首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Results will be shown from the Astroneu array developed and operated in the outskirts of Patras, Greece. An array of 9 scintillator detectors and 3 antennas were deployed to study Extensive Air Showers (EAS) as a tool for calibrating an underwater neutrino telescope, possible other applications in muon tomography, education purposes, and last but not least, for the detection of air showers via their electromagnetic signature. In this work we concentrate to the electromagnetic detection of air showers presenting the operation of the RF system, as well as the analysis of the radio signals captured in coincidence with the scintillator detectors. We demonstrate the adequacy of the method to detect cosmic events even in the presence of high urban electromagnetic background, using noise filters, timing and signal polarization. The results are compared with well understood event reconstruction using the scintillator detectors and are indicating that cosmic showers were detected, proving that such small scale hybrid arrays can operate in strong background noise environments.  相似文献   

2.
Analysis of the arrival directions of extensive air showers (EASs) detected on the EAS MSU array and the prototype of the EAS-1000 array has revealed a region of enhanced flux of cosmic rays with PeV energies toward the pulsars PSR J1840+5640 and LAT PSR J1836+5925 at a confidence level up to 4.5σ. The first pulsar was discovered almost 30 years ago and is a well-studied old radio pulsar at a distance of 1.7 kpc from the Solar system. The second pulsar belongs to a new class of pulsars discovered by the Fermi Gamma-Ray Observatory whose pulsations are seen neither in the X-ray nor in the radio bands, but only in the gamma-ray energy range (gamma-ray-only pulsars). In our opinion, the existence of a region of enhanced cosmic-ray flux in the data sets obtained on two different arrays suggests that the pulsars can make a noticeable contribution to the flux of Galactic cosmic rays with PeV energies.  相似文献   

3.
The energy reconstruction of extensive air showers measured with the LOFAR Radboud Air Shower Array (LORA) is presented in detail. LORA is a particle detector array located in the center of the LOFAR radio telescope in the Netherlands. The aim of this work is to provide an accurate and independent energy measurement for the air showers measured through their radio signal with the LOFAR antennas. The energy reconstruction is performed using a parameterized relation between the measured shower size and the cosmic-ray energy obtained from air shower simulations. In order to illustrate the capabilities of LORA, the all-particle cosmic-ray energy spectrum has been reconstructed, assuming that cosmic rays are composed only of protons or iron nuclei in the energy range between ∼2 × 1016 and 2 × 1018 eV. The results are compatible with literature values and a changing mass composition in the transition region from a Galactic to an extragalactic origin of cosmic rays.  相似文献   

4.
《Astroparticle Physics》2011,34(5-6):335-340
We revisit the radar echo technique as an approach to detect ultra-high energy cosmic rays (UHECR). The UHECR extensive air showers generate disk-like ionization fronts propagating with a relativistic velocity and creating fast decaying plasma. We study the reflection of a radio wave, such as the one from a radar transmitter or commercial radio and TV station, from the relativistic ionization front. The reflected wave will be frequency upshifted due to the relativistic Doppler effect and propagate almost normally to the front due to relativistic aberration. The amplitude of the reflected wave depends strongly on the front velocity and parameters (density, collision frequency) of the plasma behind the front. We develop a theory that allows one to find the reflected wave. Using this theory and typical parameters of extensive air showers, we discuss the feasibility of UHECR detection.  相似文献   

5.
The origin and nature of the highest energy cosmic ray events is currently the subject of intense investigation by giant air shower arrays and fluorescent detectors. These particles reach energies well beyond what can be achieved in ground-based particle accelerators and hence they are fundamental probes for particle physics as well as astrophysics. One of the main topics today focuses on the high energy end of the spectrum and the potential for the production of high-energy neutrinos. Above about 1020 eV cosmic rays from extragalactic sources are expected to be severely attenuated by pion photoproduction interactions with photons of the cosmic microwave background. Investigating the shape of the cosmic ray spectrum near this predicted cut-off will be very important. In addition, a significant high-energy neutrino background is naturally expected as part of the pion decay chain which also contains much information.Because of the scarcity of these high-energy particles, larger and larger ground-based detectors have been built. The new generation of digital radio telescopes may play an important role in this, if properly designed. Radio detection of cosmic ray showers has a long history but was abandoned in the 1970s. Recent experimental developments together with sophisticated air shower simulations incorporating radio emission give a clearer understanding of the relationship between the air shower parameters and the radio signal, and have led to resurgence in its use. Observations of air showers by the SKA could, because of its large collecting area, contribute significantly to measuring the cosmic ray spectrum at the highest energies. Because of the large surface area of the moon, and the expected excellent angular resolution of the SKA, using the SKA to detect radio Cherenkov emission from neutrino-induced cascades in lunar regolith will be potentially the most important technique for investigating cosmic ray origin at energies above the photoproduction cut-off.  相似文献   

6.
7.
Radio detection of cosmic-ray-induced air showers has come to a flight the last decade. Along with the experimental efforts, several theoretical models were developed. The main radio-emission mechanisms are established to be the geomagnetic emission due to deflection of electrons and positrons in Earth’s magnetic field and the charge-excess emission due to a net electron excess in the air shower front. It was only recently shown that Cherenkov effects play an important role in the radio emission from air showers. In this article we show the importance of these effects to extract quantitatively the position of the shower maximum from the radio signal, which is a sensitive measure for the mass of the initial cosmic ray. We also show that the relative magnitude of the charge-excess and geomagnetic emission changes considerably at small observer distances where Cherenkov effects apply.  相似文献   

8.
Coherent electromagnetic erenkov radiation is produced by cosmic ray air showers passing through the atmosphere. This radiation is detected by radio telescopes. We demonstrate here that the effect of random spatial fluctuations in the refractive index of air, about a mean exceeding unity, causes the airshower to emit not only the spontaneous coherent radio emission described elsewhere by Kahn and Lerche, but also an induced radiation field which can exceed the spontaneous field in certain frequency bands. Further the conditions for emission of the coherent radio erenkov radiation are altered by the presence of the refractive index fluctuations. And the Earth's magnetic field gives rise to the dominant term in the far-field radiation, be it spontaneous or induced, since it causes a systematic separation of electrons and positrons in the shower which, for parameters currently acceptable for air showers, is the major factor in determining the far-field radiation pattern. Also we suggest that the coherent 500 Mc/sec radiation seen from occasional showers is probably a reflection of an atmospheric correlation length of order 15 cm at the time the shower passes through the atmosphere.  相似文献   

9.
The burst of radio emission by an extensive air shower provides a promising alternative for detecting ultra-high energy cosmic rays. We have developed an independent numerical program to simulate these radio signals. Our code is based on a microscopic treatment, with both the geosynchrotron radiation and charge included.Here we give the first presentation of our basic program and its results. When the time-domain signals for different polarizations are computed, we find that the pulses take on a bipolar pattern and the spectrum is suppressed towards the lower frequencies. We investigate how showers at different heights in the atmosphere contribute to the total signal, and examine the signal strength and distribution at sites with different elevations. We also study the signal from showers with different inclination angles and azimuth directions. In all these cases we find the charge excess effect is important.  相似文献   

10.
Muons produced in atmospheric cosmic ray showers account for the by far dominant part of the event yield in large-volume underground particle detectors. The IceCube detector, with an instrumented volume of about a cubic kilometer, has the potential to conduct unique investigations on atmospheric muons by exploiting the large collection area and the possibility to track particles over a long distance. Through detailed reconstruction of energy deposition along the tracks, the characteristics of muon bundles can be quantified, and individual particles of exceptionally high energy identified. The data can then be used to constrain the cosmic ray primary flux and the contribution to atmospheric lepton fluxes from prompt decays of short-lived hadrons.In this paper, techniques for the extraction of physical measurements from atmospheric muon events are described and first results are presented. The multiplicity spectrum of TeV muons in cosmic ray air showers for primaries in the energy range from the knee to the ankle is derived and found to be consistent with recent results from surface detectors. The single muon energy spectrum is determined up to PeV energies and shows a clear indication for the emergence of a distinct spectral component from prompt decays of short-lived hadrons. The magnitude of the prompt flux, which should include a substantial contribution from light vector meson di-muon decays, is consistent with current theoretical predictions.The variety of measurements and high event statistics can also be exploited for the evaluation of systematic effects. In the course of this study, internal inconsistencies in the zenith angle distribution of events were found which indicate the presence of an unexplained effect outside the currently applied range of detector systematics. The underlying cause could be related to the hadronic interaction models used to describe muon production in air showers.  相似文献   

11.
The horizontal lateral density of a cosmic air shower with a non-zero zenith angle is asymmetric. The asymmetry consist of a stretching of the iso-density contours to ellipses and to a shift of the center of the elliptic contours with respect to the core of the shower. The shift is caused by atmospheric attenuation. The modeling of the attenuation results in an equation for the shift as a function of zenith angle and the size of the iso-density contours. A more accurate equation is obtained by investigating the shift in lateral densities of simulated showers. It is shown how the shift can be incorporated in an elliptic lateral density function. A linear approximation for the shift allows for an analytical solution for the shifted elliptic density. Its predictions for the polar variations of the density are compared with data of simulated showers.  相似文献   

12.
《Astroparticle Physics》2004,21(6):565-581
The mass composition of high-energy cosmic rays at energies above 1015 eV can provide crucial information for the understanding of their origin. Air showers were measured simultaneously with the SPASE-2 air shower array and the AMANDA-B10 Cherenkov telescope at the South Pole. This combination has the advantage to sample almost all high-energy shower muons and is thus a new approach to the determination of the cosmic ray composition. The change in the cosmic ray mass composition was measured versus existing data from direct measurements at low energies. Our data show an increase of the mean log atomic mass lnA by about 0.8 between 500 TeV and 5 PeV. This trend of an increasing mass through the “knee” region is robust against a variety of systematic effects.  相似文献   

13.
Data taken with ten Cosmic Ray Tracking (CRT) detectors and the HEGRA air-shower array on La Palma, Canary Islands, have been analysed to investigate changes of the cosmic ay mass composition at the ‘knee’ of the cosmic-ray flux spectrum near 1015 eV energy. The analysis is based on the angular distributions of particles in air showers. HEGRA data provided the shower size, direction, and core position and CRT data the particle track information. It is shown that the angular distribution of muons in air showers is sensitive to the composition over a wide range of shower sizes and, thus, primary cosmic-ray energies with little systematic uncertainties. Results can be easily expressed in terms of ln A of primary cosmic rays. In the lower part of the energy range covered, we have considerable overlap with direct composition measurements by the JACEE collaboration and find compatible results in the observed rise of ln A. Above about 1015 eV energy we find no or at most a slow further rise of ln A. Simple cosmic-ray composition models are presented which are fully consistent with our results as well as the JACEE flux and composition measurements and the flux measurements of the Tibet ASγ collaboration. Minimal three-parameter composition models defined by the same power-law slope of all elements below the knee and a common change in slope at a fixed rigidity are inconsistent with these data.  相似文献   

14.
《Astroparticle Physics》2009,30(6):393-411
We present a macroscopic calculation of coherent electro-magnetic radiation from air showers initiated by ultra-high energy cosmic rays, based on currents obtained from Monte Carlo simulations of air showers in a realistic geo-magnetic field. We can clearly relate the time signal to the time dependence of the currents. We find that the most important contribution to the pulse is related to the time variation of the currents. For showers forming a sufficiently large angle with the magnetic field, the contribution due to the currents induced by the geo-magnetic field is dominant, but neither the charge excess nor the dipole contribution can be neglected. We find a characteristic bipolar signal. In our calculations, we take into account a realistic index of refraction, whose importance depends on the impact parameter and the inclination. Also very important is the role of the positive ions.  相似文献   

15.
Extensive air showers, induced by high energy cosmic rays impinging on the Earth’s atmosphere, produce radio emission that is measured with the LOFAR radio telescope. As the emission comes from a finite distance of a few kilometers, the incident wavefront is non-planar. A spherical, conical or hyperbolic shape of the wavefront has been proposed, but measurements of individual air showers have been inconclusive so far. For a selected high-quality sample of 161 measured extensive air showers, we have reconstructed the wavefront by measuring pulse arrival times to sub-nanosecond precision in 200 to 350 individual antennas. For each measured air shower, we have fitted a conical, spherical, and hyperboloid shape to the arrival times. The fit quality and a likelihood analysis show that a hyperboloid is the best parameterization. Using a non-planar wavefront shape gives an improved angular resolution, when reconstructing the shower arrival direction. Furthermore, a dependence of the wavefront shape on the shower geometry can be seen. This suggests that it will be possible to use a wavefront shape analysis to get an additional handle on the atmospheric depth of the shower maximum, which is sensitive to the mass of the primary particle.  相似文献   

16.
The mass composition of high energy cosmic rays depends on their production, acceleration, and propagation. The study of cosmic ray composition can therefore reveal hints of the origin of these particles. At the South Pole, the IceCube Neutrino Observatory is capable of measuring two components of cosmic ray air showers in coincidence: the electromagnetic component at high altitude (2835 m) using the IceTop surface array, and the muonic component above ∼1 TeV using the IceCube array. This unique detector arrangement provides an opportunity for precision measurements of the cosmic ray energy spectrum and composition in the region of the knee and beyond. We present the results of a neural network analysis technique to study the cosmic ray composition and the energy spectrum from 1 PeV to 30 PeV using data recorded using the 40-string/40-station configuration of the IceCube Neutrino Observatory.  相似文献   

17.
Coherent synchrotron emission by particles moving along semi-infinite tracks is discussed, with a specific application to radio emission from air showers induced by high-energy cosmic rays. It is shown that in general, radiation from a particle moving along a semi-infinite orbit consists of usual synchrotron emission and modified impulsive bremsstrahlung. The latter component is due to the instantaneous onset of the curved trajectory of the emitting particle at its creation. Inclusion of the bremsstrahlung leads to broadening of the radiation pattern and a slower decay of the spectrum at the cut-off frequency than the conventional synchrotron emission. Possible implications of these features for air shower radio emission are discussed.  相似文献   

18.
High energy neutrinos play a very important role for the understanding of the origin and propagation of ultra high energy cosmic rays (UHECR). They can be produced as a consequence of the hadronic interactions suffered by the cosmic rays in the acceleration regions, as by products of the propagation of the UHECR in the radiation background and as a main product of the decay of super heavy relic particles. A new era of very large exposure space observatories, of which the JEM-EUSO mission is a prime example, is on the horizon which opens the possibility of neutrino detection in the highest energy region of the spectrum. In the present work we use a combination of the PYTHIA interaction code with the CONEX shower simulation package in order to produce fast one-dimensional simulations of neutrino initiated showers in air. We make a detail study of the structure of the corresponding longitudinal profiles, but focus our physical analysis mainly on the development of showers at mid and high altitudes, where they can be an interesting target for space fluorescence observatories.  相似文献   

19.
Unexpected chaotic features are found in time series of arrival time intervals of successive air showers with (E > 3 × 1014 eV). Over 99 % of air shower arrival time intervals obey the Poisson distribution law representing stochastic behaviors, but occasionally there are air showers showing real chaotic behaviors as distinguished from both random and colored noises. With two systems of the Kinki university installations, we found 13 cases showing chaotic time series in 3.36 yr with the system-1 and the 1.37 yr with the system-2. Five out of 10 chaotic air showers of the Kinki installation are detected during the same time zone also by the Osaka City university installation which is at 115 km distance from the Kinki one. In a remarkable example of September 19, 1991, the correlation dimension was observed to have dropped from about 4 to the minimum of 1.3 and recovered smoothly in about 38 h. The chaos structure in this case is detected in nearly the same time zone at the Ohya station of the Institute for Cosmic Ray Research, University of Tokyo, which is separated from the Kinki one by 460 km. Formation of chaos structure due to energetic cosmic ray dust particles is suggested. Progress of cosmic ray physics may be expected with the study of air showers marked with chaos.  相似文献   

20.
LOPES was a digital antenna array detecting the radio emission of cosmic-ray air showers. The calibration of the absolute amplitude scale of the measurements was done using an external, commercial reference source, which emits a frequency comb with defined amplitudes. Recently, we obtained improved reference values by the manufacturer of the reference source, which significantly changed the absolute calibration of LOPES. We reanalyzed previously published LOPES measurements, studying the impact of the changed calibration. The main effect is an overall decrease of the LOPES amplitude scale by a factor of 2.6 ± 0.2, affecting all previously published values for measurements of the electric-field strength. This results in a major change in the conclusion of the paper ‘Comparing LOPES measurements of air-shower radio emission with REAS 3.11 and CoREAS simulations’ published by Apel et al. (2013) : With the revised calibration, LOPES measurements now are compatible with CoREAS simulations, but in tension with REAS 3.11 simulations. Since CoREAS is the latest version of the simulation code incorporating the current state of knowledge on the radio emission of air showers, this new result indicates that the absolute amplitude prediction of current simulations now is in agreement with experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号