首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Mt. Franks area of the Willyama Complex, microfabric evidence suggests that the alteration of andalusite to sillimanite has taken place by a process similar to that suggested by Carmichael (1969). Andalusite is pre- to syn-S2 in age. Alteration to “sericite” has resulted in the formation of “sericite” laths, some of which are crenulated about S2, and some which are syn- and post-S2. “Fibrolite” occurs in these andalusite—“sericite” aggregates within the sillimanite zone and is wholly embedded in “sericite”. “Fibrolite” is pre- to syn-S2 in age. This evidence is interpreted as suggesting that the formation of sillimanite from andalusite took place via a “sericite” phase.Further microfabric observations are interpreted to imply constant volume for the reaction aluminosilicate → “sericite”. This suggests a situation in which Al3+ is relatively mobile but Al4+ is relatively immobile. This suggestion differs from Carmichael's (1969) idea of Al3+ immobility.  相似文献   

2.
Cambrian explosion: Birth of tree of animals   总被引:5,自引:5,他引:0  
D. Shu   《Gondwana Research》2008,14(1-2):219
Excluding the sponges the Kingdom Animalia is usually divided into three subkingdoms: Diploblasta, Protostomia and Deuterostomia. The Cambrian Explosion consists of three major episodes, two of which were in the early Early Cambrian (one represented by the small skeletal fossils “SSFs” at the base of the Cambrian and the other represented by the succeeding Chengjiang faunas “CFs”), and the other episode as their prelude took place in the “Eocambrian” (i.e. the latest Precambrian), represented by the Ediacaran faunas. This unique Big Bang of life has been recognized as giving birth to the entire morphological Tree Of Animals (or metazoans), in short the TOA. Its “seed” in the deep Precambrian, represented by some sort of protist from which the complete TOA must have grown, remains unknown paleontologically. However, the fossil evidence suggests that the three major episodes of the Cambrian Explosion are responsible for the earliest radiations of the three subkingdoms of animals respectively. While the observed Ediacaran fauna might constitute only a small part of the whole Ediacaran biota, our evidence supports that it was dominated by diploblasts (the “trunk” of the TOA) with only a few possible stem-group triploblasts. The Early Cambrian in turn in two phases explosively yielded almost all the major triploblastic crown-branches (Bilateria: the huge “crown” of the TOA), which include the other two subkingdoms: first the extremely diverse protostomes in the Meishucunian Age and then followed by a nearly entire lineage of early deuterostomes from the Chengjiang, including even its most derived member – the earliest true vertebrates. Among the four most significant milestones of morphological origins and radiations in animal history, the first one (i.e. appearance of metazoans) took place in the Ediacaran Period or earlier times, and the other three can be seen in the windows available from the Chengjiang and the Meishucunian fossil assemblages. The newly discovered extinct Phylum Vetulicolia, which has primitively segmented body with simple gill slits in its anterior division, most probably represents one of the roots of the deuterostome subkingdom. Showing a mosaic of basic features possessed in both the bilateral vetulicolians and some primitive echinoderms, the soft-bodied vetulocystids are best regarded as one of the roots of the extant pentamerous echinoderms. Standing on the “top” of the deuterostome super-branch in the early Cambrian TOA are the “the first fish” Myllokunmingia and Haikouichthys, which bear paired eyes and salient proto-vertebrae. These animals represent the real root of the remainder of the vertebrates or craniates. On the contrary, yunnanozoans, including Yunnanozoon and Haikouella, possess neither eyes nor unequivocal vertebrae, and may have nothing to do with the craniates, let alone the vertebrates. Those enigmatic creatures share a similar body-plan with vetulicolians and should be treated as a side-branch within the lower deuterostomes.  相似文献   

3.
The Cenomanian/Turonian Boundary Event (CTBE) at Wunstorf, north-west Germany, has been analysed palynologically by high resolution sampling to reconstruct changes in relative sea-level and water mass character within photic zone waters. Based on changes in the ratio of terrigenous sporomorphs to marine palynomorphs (t/m index), the distribution of the organic-walled algal taxa as well as of selected dinocyst taxa and groups the section can largely be subdivided into pre-“plenus-bed” and post-“plenus-bed” intervals, reflecting different stages of third-order relative sea-level cycles and/or changes in water mass influence in the photic zone. Accordingly, the pre-“plenus-bed” interval is placed in a transgressive systems tract starting at the “facies change” event (C. guerangeri/M. geslinianum ammonite Zone boundary) with the maximum flooding surface at the top of the “Chondrites II” bed (top of R. cushmani Biozone). A highstand systems tract is suggested from the base of the “plenus-bed” up the base of the “fish-shale” event. Within the “fish-shale” event interval, a transgressive systems tract is suggested to start at the base of the thin, grey-green marly interbed. The Cenomanian/Turonian boundary proper, as defined by the first occurrence of Mytiloides spp., as well as the lowermost Turonian are located within the initial phase of a transgressive systems tract. With respect to water mass characteristics within photic-zone waters, the pre-“plenus-bed” interval is predominantly characterized by warm water masses that changed gradually towards the deposition of the “Chondrites II” bed, where a strong influence of cool and/or salinity-reduced waters is indicated by various palynological proxies. Within the post-“plenus-bed” interval a mixture and/or alternation of warmer and cooler waters is indicated, with the warmer water influence increasing gradually towards and within the Lower Turonian stage. The increased proportions of prasinophytes within the “Chondrites II” bed and parts of the “fish-shale” interval may indicate availability of reduced nitrogen chemospecies, especially ammonium, within photic-zone waters as a function of a vertical expansion of the oceanic O2-minimum zone.  相似文献   

4.
This report extends previous work ([Louda et al., 1998a] and [Louda et al., 1998b]. Chlorophyll degradation during senescence and death. Organic Geochemistry 29, 1233–1251.) in which we detailed type-I (alteration) and -II (destruction) degradation of chlorophyll with representative fresh water phytoplankton. The present study covers similar experiments with marine phytoplankton, namely, a cyanobacterium (“ANA” Anacystis sp), a coccolithophore (“COC” Coccolithophora sp.), a dinoflagellate (“GYM” Gymnodinium sp.) and two diatoms (“CYC” Cyclotella meneghiniana and “THAL” Thalassiosira sp.). Mg loss (‘pheophytinization') was rapid and continuous in all species under room-oxic conditions and slow or sporadic under anoxic conditions. The proportion of dephytylated pigments (pheophorbides-a, chlorophyllides-a), relative to the phytylated forms (chlorophyll-a, pheophytins-a), increased over the first year under room-oxic conditions and in room-anoxic conditions only in “CYC”. Pheophorbide-a was converted to pyropheophorbide-a within 15 months only in “THAL” and “ANA”, and slightly in “COC”. After 9–15 months of oxic incubation, “COC” was found to contain traces of purpurin-18 phytyl ester. Consideration of carotenoid pigments is also included herein. All fucoxanthin containing species, except “THAL”, exhibited conversion of fucoxanthin to fucoxanthinol in room-oxic conditions. Diadinoxanthin was rapidly de-epoxidized to give diatoxanthin within the first 2–4 weeks. Diatoxanthin then disappeared from all species by 15 months with a concurrent increase in a pigment which we tentatively identify as a cis-zeaxanthin. Incubations of pure cultures are found to be an effective way by which to model the early type-I reactions for both chlorophylls and carotenoids. The influence of oxygen during senescence-death and the onset of early diagenesis is of paramount importance. The absence of oxygen and, by inference, aerobic microbiota, retards the breakdown of these pigments dramatically.  相似文献   

5.
A unique Upper Permian coal, Leping coal, is widely distributed in South China. The coal samples studied in the paper were collected from two mines in the Shuicheng coalfield of Guizhou Province, southwest China. The geochemical works including coal petrography, maceral content, Rock–Eval pyrolysis, and kinetic modelling of hydrocarbon-generating have been carried out on whole coal and individual macerals. The higher contents of volatile matter, elemental hydrogen, and tar yield, and the high hydrocarbon generation potential of the Leping coals are attributed to their high content of “barkinite”, a special liptinite maceral.The hydrocarbon generation potential of “barkinite” (S2=287 mg/g, hydrogen index (HI)=491 mg/g TOC) is greater than that of vitrinite (S2=180 mg/g, HI=249 mg/g TOC), and much higher than that of fusinite (S2=24 mg/g, HI=35 mg/g TOC). At the same experimental conditions, “barkinite” has a higher threshold and a narrower “oil window” than those of vitrinite and fusinite, and consequently, can generate more hydrocarbons in higher coalification temperature and shorter geological duration. Data from the activation energy distributions indicate that “barkinite” has a more homogenous chemical structure than that of vitrinite and fusinite. The above-mentioned characteristics are extremely important for exploring hydrocarbon derived from the Leping coals in South China.  相似文献   

6.
Leping coal is known for its high content of “barkinite”, which is a unique liptinite maceral apparently found only in the Late Permian coals of South China. “Barkinite” has previously identified as suberinite, but on the basis of further investigations, most coal petrologists conclude that “barkinite” is not suberinite, but a distinct maceral. The term “barkinite” was introduced by (State Bureau of Technical Supervision of the People's Republic of China, 1991, GB 12937-91 (in Chinese)), but it has not been recognized by ICCP and has not been accepted internationally.In this paper, elemental analyses (EA), pyrolysis-gas chromatography, Rock-Eval pyrolysis and optical techniques were used to study the optical features and the hydrocarbon-generating model of “barkinite”. The results show that “barkinite” with imbricate structure usually occurs in single or multiple layers or in a circular form, and no definite border exists between the cell walls and fillings, but there exist clear aperture among the cells.“Barkinite” is characterized by fluorescing in relatively high rank coals. At low maturity of 0.60–0.80%Ro, “barkinite” shows strong bright orange–yellow fluorescence, and the fluorescent colors of different cells are inhomogeneous in one sample. As vitrinite reflectance increases up to 0.90%Ro, “barkinite” also displays strong yellow or yellow–brown fluorescence; and most of “barkinite” lose fluorescence at the maturity of 1.20–1.30%Ro. However, most of suberinite types lose fluorescence at a vitrinite reflectance of 0.50% Ro, or at the stage of high volatile C bituminous coal. In particular, the cell walls of “barkinite” usually show red color, whereas the cell fillings show yellow color under transmitted light. This character is contrary to suberinite.“Barkinite” is also characterized by late generation of large amounts of liquid oil, which is different from the early generation of large amounts of liquid hydrocarbon. In addition, “barkinite” with high hydrocarbon generation potential, high elemental hydrogen, and low carbon content. The pyrolysis products of “barkinite” are dominated by aliphatic compounds, followed by low molecular-weight aromatic compounds (benzene, toluene, xylene and naphthalene), and a few isoprenoids. The pyrolysis hydrocarbons of “barkinite” are mostly composed of light oil (C6–C14) and wet gas (C2–C5), and that heavy oil (C15+) and methane (C1) are the minor hydrocarbon.In addition, suberinite is defined only as suberinized cell walls—it does not include the cell fillings, and the cell lumens were empty or filled by corpocollinites, which do not show any fluorescence. Whereas, “barkinite” not only includes the cell walls, but also includes the cell fillings, and the cell fillings show bright yellow fluorescence.Since the optical features and the hydrocarbon-generating model of “barkinite” are quite different from suberinite. We suggest that “barkinite” is a new type of maceral.  相似文献   

7.
The definition and inventory of the upper units of the Antalya Nappes or “Calcareous Antalya Nappes” (CAN) are still a matter of controversies and often conflicting interpretations. In the Gedeller type locality, we logged a new succession that sheds light on the detailed stratigraphy of the Upper Antalya Nappes. The lower part of the series corresponds to the uppermost part of the Kemer Gorge Nappe and is overthrust by the Ordovician Seydişehir Formation of the Tahtalı Dağ Nappe. The newly described Gedeller Formation belongs to the Kemer Gorge Nappe and is represented by Campanian (Upper Cretaceous) Scaglia-type pelagic limestones, which yielded radiolarians of the Amphipyndax pseudoconulus Zone. It is demonstrated that the “Calcareous Antalya Nappes” are composed of three different nappes, the Kemer Gorge, Bakırlı and the Tahtalı Dağ nappes, all of them belonging to the Upper Antalya Nappes system.  相似文献   

8.
In the Rhenodanubian Flysch Zone of Austria, between the Aptian–Albian “Gault Flysch” and the Cenomanian–Turonian Reiselsberg Formation, an interval with predominant red shales (“Untere Bunte Schiefer”) occurs. In the Oberaschau section near Attersee (Upper Austria) a ca. 18-m-thick interval of alternating red and grey shales and marlstones with minor sandstones is present. Thin sandstone intercalations are interpreted as distal turbidites. Dinoflagellate cyst assemblages indicate the Litosphaeridium siphoniphorum Zone. The concurrent presence of Litosphaeridium siphoniphorum and Ovoidinium verrucosum in all samples allows a correlation to the lower part of this zone, thus defining a Late Albian–Early Cenomanian age. Based on foraminifera, the red beds can be assigned to the topmost Rotalipora appenninica Zone and the Rotalipora globotruncanoides Zone due to the presence of small morphotypes of the index taxa. Nannofossils indicate standard zones CC9/UC0 throughout the red interval, defined by the first occurrence of Eiffellithus turriseiffelii, and UC1 above the red shales. Based on these multistratigraphic data, a latest Albian–Early Cenomanian age can be inferred.  相似文献   

9.
John Harrison   《Geoforum》2006,37(6):932-943
The “region” and “regional change” have been elusive ideas within political and economic geography, and in essence require a greater understanding of their dynamic characteristics. Trailing in the backwaters of the devolution to the Celtic nations of Britain, the contemporary era of New Labour’s political-economic ideology, manifest through “third-way” governance in England places the region and its functional capacity into the heart of geographical inquiry. Drawing upon a new regionalist epistemology, this paper seeks to recover a sense of (regional) political economy through a critical investigation of the development and formulation of Blair’s “New Regional Policy” (NRP). I address how New Labour has attempted to marry economic regionalisation on the one hand, and democratic regionalism on the other. This paper specifically questions the wisdom of such a marriage of politically distinct ideologies through a critical investigation of the underlying contradictions of their strategy from both a theoretical and empirical standpoint. Demonstrated both in the North East “no” vote in 2004, and in the post-mortem undertaken by the ODPM Select Committee in 2005, the paper illustrates how a loss of political drive gradually undermined the capacity of devolution to deliver in England. Finally, I argue that through the lens of the NRP we can speculate on some of the wider issues and implications for the study of regional governance.  相似文献   

10.
Calcareous nannofossil assemblages at Site 641C (Galicia Margin, North Atlantic) were investigated in order to determine changes in fertility and temperature of surface waters. Taxa such as Zeughrabdotus spp. <3.5 μm, Biscutum constans, Discorhabdus rotatorius and Diazomatolithus lehmanii, which thrived in higher fertility conditions, are particularly abundant across the CM0 interval as opposed to those with oligotrophic affinities such as Watznaueria spp. and Nannoconus spp., which are generally reduced in abundance. The abundances of nannoconids are much lower than those observed in Tethyan sections, indicating higher fertility conditions. Slumpings and low recovery prevent the identification of the onset of the “nannoconid crisis”, but a sharp drop in nannoconid abundances, observed prior to the CM0 interval, correlates with the “nannoconid decline” observed in several Tethys sections.The normalized ratio between low and high fertility taxa (Fertility Index) was used to characterize the nannofossil assemblages in terms of productivity changes. The highest values of the Fertility Index were observed across magnetic chron CM0. The paucity of cold water taxa such as Seribiscutum spp. and Repagulum parvidentatum suggests warm water conditions throughout the deposition of upper Barremian–lower Aptian sediments on the Galicia Margin.  相似文献   

11.
Gunhild Setten   《Geoforum》2008,39(3):1097-1104
Since the turn of the millennium, human geography has witnessed the publishing of an increasing number encyclopaedias and dictionaries as well as books under the headings of “handbooks”, “readers” and “companions” to different fields within the discipline. In the present paper, I take as a point of departure this encyclopaedic “frenzy” in order to speculate on the works and values of a long-standing and authoritative geographical companion, The Dictionary of Human Geography (DHG) [Johnston, R.J., Gregory, D., Haggett, P., Smith, D.M., Stoddart, D.R. (Eds.), 1981. The Dictionary of Human Geography. Blackwell, Oxford; Johnston, R.J., Gregory, D., Smith, D.M. (Eds.), 1986a. The Dictionary of Human Geography, second ed. Blackwell, Oxford; Johnston, R.J., Gregory, D., Smith, D.M. (Eds.), 1994. The Dictionary of Human Geography, third ed. Blackwell, Oxford; Johnston, R.J., Gregory, D., Pratt, G., Watts, M. (Eds.), 2000a. The Dictionary of Human Geography, fourth ed. Blackwell, Oxford]. Apart from being subject to regular book reviews, the DHG has escaped attention from geographers critically engaged in debating the works of the discipline. It is argued here that this is due to the fact that the DHG appears to have established itself as an apparently objective recording of human geographers’ myriad of interests. The DHG is, however, a product of complex webs of subjective, situated concerns and thus a version of the discipline deserving of debate.  相似文献   

12.
Microstructures and quartz c-axis fabrics were analyzed in five quartzite samples collected across the eastern aureole of the Eureka Valley–Joshua Flat–Beer Creek composite pluton. Temperatures of deformation are estimated to be 740±50 °C based on a modified c-axis opening angle thermometer of Kruhl (J. Metamorph. Geol. 16 (1998) 142). In quartzite layers located closest (140 m) to the pluton-wall rock contact, flattened detrital grains are plastically deformed and partially recrystallized. The dominant recrystallization process is subgrain rotation (dislocation creep regime 2 of Hirth and Tullis (J. Struct. Geol. 14 (1992) 145)), although grain boundary migration (dislocation creep regime 3) is also evident. Complete recrystallization occurs in quartzite layers located at a distance of 240 m from the contact, and coincides with recrystallization taking place dominantly through grain boundary migration (regime 3). Within the quartzites, strain is calculated to be lowest in the layers closest to the pluton margin based on the aspect ratios of flattened detrital grains.The c-axis fabrics indicate that a slip operated within the quartzites closest to the pluton-wall rock contact and that with distance from the contact the operative slip systems gradually switch to prism [c] slip. The spatial inversion in microstructures and slip systems (apparent “high temperature” deformation and recrystallization further from the pluton-contact and apparent “low temperature” deformation and recrystallization closer to the pluton-contact) coincides with a change in minor phase mineral content of quartzite samples and also in composition of the surrounding rock units. Marble and calc-silicate assemblages dominate close to the pluton-wall rock contact, whereas mixed quartzite and pelite assemblages are dominant further from the contact.We suggest that a thick marble unit located between the pluton and the quartzite layers acted as a barrier to fluids emanating from the pluton. Decarbonation reactions in marble layers interbedded with the inner aureole quartzites and calc-silicate assemblages in the inner aureole quartzites may have produced high XCO2 (water absent) fluids during deformation. The presence of high XCO2 fluid is inferred from the prograde assemblage of quartz+calcite (and not wollastonite)+diopside±K-feldspar in the inner aureole quartzites. We suggest that it was these “dry” conditions that suppressed prism [c] slip and regime 3 recrystallization in the inner aureole and resulted in a slip and regime 2 recrystallization, which would normally be associated with lower deformation temperatures. In contrast, the prograde assemblage in the pelite-dominated outer part of the aureole is biotite+K-feldspar. These “wet” pelitic assemblages indicate fluids dominated by water in the outer part of the aureole and promoted prism [c] slip and regime 3 recrystallization. Because other variables could also have caused the spatial inversion of c-axis fabrics and recrystallization mechanisms, we briefly review those variables known to cause a transition in slip systems and dislocation creep regimes in quartz. Our conclusions are based on a small number of samples, and therefore, the unusual development of crystal fabrics and microstructures in the aureole to the EJB pluton suggests that further study is needed on the effect of fluid composition on crystal slip system activity and recrystallization mechanisms in naturally deformed rocks.  相似文献   

13.
This paper discusses the occurrence of 28,30-dinor-17α,18α,21β-hopane (bisnorhopane) in stratigraphically, fairly well preserved Viking Group sections from wells in local depressions in the North Viking Graben Area. The results show the presence of high relative amounts of bisnorhopane in the “Syn-rift sections”, whilst the “Post-rift sections” contain little or no bisnorhopane. Since most exploration wells are drilled on structural highs, primarily penetrating the “Post-rift Draupne”, this may explain why many analyzed source rock sections in this area contain little bisnorhopane.As a correlation of Draupne sections using the vertical, relative bisnorhopane distributions, it is suggested to be a potential stratigraphic marker for the area, indicating the presence of “Syn-rift Draupne” sediments.The relative bisnorhopane amounts follow a logarithmic reduction with depth and thermal maturity. The bisnorhopane signal is nearly extinguished at 3700 m depth at a maturity of Ro = 0.9–1.0%.  相似文献   

14.
Observations of H- and Z-variations made at ten temporary field stations along the Hyderabad—Bhadrachalam—Kalingapatnam (east coast) profile during February–March, 1973, are analyzed and discussed. The results are also compared with those of the Alibag (west coast)—Hyderabad profile, completed in May–July, 1970.It is found that the Z-ranges of quiet daily variations are enhanced one and a half times the Hyderabad value, and the H-ranges only very slightly reduced at the coastal station of Kalingapatnam. This coastal effect of 6γ in Zr at Kalingapatnam gradually decreases inland and probably exists upto Salur (70 km inland from the coast). At Bhadrachalam, both H- and Z-ranges of quiet daily variations are found to be enhanced, possibly due to induction effects from deep-seated conductors in the Godavari rift valley. The enhancement of both H and Z daily ranges at Jeypore in the eastern “ghats” (hills) is attributed to induced electric currents in conductors arising from the orogeny well below the “ghats”.It is difficult to separate the coastal effect from the orogenic effect, both of which seem to taper off and merge at Salur.  相似文献   

15.
Trace fossils are described here from the Adigrat Sandstone formation of hitherto uncertain Palaeozoic-Mesozoic age in south-central Eritrea. The formation is subdivided into a lower unit, the Adi MaEkheno Member, and an upper informal unit, Member 2. The formation was deposited on the locally mudcracked top of the glacigenic Edaga Arbi Beds, suggesting that these two rock units were formed in a very short time interval. The Adi MaEkheno Member and the lower part of Member 2 contain trace fossils Arthrophycus alleghaniensis (Harlan), Arthrophycus ?brongniartii (Harlan), Didymaulichnus lyelli (Rouault), Palaeophycus tubularis Hall, Taenidium isp., thin winding ridges, winding ridges and furrows, simple cylinders, and ‘stellate’ forms. A. alleghaniensis is distinctively of Ordovician–Silurian (?Early Devonian) age. The trace fossil association belongs to the Cruziana ichnofacies that indicates a shallow marine environment between the normal and storm wave bases. The trace fossil data and stratigraphic relationships indicate that the Adigrat Sandstone formation and the Edaga Arbi Beds in Eritrea are Ordovician–Silurian in age. The Edaga Arbi Beds are correlated with other Upper Ordovician (Hirnantian) glacial units in northern Africa and the Arabian Peninsula, lending these beds the status of a marker unit in the Lower Palaeozoic stratigraphy of the Horn of Africa. The Jurassic “Adigrat Sandstone” in central-west and eastern Ethiopia cannot be correlated with the Adigrat Sandstone formation in its type area and in Eritrea.  相似文献   

16.
The surface-wavemagnitudes Ms are determined for 30 great shallow earthquakes that occurred during the period from 1953 to 1977. The determination is based on the amplitude and period data from all available station bulletins, and the same procedure as that employed in Gutenberg and Richter's “Seismicity of the Earth” is used. During this period, the Chilean earthquake of 1960 has the largest Ms, 8.5. The surface-wave magnitudes listed in “Earthquake Data Reports” are found to be higher than Ms on the average. By using the same method as that used by Gutenberg, the broad-band body-wave magnitudes mB are determined for great shallow shocks for the period from 1953 to 1974. mB is based on the amplitudes of P, PP and S waves which are measured on broadband instruments at periods of about 4–20 s. The 1-s body-wave magnitudes listed in “Bulletin of International Seismological Center” and “Earthquake Data Reports” are found to be much smaller than mB on the average. Through the examination of Gutenberg and Richter's original worksheets, the relation between mB and Msis revised to mB = 0.65 Ms+ 2.5 which well satisfies the mg and Msdata for Msbetween 5.2 and  相似文献   

17.
The relative importance of the contribution of the lower crust and of the lithospheric mantle to the total strength of the continental lithosphere is assessed systematically for realistic ranges of layer thickness, composition, and temperature. Results are presented as relative strength maps, giving the ratio of the lower crust to upper mantle contribution in terms of crustal thickness and surface heat flow. The lithosphere shows a “jelly sandwich” rheological layering for low surface heat flow, thin to average crustal thickness, and felsic or wet mafic lower crustal compositions. On the other hand, most of the total strength resides in the seismogenic crust in regions of high surface heat flow, crust of any thickness, and dry mafic lower crustal composition.  相似文献   

18.
19.
Most Ordovician source rocks consist of accumulation of a colonial marine microorganism, Gloeocapsomorpha prisca (G. prisca) whose nature, ecology and affinity with extant organisms have been in dispute for years. Furthermore, recent studies have shown major differences in phenol moieties between two G. prisca-rich samples. Examination of five G. prisca-rich kerogens by electron microscopy and pyrolysis studies revealed (i) the occurrence of two markedly distinct “morpho/chemical” types: a “closed/phenol-rich” type (Baltic samples) and an “open/phenol-poor” one (North American samples) and (ii) the selective preservation of the resistant micromolecular material building up the thick cell walls in the original organism. Comparison with extant Botryococcus braunii (a widespread green microalga) grown on media of increasing salinity suggests that G. prisca is likely to be a planktonic green microalga related to B. braunii, which can adapt to large salinity variations which, in turn, control its polymorphism. The large differences in colony morphology and in the content of phenol moieties observed in fossil G. prisca and the resulting occurrence of two “morpho/chemical” types, should therefore reflect depositional environments with different salinities. The presence of thick, highly aliphatic, resistant walls in G. prisca selectively preserved during fossilization, accounts for the major contribution of this organism to Ordovician organic-rich sediments and for the resulting typical signature of Ordovician oils.  相似文献   

20.
Diopside single-crystals, oriented favorably for twin gliding on both systems: (001) [100] and (100)[001] have been deformed in a Griggs apparatus using talc as pressure medium. The latter mechanism is dominant at temperatures (T) below 1050° C at strain rates () of 10−3 sec−1, and below 800° C at ; at higher temperatures translation gliding on (100)[001] accompanied by syntectonic recrystallization is dominant but other glide systems also operate. Tests at a single set of conditions, T- and -incremental tests and stress-relaxation experiments have been carried out on websterite (68% CPX, 32% OPX), both in talc (“wet”) and talc-AlSiMag (“dry”) assemblies. Most tests were performed in the high-T regime, where syntectonic recrystallization and “relatively nonselective” glide are dominant. The mean size of recrystallized clinopyroxenes (D, μm) appears to be related to stress (σ, kb) as D = 60σ−0.9. The mechanical data fit the power law exp(-Q/RT)σn, where for the “wet” experiments A = 105.9kb−nsec−1, Q = 91.2 kcal/mole, n = 5.3; for σ < 3.5 kb n appears to decrease to 3.3. For the “dry” experiments A = 102.2, Q = 77.9, and n = 4.3 for σ < 7.0 kb. Clinopyroxene in the upper mantle occurs as ca. 0–15% mixed phase in peridotites and websterites occur as thin layers. Stresses in these materials will then be near those in the olivine-rich matrix. At , the equivalent viscosity of dry websterite is less than that of dry dunite at depths to 60 km but it increases rapidly at higher pressures; at 240 km it is 106 greater than that of dunite. This may account for the low strains and passive behavior observed for clinopyroxene crystals in most peridotites and websterites, that presumably have formed at great depth. Attenuated folds of websterite in peridotite—evidence of more ductile behavior—may then have formed at shallower levels; alternatively they may have formed under “wet” conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号