首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Chinese southwestern Tianshan (U)HP belt, former lawsonite presence has been predicted for many (U)HP metamorphic eclogites, but only a very few lawsonite grains have been found so far. We discovered armoured lawsonite relicts included in quartz, which, on its part, is enclosed in porphyroblastic garnet in an epidote eclogite H711‐14 and a paragonite eclogite H711‐29. H711‐14 is mainly composed of garnet, omphacite, epidote and titanite, with minor quartz, paragonite and secondary barroisite and glaucophane. Coarse‐grained titanite occasionally occurs in millimetre‐wide veins in equilibrium with epidote and omphacite, and relict rutile is only preserved as inclusions in matrix titanite and garnet. H711‐29 shows the mineral assemblage of garnet, omphacite, glaucophane, paragonite, quartz, dolomite, rutile and minor epidote. Dolomite and rutile are commonly rimed by secondary calcite and titanite respectively. Porphyroblastic garnet in both eclogites is compositionally zoned and exhibits an inclusion‐rich core overgrown by an inclusion‐poor rim. Phase equilibria modelling predicts that garnet cores formed at the P‐peak (490–505 °C and 23–25.5 kbar) and coexisted with the lawsonite eclogite facies assemblage of omphacite + glaucophane + lawsonite + quartz. Garnet rims (550–570 °C and ~20 kbar) grew subsequently during a post‐peak epidote eclogite facies metamorphism and coexisted with omphacite + quartz ± glaucophane ± epidote ± paragonite. The results confirm the former presence of a cold subduction zone environment in the Chinese southwestern Tianshan. The P–T evolution of the eclogites is characterized by a clockwise P–T path with a heating stage during early exhumation (thermal relaxation). The preservation of lawsonite in these eclogites is attributed to isolation from the matrix by quartz and rigid garnet, which should be considered as a new type of lawsonite preservation in eclogites. The complete rutile–titanite transition in H711‐14 took place in the epidote eclogite facies stage in the presence of an extremely CO2‐poor fluid with X(CO2) [CO2/(CO2 + H2O) in the fluid] <<0.008. In contrast, the incomplete rutile–titanite transition in H711‐29 may have occurred after the epidote eclogite facies stage and the presence of dolomite reflects a higher X(CO2) (>0.01) in the coexisting fluid at the epidote eclogite facies stage.  相似文献   

2.
1.Introduction TheQinlingDabieorogenicbeltwasformedbycollisionbetweentheNorthChinaandYangtzeblocks.Thecorepartoftheorogenicbeltconsistsofseveralmetamorphicrockgroups,includingtheDabie(Tongbai)complex,Hong’an(Susong)group,SujiahegroupandSuixian(Yao…  相似文献   

3.
This study presents in situ strontium (Sr) isotope and Sr content data on multi-stage epidote crystals from ultrahigh-pressure (UHP) eclogites and omphacite–epidote veins therein at Ganghe (Dabie terrane, China), determined using LA-MC-ICP-MS. The Ganghe eclogites occur as lenses in mainly leucocratic UHP gneisses, and therefore, our data provide insights into the origin, composition, and transport scale of the discrete multi-stage fluids in UHP eclogites during the subduction and exhumation of a continental crust. Four textural types of epidote that record compositional and isotopic signatures of fluid at various metamorphic PT conditions have been distinguished based on petrographic observations and compositional analyses. They are (1) fine-grained high-pressure (HP) epidote inclusions (Ep-In) in omphacite that define the earliest stage of epidote formation in the eclogite; (2) coarse-grained UHP epidote porphyroblasts (Ep-P) that contain omphacite with Ep-In inclusions in the eclogite; (3) fine-grained HP epidote in omphacite–epidote veins (Ep-V) as well as (4) the latest-stage epidote in disseminated amphibolite-facies veinlets (Ep-A), which crosscut the Ep-P or matrix minerals in the eclogite and HP vein. Both Ep-P and Ep-V crystals exhibit significant and complex chemical zonations with respect to the XFe (= Fe/(Fe + Al)) ratio and Sr content. In contrast to the varying Sr contents, Ep-In, Ep-P, and Ep-V have similar and narrow ranges of initial 87Sr/86Sr ratios (from 0.70692 to 0.70720 for Ep-In, from 0.70698 to 0.70721 for Ep-P, and from 0.70668 to 0.70723 for Ep-V), which are significantly different from those in Ep-A (from 0.70894 to 0.71172). The initial 87Sr/86Sr ratio of Ep-A is closer in value to the initial Sr isotopic composition of the gneisses (from 0.710790 to 0.712069) which enclose the UHP eclogite. These data indicate different sources of the eclogite-facies fluids and retrograde amphibolite-facies fluid in the Ganghe eclogites. The HP–UHP fluids responsible for the large amounts of hydrous minerals in the eclogites were internally derived and buffered. The omphacite–epidote veins were precipitated from the channelized solute-rich HP–UHP fluids released from the host eclogite. However, hydrated amphibolite-facies metamorphism during exhumation was mainly initiated by the low-Sr and high-87Sr/86Sr external fluid, which infiltrated into the eclogite from the surrounding gneisses. The eclogite-facies fluids in the Ganghe eclogites were locally derived, whereas the infiltration of the retrograde amphibolite-facies fluid from the gneisses required a long transport, most likely longer than 80 m. This study highlights that the in situ Sr isotopic analysis of multi-stage epidote can be employed as a powerful geochemical tracer to provide key information regarding the origin and behavior of various-stage subduction-zone metamorphic fluids.  相似文献   

4.
Glaucophane‐bearing ultrahigh pressure (UHP) eclogites from the western Dabieshan terrane consist of garnet, omphacite, glaucophane, kyanite, epidote, phengite, quartz/coesite and rutile with or without talc and paragonite. Some garnet porphyroblasts exhibit a core–mantle zoning profile with slight increase in pyrope content and minor or slight decrease in grossular and a mantle–rim zoning profile characterized by a pronounced increase in pyrope and rapid decrease in grossular. Omphacite is usually zoned with a core–rim decrease in j(o) [=Na/(Ca + Na)]. Glaucophane occurs as porphyroblasts in some samples and contains inclusions of garnet, omphacite and epidote. Pseudosections calculated in the NCKMnFMASHO system for five representative samples, combined with petrographic observations suggest that the UHP eclogites record four stages of metamorphism. (i) The prograde stage, on the basis of modelling of garnet zoning and inclusions in garnet, involves PT vectors dominated by heating with a slight increase in pressure, suggesting an early slow subduction process, and PT vectors dominated by a pronounced increase in pressure and slight heating, pointing to a late fast subduction process. The prograde metamorphism is predominated by dehydration of glaucophane and, to a lesser extent, chlorite, epidote and paragonite, releasing ~27 wt% water that was bound in the hydrous minerals. (ii) The peak stage is represented by garnet rim compositions with maximum pyrope and minimum grossular contents, and PT conditions of 28.2–31.8 kbar and 605–613 °C, with the modelled peak‐stage mineral assemblage mostly involving garnet + omphacite + lawsonite + talc + phengite + coesite ± glaucophane ± kyanite. (iii) The early decompression stage is characterized by dehydration of lawsonite, releasing ~70–90 wt% water bound in the peak mineral assemblages, which results in the growth of glaucophane, j(o) decrease in omphacite and formation of epidote. And, (iv) The late retrograde stage is characterized by the mineral assemblage of hornblendic amphibole + epidote + albite/oligoclase + quartz developed in the margins or strongly foliated domains of eclogite blocks due to fluid infiltration at P–T conditions of 5–10 kbar and 500–580 °C. The proposed metamorphic stages for the UHP eclogites are consistent with the petrological observations, but considerably different from those presented in the previous studies.  相似文献   

5.
Medium‐temperature ultrahigh pressure (MT‐UHP) eclogites from the south Dabie orogen, as represented by samples from the Jinheqiao, Shuanghe and Bixiling areas, consist of garnet, omphacite, phengite, epidote, hornblendic amphibole, quartz/coesite and rutile with or without kyanite and talc. Garnet is mostly anhedral and unzoned, but a few porphyroblasts are weakly zoned with core–mantle increasing grossular (Xgr) and decreasing pyrope (Xpy) contents. Garnet compositions are closely correlated with the bulk compositions. For instance, the Xpy and Xgr contents are positively correlated with the bulk MgO and CaO contents. Phengite is occasionally zoned with core–rim deceasing Si content, and phengite grains as inclusions in garnet show higher Si than in the matrix, suggesting differently resetting during post‐peak stages. The maximum Si contents are mostly 3.60–3.63 p.f.u. for the three areas. Pseudosections calculated using THERMOCALC suggest that the MT‐UHP eclogites should have a peak assemblage of garnet + omphacite + lawsonite + phengite + coesite in most rocks of higher MgO content. In this assemblage, the Xpy in garnet mostly depends on bulk compositions, whereas the Xgr in garnet and the Si contents in phengite regularly increase, respectively, as temperature and as pressure rise, and thus, can provide robust thermobarometric constraints. Using the Xgr and Si isopleths in pseudosections, the peak P–T conditions were estimated to be 40 kbar/730 °C for the Jinheqiao, 41 kbar/726 °C for the Shuanghe, and 37–52 kbar and 700–830 °C for the Bixiling eclogites. Some eclogites with higher FeO are predicted to have a peak assemblage of garnet + omphacite + coesite ± phengite without lawsonite, where the garnet and phengite compositions highly depend on bulk compositions and generally cannot give available thermobarometric constraints. Decompression of the eclogites with lawsonite in the peak stage is inferred to be accompanied with cooling and involves two stages: an early‐stage decompression is dominated by lawsonite dehydration, resulting in increase in the mode of anhydrous minerals, or further eclogitization, and formation of epidote porphyroblasts and kyanite‐bearing quartz veins in eclogite. As lawsonite dehydration can facilitate evolution of assemblages under fluid‐present conditions, it is difficult to recover real peak P–T conditions for UHP eclogites with lawsonite. This may be a reason why the P–T conditions estimated for eclogites using thermobarometers are mostly lower than those estimated for the coherent ultramafic rocks, and lower than those suggested from the inclusion assemblages in zircon from marble. A late‐stage decompression is dominated by formation of hornblendic amphibole and plagioclase with fluid infiltration. The lawsonite‐absent MT‐UHP eclogites have only experienced a decompression metamorphism corresponding to the later stage and generally lack the epidote overprinting.  相似文献   

6.
The Sivrihisar Massif, Turkey, is comprised of blueschist and eclogite facies metasedimentary and metabasaltic rocks. Abundant metre‐ to centimetre‐scale eclogite pods occur in blueschist facies metabasalt, marble and quartz‐rich rocks. Sivrihisar eclogite contains omphacite + garnet + phengite + rutile ± glaucophane ± quartz + lawsonite and/or epidote. Blueschists contain sodic amphibole + garnet + phengite + lawsonite and/or epidote ± omphacite ± quartz. Sivrihisar eclogite and blueschist have similar bulk composition, equivalent to NMORB, but record different P–T conditions: ~26 kbar, 500 °C (lawsonite eclogite); 18 kbar, 600 °C (epidote eclogite); 12 kbar, 380 °C (lawsonite blueschist); and 15–16 kbar, 480–500 °C (lawsonite‐epidote blueschist). Pressures for the Sivrihisar lawsonite eclogite are among the highest reported for this rock type, which is rarely exposed at the Earth's surface. The distribution and textures of lawsonite ± epidote define P–T conditions and paths. For example, in some lawsonite‐bearing rocks, epidote inclusions in garnet and partial replacement of matrix epidote by lawsonite suggest an anticlockwise P–T path. Other rocks contain no epidote as inclusions or as a matrix phase, and were metamorphosed entirely within the lawsonite stability field. Results of the P–T study and mapping of the distribution of blueschists and eclogites in the massif suggest that rocks recording different maximum P–T conditions were tectonically juxtaposed as kilometre‐scale slices and associated high‐P pods, although all shared the same exhumation path from ~9–11 kbar, 300–400 °C. Within the tectonic slices, alternating millimetre–centimetre‐scale layers of eclogite and blueschist formed together at the same P–T conditions but represent different extents of prograde reaction controlled by strain partitioning or local variations in fO2 or other chemical factors.  相似文献   

7.
Prograde P–T–t paths of eclogites are often ambiguous owing to high variance of mineral assemblages, large uncertainty in isotopic age determinations and/or variable degree of retrograde equilibration. We investigated these issues using the barroisite eclogites from the Lanterman Range, northern Victoria Land, Antarctica, which are relatively uncommon but free of retrogression. These eclogites revealed three stages of prograde metamorphism, defining two distinctive P–T trajectories, M1–2 and M3. Inclusion minerals in garnet porphyroblasts suggest that initial prograde assemblages (M1) consist of garnet+omphacite+barroisite/Mg‐pargasite+epidote+phengite+paragonite+rutile/titanite+quartz, and subsequent M2 assemblages of garnet+omphacite+barroisite+phengite+rutile±quartz. The inclusion‐rich inner part of garnet porphyroblasts preserves a bell‐shaped Mn profile of the M1, whereas the inclusion‐poor outer part (M2) is typified by the outward decrease in Ca/Mg and XFe (=Fe2+/(Fe2++Mg)) values. A pseudosection modelling employing fractionated bulk‐rock composition suggests that the eclogites have initially evolved from ~15 to 20 kbar and 520–570°C (M1) to ~22–25 kbar and 630–650°C (M2). The latter is in accordance with P–T conditions estimated from two independent geothermobarometers: the garnet–clinopyroxene–phengite (~25 ± 3 kbar and 660 ± 100°C) and Zr‐in‐rutile (~650–700°C at 2227 kbar). The second segment (M3A–B) of prograde P–T path is recorded in the grossular‐rich overgrowth rim of garnet. Apart from disequilibrium growth of the M3A garnet, ubiquitous overgrowth of the M3B garnet permits us to estimate the P–T conditions at ~26 ± 3 kbar and 720 ± 80°C. The cathodoluminescence (CL) imaging of zircon grains separated from a barroisite eclogite revealed three distinct zones with bright rim, dark mantle and moderately dark core. Eclogitic phases such as garnet, omphacite, epidote and rutile are present as fine‐grained inclusions in the mantle and rim of zircon, in contrast to their absence in the core. The sensitive high‐resolution ion microprobe U–Pb dating on metamorphic mantle domains and neoblasts yielded a weighted mean 206Pb/238U age of 515 ± 4 Ma (), representing the time of the M2 stage. On the other hand, overgrowth rims as well as bright‐CL neoblasts of zircon were dated at 498 ± 11 Ma (), corresponding to the M3. Average burial rates estimated from the M2 and M3 ages are too low (<2 mm/year) for cold subduction regime (~5–10°C/km), suggesting that an exhumation stage intervened between two prograde segments of P–T path. Thus, the P–T–t evolution of barroisite eclogites is typified by two discrete episodes with an c. 15 Ma gap during the middle Cambrian subduction of the Antarctic Ross Orogeny.  相似文献   

8.
Fluid inclusions in coesite‐bearing eclogites and jadeite quartzite at Shuanghe in Dabie Shan, East‐central China, have preserved remnants of early, prograde and/or peak metamorphic fluids, reset during post‐UHP (ultrahigh‐pressure) metamorphic uplift. Inclusions occur in several minerals (e.g. omphacite & epidote), notably as isolated, primary inclusions in quartz included in various host minerals. Two major fluid types have been identified: non‐polar fluid species (N2 or CO2) and aqueous, the latter is by far the most predominant. Aqueous fluids cover a wide range of salinity, from halite‐bearing brines to low salinity fluids. For non‐polar fluids, few N2 inclusions occur in undeformed eclogite, whereas a number of CO2‐rich inclusions have been found in microshear zones of eclogite or jadeite quartzite in close proximity to marble occurrences. The primary character of N2 and high‐salinity aqueous inclusions indicates that they are remnants from UHP metamorphic fluids and for some there is the distinct possibility that they are ultimately derived from pre‐metamorphic fluids. This conclusion is supported by the preservation, in some samples, of microdomains containing synchronous inclusions of variable salinities, which tend to relate to the chemical composition of the host crystal. Carbonic fluids may be derived from neighbouring rocks, notably marble and carbonate‐bearing metasediments, during post‐metamorphic uplift. During post‐UHP exhumation, a limited decrease of the fluid density has occurred, with formation of new sets of fluid inclusions. Fluid movements, however, remained exceedingly limited, at the scale of the enclosing crystal.  相似文献   

9.
Lawsonite is an important hydrous mineral that is stable at low‐temperature (LT) and high‐ to ultrahigh‐pressure (HP–UHP) conditions in subducted slabs. The occurrence/absence of lawsonite in eclogite is a significant constraint for the construction of the metamorphic, tectonic and fluid/melt evolution histories of an HP–UHP terrane. However, lawsonite is very rarely preserved in natural eclogites, and accurate judgment of its former existence is a significant challenge for petrologists. At present, whether lawsonite has ever existed in lawsonite‐absent eclogite is mainly judged by (i) pseudomorphs after lawsonite, and (ii) phase equilibria modelling. In this study, major element and trace‐element distributions in multistage minerals were examined in the Ganghe lawsonite‐absent UHP eclogite in the Dabie UHP terrane, eastern China. This work demonstrates that the whole‐rock Sr and light rare earth elements (LREEs) are mainly dominated by epidote; other minerals (garnet, omphacite, quartz, kyanite, barroisite, phengite and accessory minerals) play a very limited role in the Sr and LREEs budgets. Two stages of epidote, which have noticeably different Sr and LREEs contents, were recognized in the eclogite: (i) Epidote porphyroblasts (Ep‐P core), which are suspected to be the pseudomorphic mineral after lawsonite, contain significantly high Sr (7200–10 300 ppm) and LREEs (160–1300 ppm for La). (ii) An earlier stage epidote (Ep‐In core) occurs as inclusions in matrix omphacite, or in omphacite inclusions in the suspected pseudomorphic minerals after lawsonite (SPMAL); this early epidote has significantly lower Sr (990–1890 ppm, average 1495 ppm, n = 17) and LREEs contents (60–110 ppm for La, average 91 ppm, n = 17). All of the existing early‐stage minerals predating the SPMAL have very low contents of Sr and LREEs, and the total amounts of these elements in the early‐stage minerals do not balance those in the SPMAL. This indicates that a missing Ca‐, Al‐, Sr‐ and LREE‐rich mineral, which was previously in equilibrium with the early‐stage minerals, likely existed in the Ganghe eclogite. On the basis of the mineral geochemistry and phase equilibria modelling, we confirm that the missing mineral cannot be anything but lawsonite. This study indicates that examining the mass (im)balance of Sr and LREEs between multistage HP–UHP epidote can be used as a potential method to confirm the previous existence of lawsonite in lawsonite‐absent eclogite.  相似文献   

10.
In order to reconstruct the formation and exhumation mechanisms of UHP metamorphic terrains, the Chinese Continental Scientific Drilling Program (CCSD) has been carried out in Donghai of the Dabie-Sulu ultrahigh-pressure (UHP) metamorphic belt, East China. Eclogite, gneiss, amphibolite (retrograded from eclogite), ultramafic rocks, and minor schist and quartzite have been drilled. Aiming to reveal the fluid behaviour in a vertical sequence of an UHP slab, we investigated fluid inclusion and oxygen isotope characteristics of selected drillcores from the main hole and the pilot-holes PP2 and ZK 703 of the CCSD. More than 540 laser-ablation oxygen isotope analyses on garnet, omphacite, quartz, kyanite, amphibole, phengite, rutile, epidote, amphibole, plagioclase, and biotite from various rocks in the depth range of 0–3,000 m (mainly eclogite and gneiss) show that the investigated rocks can be divided into two groups: 18O-depleted rocks (as low as δ18O = −7.4‰ for garnet) indicate interaction with cold climate meteoric waters, whereas 18O-normal rocks (with bulk δ18O > +5.6‰) have preserved the O-isotopic compositions of their protoliths. Meteoric water/rock interaction has reached depths of at least 2,700 m. Oxygen isotope equilibrium has generally been achieved. Isotopic compositions of mineral phases are homogeneous on a mm to cm scale regardless of lithology, but heterogeneous on the scale of a few metres. Oxygen isotope distributions in the vertical sections favour an “in situ” origin of the UHP metamorphic rocks. The very negative δ18O eclogites usually have higher hydroxyl-mineral contents than the normal δ18O rocks, indicating higher water content during UHP metamorphism. Fluid inclusion data suggest that rocks with depleted 18O compositions have had different fluid histories compared to those with normal δ18O values. Rocks with depleted 18O mainly have primary medium-to-high salinity inclusions in omphacite, kyanite and quartz, and abundant secondary low-salinity or pure water inclusions in quartz, indicating a high-salinity-brine-dominated fluid system during peak UHP metamorphism; no carbonic inclusions have been identified in these rocks. By contrast, primary very high-density CO2 inclusions are commonly found in the rocks with normal δ18O values. These observations suggest that fluid and oxygen isotope composition of minerals are related and reflect variable degrees of alterations of the Dabie-Sulu UHP metamorphic rocks.  相似文献   

11.
Eclogite, orthogneiss and, by association, metapelite from an island at 78°N in North‐East Greenland experienced ultrahigh‐pressure (UHP) metamorphism at approximately 970 °C and 3.6 GPa, at the end of the Caledonian collision, 360–350 Ma. Hydrous metapelites contain abundant leucocratic layers and lenses composed of medium‐grained, anhedral, equigranular quartz, antiperthitic plagioclase and K‐feldspar with minor small garnet and kyanite crystals. Leucosomes are generally parallel to the matrix foliation, are interlayered with residual quartz bands, anastomose around residual garnet and commonly cross‐cut micaceous segregations. Textures suggest that the leucosomes crystallized from a syntectonic melt, but crystallized at the end of local high‐grade deformation. The metapelite outcrop is < 1.5 km from kyanite eclogites with confirmed coesite, but the metapelites lack coesite and palisade textures diagnostic of coesite pseudomorphs. They do contain highly fractured garnet megacrysts with polycrystalline quartz inclusions (some surrounded by radial fractures) and Ti‐rich phengite inclusions that suggest the former presence of coesite. Polyphase inclusions in garnet contain reactants and products of the inferred dehydration melting reaction: Phe + Qtz = Ky + Kfs + Rt + melt. The reactants are thought to have been early inclusions of hydrous phases within garnet that melted and then crystallized new phases. Garnet surrounding these inclusions has patchy zoning with elevated Ca, consistent with experiments that produced similar patchy microstructures in garnet around inclusions with an unequivocal melt origin. The peak UHP metamorphic assemblage in these rocks is inferred to have been phengite, coesite, garnet, kyanite, rutile, fluid ± omphacite ± epidote. Phase diagrams indicate that dehydration melting of phengite in this assemblage would have occurred after decompression from peak pressure, but still above the coesite to quartz transition. Unusual crown‐ and moat‐like textures in garnet around some polycrystalline quartz inclusions are also consistent with the inference that melting took place at UHP conditions.  相似文献   

12.
A combined study of major and trace elements, fluid inclusions and oxygen isotopes has been carried out on garnet pyroxenite from the Raobazhai complex in the North Dabie Terrane (NDT). Well‐preserved compositional zoning with Na decreasing and Ca and Mg increasing from the core to rim of pyroxene in the garnet pyroxenite indicates eclogite facies metamorphism at the peak metamorphic stage and subsequent granulite facies metamorphism during uplift. A PT path with substantial heating (from c. 750 to 900 °C) after the maximum pressure reveals a different uplift history compared with most other eclogites in the South Dabie Terrane (SDT). Fluid inclusion data can be correlated with the metamorphic grade: the fluid regime during the peak metamorphism (eclogite facies) was dominated by N2‐bearing NaCl‐rich solutions, whereas it changed into CO2‐dominated fluids during the granulite facies retrograde metamorphism. At a late retrograde metamorphic stage, probably after amphibolite facies metamorphism, some external low‐salinity fluids were involved. In situ UV‐laser oxygen isotope analysis was undertaken on a 7 mm garnet, and impure pyroxene, amphibole and plagioclase. The nearly homogeneous oxygen isotopic composition (δ18OVSMOW = c. 6.7‰) in the garnet porphyroblast indicates closed fluid system conditions during garnet growth. However, isotopic fractionations between retrograde phases (amphibole and plagioclase) and garnet show an oxygen isotopic disequilibrium, indicating retrograde fluid–rock interactions. Unusual MORB‐like rare earth element (REE) patterns for whole rock of the garnet pyroxenite contrast with most ultra‐high‐pressure (UHP) eclogites in the Dabie‐Sulu area. However, the age‐corrected initial εNd(t) is ? 2.9, which indicates that the protolith of the garnet pyroxenite was derived from an enriched mantle rather than from a MORB source. Combined with the present data of oxygen isotopic compositions and the characteristic N2 content in the fluid inclusions, we suggest that the protolith of the garnet pyroxenite from Raobazhai formed in an enriched mantle fragment, which has been exposed to the surface prior to the Triassic metamorphism.  相似文献   

13.
Eclogites and related high‐P metamorphic rocks occur in the Zaili Range of the Northern Kyrgyz Tien‐Shan (Tianshan) Mountains, which are located in the south‐western segment of the Central Asian Orogenic Belt. Eclogites are preserved in the cores of garnet amphibolites and amphibolites that occur in the Aktyuz area as boudins and layers (up to 2000 m in length) within country rock gneisses. The textures and mineral chemistry of the Aktyuz eclogites, garnet amphibolites and country rock gneisses record three distinct metamorphic events (M1–M3). In the eclogites, the first MP–HT metamorphic event (M1) of amphibolite/epidote‐amphibolite facies conditions (560–650 °C, 4–10 kbar) is established from relict mineral assemblages of polyphase inclusions in the cores and mantles of garnet, i.e. Mg‐taramite + Fe‐staurolite + paragonite ± oligoclase (An<16) ± hematite. The eclogites also record the second HP‐LT metamorphism (M2) with a prograde stage passing through epidote‐blueschist facies conditions (330–570 °C, 8–16 kbar) to peak metamorphism in the eclogite facies (550–660 °C, 21–23 kbar) and subsequent retrograde metamorphism to epidote‐amphibolite facies conditions (545–565 °C and 10–11 kbar) that defines a clockwise P–T path. thermocalc (average P–T mode) calculations and other geothermobarometers have been applied for the estimation of P–T conditions. M3 is inferred from the garnet amphibolites and country rock gneisses. Garnet amphibolites that underwent this pervasive HP–HT metamorphism after the eclogite facies equilibrium have a peak metamorphic assemblage of garnet and pargasite. The prograde and peak metamorphic conditions of the garnet amphibolites are estimated to be 600–640 °C; 11–12 kbar and 675–735 °C and 14–15 kbar, respectively. Inclusion phases in porphyroblastic plagioclase in the country rock gneisses suggest a prograde stage of the epidote‐amphibolite facies (477 °C and 10 kbar). The peak mineral assemblage of the country rock gneisses of garnet, plagioclase (An11–16), phengite, biotite, quartz and rutile indicate 635–745 °C and 13–15 kbar. The P–T conditions estimated for the prograde, peak and retrograde stages in garnet amphibolite and country rock are similar, implying that the third metamorphic event in the garnet amphibolites was correlated with the metamorphism in the country rock gneisses. The eclogites also show evidence of the third metamorphic event with development of the prograde mineral assemblage pargasite, oligoclase and biotite after the retrograde epidote‐amphibolite facies metamorphism. The three metamorphic events occurred in distinct tectonic settings: (i) metamorphism along the hot hangingwall at the inception of subduction, (ii) subsequent subduction zone metamorphism of the oceanic plate and exhumation, and (iii) continent–continent collision and exhumation of the entire metamorphic sequences. These tectonic processes document the initial stage of closure of a palaeo‐ocean subduction to its completion by continent–continent collision.  相似文献   

14.
Minor granulites (believed to be pre-Triassic), surrounded by abundant amphibolite-facies orthogneiss, occur in the same region as the well-documented Triassic high- and ultrahigh-pressure (HP and UHP) eclogites in the Dabie–Sulu terranes, eastern China. Moreover, some eclogites and garnet clinopyroxenites have been metamorphosed at granulite- to amphibolite-facies conditions during exhumation. Granulitized HP eclogites/garnet clinopyroxenites at Huangweihe and Baizhangyan record estimated eclogite-facies metamorphic conditions of 775–805 °C and ≥15 kbar, followed by granulite- to amphibolite-facies overprint of ca. 750–800 °C and 6–11 kbar. The presence of (Na, Ca, Ba, Sr)-feldspars in garnet and omphacite corresponds to amphibolite-facies conditions. Metamorphic mineral assemblages and PT estimates for felsic granulite at Huangtuling and mafic granulite at Huilanshan indicate peak conditions of 850 °C and 12 kbar for the granulite-facies metamorphism and 700 °C and 6 kbar for amphibolite-facies retrograde metamorphism. Cordierite–orthopyroxene and ferropargasite–plagioclase coronas and symplectites around garnet record a strong, rapid decompression, possibly contemporaneous with the uplift of neighbouring HP/UHP eclogites.

Carbonic fluid (CO2-rich) inclusions are predominant in both HP granulites and granulitized HP/UHP eclogites/garnet clinopyroxenites. They have low densities, having been reset during decompression. Minor amounts of CH4 and/or N2 as well as carbonate are present. In the granulitized HP/UHP eclogites/garnet clinopyroxenites, early fluids are high-salinity brines with minor N2, whereas low-salinity fluids formed during retrogression. Syn-granulite-facies carbonic fluid inclusions occur either in quartz rods in clinopyroxene (granulitized HP garnet clinopyxeronite) or in quartz blebs in garnet and quartz matrices (UHP eclogite). For HP granulites, a limited number of primary CO2 and mixed H2O–CO2(liquid) inclusions have also been observed in undeformed quartz inclusions within garnet, orthopyroxene, and plagioclase which contain abundant, low-density CO2±carbonate inclusions. It is suggested that the primary fluid in the HP granulites was high-density CO2, mixed with a significant quantity of water. The water was consumed by retrograde metamorphic mineral reactions and may also have been responsible for metasomatic reactions (“giant myrmekites”) occurring at quartz–feldspar boundaries. Compared with the UHP eclogites in this region, the granulites were exhumed in the presence of massive, externally derived carbonic fluids and subsequently limited low-salinity aqueous fluids, probably derived from the surrounding gneisses.  相似文献   


15.
The Yaoling tungsten deposit is a typical wolframite quartz vein‐type tungsten deposit in the South China metallogenic province. The wolframite‐bearing quartz veins mainly occur in Cambrian to Ordovician host rocks or in Mesozoic granitic rocks and are controlled by the west‐north‐west trending extensional faults. The ore mineralization mainly comprises wolframite and variable amounts of molybdenite, chalcopyrite, pyrite, fluorite, and tourmaline. Hydrothermal alteration is well developed at the Yaoling tungsten deposit, including greisenization, silicification, fluoritization, and tourmalinization. Three types of primary/pseudosecondary fluid inclusions have been identified in vein quartz, which is intimately intergrown with wolframite. These include two‐phase liquid‐rich aqueous inclusions (type I), two‐ or three‐phase CO2‐rich inclusions (type II), and type III daughter mineral‐bearing multiphase high‐salinity aqueous inclusions. Microthermometric measurements reveal consistent moderate homogenization temperatures (peak values from 200 to 280°C), and low to high salinities (1.3–39 wt % NaCl equiv.) for the type I, type II, and type III inclusions, where the CO2‐rich type II inclusions display trace amounts of CH4 and N2. The ore‐forming fluids are far more saline than those of other tungsten deposits reported in South China. The estimated maximum trapping pressure of the ore‐forming fluids is about 1230–1760 bar, corresponding to a lithostatic depth of 4.0–5.8 km. The δDH2O isotopic compositions of the inclusion fluid ranges from ?66.7 to ?47.8‰, with δ18OH2O values between 1.63 and 4.17‰, δ13C values of ?6.5–0.8‰, and δ34S values between ?1.98 and 1.92‰, with an average of ?0.07‰. The stable isotope data imply that the ore‐forming fluids of the Yaoling tungsten deposit were mainly derived from crustal magmatic fluids with some involvement of meteoric water. Fluid immiscibility and fluid–rock interaction are thought to have been the main mechanisms for tungsten precipitation at Yaoling.  相似文献   

16.
Pseudosections calculated with thermocalc predict that lawsonite‐bearing assemblages, including lawsonite eclogite, will be common for subducted oceanic crust that experiences cool, fluid‐saturated conditions. For glaucophane–lawsonite eclogite facies conditions (500–600 °C and 18–28 kbar), MORB compositions are predicted in the NCKMnFMASHO system to contain glaucophane, garnet, omphacite, lawsonite, phengite and quartz, with chlorite at lower temperature and talc at higher temperature. In these assemblages, the pyrope content in garnet is mostly controlled by variations in temperature, and grossular content is strongly controlled by pressure. The silica content in phengite increases linearly with pressure. As the P–T conditions for these given isopleths are only subtly affected by common variations in bulk‐rock compositions, the P–T pseudosections potentially present a robust geothermobarometric method for natural glaucophane‐bearing eclogites. Thermobarometric results recovered both by isopleth and conventional approaches indicate that most natural glaucophane–lawsonite eclogites (Type‐L) and glaucophane–epidote eclogites (Type‐E) record similar peak P–T conditions within the lawsonite stability field. Decompression from conditions appropriate for lawsonite stability should result in epidote‐bearing assemblages through dehydration reactions controlled by lawsonite + omphacite = glaucophane + epidote + H2O. Lawsonite and omphacite breakdown will be accompanied by the release of a large amount of bound fluid, such that eclogite assemblages are variably recrystallized to glaucophane‐rich blueschist. Calculated pseudosections indicate that eclogite assemblages form most readily in Ca‐rich rocks and blueschist assemblages most readily in Ca‐poor rocks. This distinction in bulk‐rock composition can account for the co‐existence of low‐T eclogite and blueschist in high‐pressure terranes.  相似文献   

17.
The skarn‐type tungsten deposit of the Date‐Nagai mine is genetically related to the granodiorite batholith of the Iidateyama body. Skarn is developed along the contact between pelitic hornfels and marble that remains as a small roof pendant body directly above the granodiorite batholith. Zonal arrangement of minerals is observed in skarn. The zonation consists of wollastonite, garnet, garnet‐epidote, and vesuvianite‐garnet zones, from marble to hornfels. Sheelite is included in garnet, garnet‐epidote, and vesuvianite‐garnet zones. The oxygen isotope values of skarn minerals were obtained as δ18O = 4.2–7.7‰ for garnet, 5.9–6.9‰ for vesuvianite, ?0.3–3.4‰ for scheelite, 6.0–10.9‰ for quartz, and 8.2‰ for muscovite. The temperature of skarn‐formation was calculated from oxygen isotopic values of scheelite‐quartz pairs to be 288°C. Calculated oxygen isotope values of fluid responsible for skarn minerals were 6.1–9.5‰ for garnet, 1.2–4.8‰ for scheelite, ?1.3‐3.6‰ for quartz, and 4.5‰ for muscovite. Garnet precipitated from the fluids of different δ18O values from scheelite, quartz, and muscovite. These δ18O values suggest that the origin of fluid responsible for garnet was magmatic water, while evidence for the presence of a meteoric component in the fluids responsible for middle to later stages minerals was confirmed.  相似文献   

18.
The Nuri Cu‐W‐Mo deposit is located in the southern subzone of the Cenozoic Gangdese Cu‐Mo metallogenic belt. The intrusive rocks exposed in the Nuri ore district consist of quartz diorite, granodiorite, monzogranite, granite porphyry, quartz diorite porphyrite and granodiorite porphyry, all of which intrude in the Cretaceous strata of the Bima Group. Owing to the intense metasomatism and hydrothermal alteration, carbonate rocks of the Bima Group form stratiform skarn and hornfels. The mineralization at the Nuri deposit is dominated by skarn, quartz vein and porphyry type. Ore minerals are chalcopyrite, pyrite, molybdenite, scheelite, bornite and tetrahedrite, etc. The oxidized orebodies contain malachite and covellite on the surface. The mineralization of the Nuri deposit is divided into skarn stage, retrograde stage, oxide stage, quartz‐polymetallic sulfide stage and quartz‐carbonate stage. Detailed petrographic observation on the fluid inclusions in garnet, scheelite and quartz from the different stages shows that there are four types of primary fluid inclusions: two‐phase aqueous inclusions, daughter mineral‐bearing multiphase inclusions, CO2‐rich inclusions and single‐phase inclusions. The homogenization temperature of the fluid inclusions are 280°C–386°C (skarn stage), 200°C–340°C (oxide stage), 140°C–375°C (quartz‐polymetallic sulfide stage) and 160°C–280°C (quartz‐carbonate stage), showing a temperature decreasing trend from the skarn stage to the quartz‐carbonate stage. The salinity of the corresponding stages are 2.9%–49.7 wt% (NaCl) equiv., 2.1%–7.2 wt% (NaCl) equiv., 2.6%–55.8 wt% (NaCl) equiv. and 1.2%–15.3 wt% (NaCl) equiv., respectively. The analyses of CO2‐rich inclusions suggest that the ore‐forming pressures are 22.1 M Pa–50.4 M Pa, corresponding to the depth of 0.9 km–2.2 km. The Laser Raman spectrum of the inclusions shows the fluid compositions are dominated in H2O, with some CO2 and very little CH4, N2, etc. δD values of garnet are between ?114.4‰ and ?108.7‰ and δ18OH2O between 5.9‰ and 6.7‰; δD of scheelite range from ?103.2‰ to ?101.29‰ and δ18OH2O values between 2.17‰ and 4.09‰; δD of quartz between ?110.2‰ and ?92.5‰ and δ18OH2O between ?3.5‰ and 4.3‰. The results indicate that the fluid came from a deep magmatic hydrothermal system, and the proportion of meteoric water increased during the migration of original fluid. The δ34S values of sulfides, concentrated in a rage between ?0.32‰ to 2.5‰, show that the sulfur has a homogeneous source with characteristics of magmatic sulfur. The characters of fluid inclusions, combined with hydrogen‐oxygen and sulfur isotopes data, show that the ore‐forming fluids of the Nuri deposit formed by a relatively high temperature, high salinity fluid originated from magma, which mixed with low temperature, low salinity meteoric water during the evolution. The fluid flow through wall carbonate rocks resulted in the formation of layered skarn and generated CO2 or other gases. During the reaction, the ore‐forming fluid boiled and produced fractures when the pressure exceeded the overburden pressure. Themeteoric water mixed with the ore‐forming fluid along the fractures. The boiling changed the pressure and temperature, oxygen fugacity, physical and chemical conditions of the whole mineralization system. The escape of CO2 from the fluid by boiling resulted in scheelite precipitation. The fluid mixing and boiling reduced the solubility of metal sulfides and led the precipitation of chalcopyrite, molybdenite, pyrite and other sulfide.  相似文献   

19.
Several types of multiphase solid (MS) inclusions are identified in garnet from ultrahigh‐pressure (UHP) eclogite in the Dabie orogen. The mineralogy of MS inclusions ranges from pure K‐feldspar to pure quartz, with predominance of intermediate types consisting of K‐feldspar + quartz ± silicate (plagioclase or epidote) ± barite. The typical MS inclusions are usually surrounded with radial cracks in the host garnet, similar to where garnet contains relict coesite. Barite aggregates display significant heterogeneity in major element composition, with total contents of only 57–73% and highly variable SiO2 contents of 0.32–25.85% that are positively correlated with BaO and SO3 contents. The occurrence of MS inclusions provides petrographic evidence for partial melting in the UHP metamorphic rock. The occurrence of barite aggregates with variably high SiO2 contents suggests the coexistence of aqueous fluid with hydrous melt under HP eclogite facies conditions. Thus, local dehydration melting is inferred to take place inside the UHP metamorphic slice during continental collision. This is ascribed to phengite breakdown during ‘hot’ exhumation of the deeply subducted continental crust. As a consequence, the aqueous fluid is internally buffered in chemical composition and its local sink is a basic trigger to the partial melting during the continental subduction‐zone metamorphism.  相似文献   

20.
The Tongcun Mo(Cu) deposit in Kaihua city of Zhejiang Province,eastern China,occurs in and adjacent to the Songjiazhuang granodiorite porphyry and is a medium-sized and important porphyry type ore deposit.Two irregular Mo(Cu) orebodies consist of various types of hydrothermal veinlets.Intensive hydrothermal alteration contains skarnization,chloritization,carbonatization,silicification and sericitization.Based on mineral assemblages and crosscutting relationships,the oreforming processes are divided into five stages,i.e.,the early stage of garnet + epidote ± chlorite associated with skarnization and K-feldspar + quartz ± molybdenite veins associated with potassicsilicic alteration,the quartz-sulfides stage of quartz + molybdenite ± chalcopyrite ± pyrite veins,the carbonatization stage of calcite veinlets or stockworks,the sericite + chalcopyrite ± pyrite stage,and the late calcite + quartz stage.Only the quartz-bearing samples in the early stage and in the quartzsulfides stage are suitable for fluid inclusions(FIs) study.Four types of FIs were observed,including1) CO_2-CH_4 single phase FIs,2) CO_2-bearing two- or three-phase FIs,3) Aqueous two-phase FIs,and4) Aqueous single phase FIs.FIs of the early stages are predominantly CO_2- and CH_4-rich FIs of the CO_2-CH4-H_2O-NaCl system,whereas minerals in the quartz-sulfides stage contain CO_2-rich FIs of the CO_2-H_2O-NaCl system and liquid-rich FIs of the H_2O-NaCl system.For the CO_2-CH_4 single phase FIs of the early mineralization stage,the homogenization temperatures of the CO_2 phase range from 15.4 ℃ to 25.3 ℃(to liquid),and the fluid density varies from 0.7 g/cm~3 to 0.8 g/cm~3;for two- or three-phase FIs of the CO_2-CH_4-H_2O-NaCl system,the homogenization temperatures,salinities and densities range from 312℃ to 412℃,7.7 wt%NaCl eqv.to 10.9 wt%NaCl eqv.,and 0.9 g/cm~3 to 1.0 g/cm~3,respectively.For CO_2-H_2O-NaCI two- or threephase FIs of the quartz-sulfides stage,the homogenization temperatures and salinities range from255℃ to 418℃,4.8 wt%NaCl eqv.to 12.4 wt%NaCl eqv.,respectively;for H_2O-NaCl two-phase FIs,the homogenization temperatures range from 230 ℃ to 368 ℃,salinities from 11.7 wt%NaCl eqv.to16.9 wt%NaCl eqv.,and densities from 0.7 g/cm~3 to 1.0 g/cm~3.Microthermometric measurements and Laser Raman spectroscopy analyses indicate that CO_2 and CH_4 contents and reducibility(indicated by the presence of CH_4) of the fluid inclusions trapped in quartz-sulfides stage minerals are lower than those in the early stage.Twelve molybdenite separates yield a Re-Os isochron age of 163 ± 2.4 Ma,which is consistent with the emplacement age of the Tongcun,Songjiazhuang,Dayutang and Huangbaikeng granodiorite porphyries.The S18OSMow values of fluids calculated from quartz of the quartz-sulfides stage range from 5.6‰ to 8.6‰,and the JDSMOw values of fluid inclusions in quartz of this stage range from-71.8‰ to-88.9‰,indicating a primary magmatic fluid source.534SV-cdt values of sulfides range from+1.6‰ to +3.8‰,which indicate that the sulfur in the ores was sourced from magmatic origins.Phase separation is inferred to have occurred from the early stage to the quartz-sulfides stage and resulted in ore mineral precipitation.The characteristics of alteration and mineralization,fluid inclusion,sulfur and hydrogen-oxygen isotope data,and molybdenite Re-Os ages all suggest that the Tongcun Mo(Cu) deposit is likely to be a reduced porphyry Mo(Cu) deposit associated with the granodiorite porphyry in the Tongcun area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号