect of convection, energy losses and reacceleration. In our model, we assume that there exists a uniform and continuous distribution of CR sources in the Galaxy generating a stationary CR background at the Earth. In addition, we also consider the existence of some nearby sources which inject CRs in a discrete space–time model. Assuming a constant CR source power throughout the Galaxy, our study has found that the presence of nearby supernova remnants (SNRs) produces noticeable variations in the primary fluxes mainly above ∼100 GeV n−1, if CRs are assumed to be released instantaneously after the supernova explosion. The variation reaches a value of ∼45 per cent at around 105 GeV n−1. Respect to earlier studies, the variation in the case of the secondaries is found to be almost negligible. We also discuss about the possible effects of the different particle release times from the SNRs. For the particle release time of ∼105 yr, predicted by the diffusive shock acceleration theories in SNRs, we have found that the presence of the nearby SNRs hardly produces any significant effects on the CRs at the Earth.  相似文献   

14.
本文利用几种典型的银河系宇宙线分布律和星际氢分布律计算单漏模式和双漏模式中的弥散宇宙γ射线谱。结果表明,几种典型的宇宙线分布中,李惕碚的分布律优于其他作者的分布律;星际氢分子数量的取值应当比Gordon值除以1.7更小;只要适当地选择宇宙线分布和氢分布就可得到与观测γ谱相近的理论谱,宇宙线分布和氢分布均可在一定范围里选取。  相似文献   

15.
In this paper, we present high-energy neutrino spectra from 21 Galactic supernova remnants (SNRs), derived from gamma-ray measurements in the GeV–TeV range. We find that only the strongest sources, i.e. G40.5-0.5 in the north and Vela Junior in the south could be detected as single point sources by IceCube or KM3NeT, respectively. For the first time, it is also possible to derive a diffuse signal by applying the observed correlation between gamma-ray emission and radio signal. Radio data from 234 supernova remnants listed in Green’s catalog are used to show that the total diffuse neutrino flux is approximately a factor of 2.5 higher compared to the sources that are resolved so far. We show that the signal at above 10 TeV energies can actually become comparable to the diffuse neutrino flux component from interactions in the interstellar medium. Recently, the IceCube collaboration announced the detection of a first diffuse signal of astrophysical high-energy neutrinos. Directional information cannot unambiguously reveal the nature of the sources at this point due to low statistics. A number of events come from close to the Galactic center and one of the main questions is whether at least a part of the signal can be of Galactic nature. In this paper, we show that the diffuse flux from well-resolved SNRs is at least a factor of 20 below the observed flux.  相似文献   

16.
In order to optimise the design of space instruments making use of detection materials with low atomic numbers, an understanding of the atmospheric neutron environment and its dependencies on time and position is needed. To produce a simple equation based model, Monte Carlo simulations were performed to obtain the atmospheric neutron fluxes produced by charged galactic cosmic ray interactions with the atmosphere. Based on the simulation results the omnidirectional neutron environment was parametrized including dependencies on altitude, magnetic latitude and solar activity. The upward- and downward-moving component of the atmospheric neutron flux are considered separately. The energy spectra calculated using these equations were found to be in good agreement with data from a purpose built balloon-borne neutron detector, high altitude aircraft data and previously published simulation based spectra.  相似文献   

17.
The average characteristics of the diurnal and semi-diurnal anisotropy of cosmic ray intensity at relativistic energies have been obtained by using data from the worldwide grid of neutron monitor for the period 1989 to 1996. The complex behaviour of the diurnal amplitudes and time of maxima (phase) and its association with the Ap index on a long-term and day-to-day basis have been studied. Even though the general characteristics, on a yearly average basis, have not changed significantly during this period, both the diurnal and semi-diurnal amplitudes and phases vary significantly, besides significant changes being observed for different interplanetary conditions on a short-term basis. It is found that the relationship between the Ap index and the diurnal vector is out of phase during the period 1991 to 1995. On a long-term basis, the correlation of diurnal variation with Ap index has been found to vary during the solar cycle. On a short-term basis, it has been observed that the high Ap days are usually associated with higher amplitudes with phase shifted to earlier hours.  相似文献   

18.
This contribution to the 100th commemoration of the discovery of cosmic rays (6–8 August, 2012 in Bad Saarow, Germany) is about observations of those cosmic rays that are sensitive to the structure and the dynamics of the heliosphere. This places them in the energy range of 107–1010 eV. For higher energies the heliosphere becomes transparent; below this energy range the particles become strictly locked into the solar wind. Rather than give a strict chronological development, the paper is divided into distinct topics. It starts with the Pioneer/Voyager missions to the outer edges of the heliosphere, because the most recent observations indicate that a distinct boundary of the heliosphere might have been reached at the time of the meeting. Thereafter, the Ulysses mission is described as a unique one because it is still the only spacecraft that has explored the heliosphere at very high latitudes. Next, anomalous cosmic rays, discovered in 1972–1974, constitute a separate component that is ideally suited to study the acceleration and transport of energetic particles in the heliosphere. At this point the history and development of ground-based observations is discussed, with its unique contribution to supply a stable, long-term record. The last topic is about solar energetic particles with energies up to ∼1010 eV.  相似文献   

19.
Inverse Compton (IC) scattering by relativistic electrons produces a major component of the diffuse emission from the Galaxy. The photon fields involved are the cosmic microwave background and the interstellar radiation field (ISRF) from stars and dust. Calculations of the inverse Compton distribution have usually assumed a smooth ISRF, but in fact a large part of the Galactic luminosity comes from the most luminous stars, which are rare. Therefore we expect the ISRF, and hence the inverse Compton emission, to be clumpy at some level, which could be detectable by instruments such as GLAST. Even individual nearby luminous stars could be detectable assuming just the normal cosmic-ray electron spectrum. We present the basic formalism required and give possible candidate stars to be detected and make predictions for GLAST. Then we apply the formalism to the OB associations and the Sun, showing that the IC emission produced is not negligible compared to the sensitivity of current or coming detectors. We estimate that the gamma-ray flux from the halo around the Sun contributes to the diffuse background emission at the few percent level.  相似文献   

20.
An analysis is made of the fine structure in the cosmic ray energy spectrum: new facets of present observations and their interpretation and the next step. It is argued that less than about 10% of the intensity of the helium ‘peak’ at the knee at ≈5 PeV is due to just a few sources (SNR) other than the single source. The apparent concavity in the rigidity spectra of protons and helium nuclei which have maximum curvature at about 200 GV is confirmed by a joint analysis of the PAMELA, CREAM and ATIC experiments. The spectra of heavier nuclei also show remarkable structure in the form of ‘ankles’ at several hundred GeV/nucleon. Possible mechanisms are discussed. The search for ‘pulsar peaks’ has not yet proved successful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号