首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In recent years, the desertification of alpine-cold grasslands has become increasingly serious in the Qinghai–Tibet Plateau in China, but it has not received the same amount of attention as has desertification in (semi)arid areas. Little is thus known about the change in soil organic carbon (SOC) during alpine-cold grassland desertification. To quantify the impacts of desertification on vegetation, SOC and its active fractions in alpine-cold grasslands, areas of light desertified grassland, medium desertified grassland, heavy desertified grassland, serious desertified grassland, and nondesertified grassland were selected as experimental sites in the eastern Qinghai–Tibet Plateau in China. The species number, height and coverage of vegetation were surveyed, and the soil particle fractions, SOC and SOC active fractions (including dissolved organic carbon (DOC), microbial biomass carbon (MBC), and labile organic carbon (LOC) were measured to a depth of 0–100 cm. The results showed that alpine-cold grassland desertification resulted in a significant reduction in vegetation cover, plant biomass, fine soil particles, SOC, DOC, LOC and MBC. The decreases in DOC, LOC and MBC were more rapid and apparent than were those in SOC, and the decrease in MBC was the most obvious among them. The rates of reduction in SOC concentrations accelerated as desertification progressed; most of the SOC was lost in the middle and later desertification stages, with lower losses during early desertification. The results indicate that active SOC fractions, particularly MBC, are more sensitive to desertification and can be used as sensitive indicators of desertification. Efforts to limit desertification and reduce SOC loss in alpine-cold grasslands should focus on early desertification stages and adopt strategies to prevent overgrazing and control the erosion of soil by wind.  相似文献   

2.
为了阐明高寒草甸退化过程中植物群落物种多样性、生产力与土壤特性的关系, 在青藏高原东缘的玛曲县沿着高寒草甸退化梯度选取了轻度退化草甸、中度退化草甸、重度退化草甸和沙化草甸, 测定了高寒草甸退化过程中植物群落物种多样性、生产力与土壤理化性状. 结果表明: 从轻度退化到中度、重度和沙化草甸, 植被地下生物量分别降低了36%、48%和91%, 总生物量分别降低了34%、47%和91%, 土壤有机碳分别下降了18%、81%和97%, 全N分别下降了25%、82%和95%, 全P含量分别下降了14%、33%和41%. 随着高寒草甸的退化, 植被群落的生物多样性和地上生物量呈先稳定后降低的趋势, 土壤砂粒含量、pH值和全K含量呈增加趋势, 黏粉粒呈降低趋势, 速效N、速效P和速效K呈先增加后降低的趋势. 相关分析表明, 群落物种多样性和生产力与土壤有机碳、全N、全P、速效N、速效P、速效K、黏粒含量、粉粒含量、水分含量均呈显著正相关(P<0.01), 而与土壤砂粒、全K和pH值均呈显著负相关(P<0.05). 因此, 高寒草甸退化过程中, 土壤质地、养分和水分等的复杂变化及其相互关系共同决定着高寒草甸群落物种多样性和生产力的变化. 同时, 植被生产力和土壤碳、氮的降低产生明显的正反馈效应, 导致在重度退化阶段和沙化阶段, 植被生产力和土壤碳氮的急剧下降.  相似文献   

3.
Heavy grazing is recognized as one of the main causes of vegetation and soil degradation and desertification in the semiarid Horqin sandy grassland of northern China. Soil physical and chemical properties were examined under continuous grazing and exclusion of livestock for 8 years in a representative desertified sandy grassland. Exclosure increased the mean soil organic C, total N, fine sand and silt + clay contents, inorganic C (CaCO3), electrical conductivity, and mineral contents (including Al2O3, K2O, Na2O, Fe2O3, CaO, MgO, TiO2, MnO), microelements (Fe, Mn, Zn, B, Cu, Mo), and heavy metals (Pb, Cr, Ni, As, Hg, Cd, Se), and decreased the coarse sand content, bulk density, and SiO2 in the top 100 cm of the soil. Livestock exclusion also improved available N, P, K, Fe, Mn, and Cu, exchangeable K+, and the cation exchange capacity, but decreased pH, exchangeable Na+, and available S, Zn, and Mo in the top 20 cm of the soil. The greatest change in soil properties was observed in the topsoil. The results confirm that the desertified grassland is recovering after removal of the livestock disturbance, but that recovery is a slow process.  相似文献   

4.
Environmental degradation resulting from desertification often accelerates biodiversity loss and alters carbon (C) and nitrogen (N) stocks within grassland ecosystem. In order to evaluate the effect of desertification on plant diversity and carbon (C) and nitrogen (N) stocks, species compositions and C and N contents in plants and soil were investigated along five regions with different degrees of desertification in the northeastern margin of the Qinghai-Tibetan Plateau (control, light, moderate, severe and very severe stages). The study showed: (1) species composition and richness changed significantly with the development of grassland desertification; (2) the aboveground biomass C and N contents in the control were 101.60 and 4.03 g m?2, respectively. Compared to the control, the aboveground tissue C and N contents significantly decreased from light, moderate, severe to very severe stages. (3) The root C and N contents in the control in 0–40 cm depth are 1,372.83 and 31.49 g m?2, respectively, while the root C and N contents in 0–40 cm were also declining from the control, light, moderate, severe to very severe stages. (4) Compared to the plant, the soil made a greater contribution for C and N distribution, in which the soil organic C and total N contents in 0–40 cm depth in the control are 20,386.70 and 3,587.89 g m?2, respectively. At the same time, soil organic C and N contents also decreased significantly from the control to very severe stages. These results suggest that grassland desertification not only alters species compositions and leads to the loss of plant diversity, but also results in greater loss of organic C and N in alpine meadow, in which there is a negative effect on reducing greenhouse gas emission.  相似文献   

5.
On longitudinal dunes in the southern Gurbantunggut Desert, the vegetation was investigated, and the texture, water content, organic matter, total nitrogen, salt content and pH of aeolian sand soil were measured. By means of geostatistical methods, the spatial heterogeneity for vegetation and aeolian sand soil properties was analyzed. The vegetation pattern and aeolian sand soil properties were moderately to strongly spatially heterogeneous as a whole, with a spatially dependent range of 8.8–74.8 m. Because both of them had a nest structure of grading system, their spatial heterogeneity needed to be described by the fractal dimensions at different sampling scales. The autocorrelated spatial range A 0 and fractal dimensions of the cover of vegetation and the diversity of herberious synusium were similar to these of soil water contents (SM). The coarse grain size (φ1) and sorting (σ) of soil, the diversity of herbaceous synusium and the cover of vegetation had a closer dependent range A0, being 37.8–57.8 m. The trends of spatial variation for organic matter and total nitrogen contents were very similar to that of vegetation cover. The spatial heterogeneities of soil pH and salt content were mainly restricted by terrain and basically not related to vegetation.  相似文献   

6.
Genetic diversity within plant populations can influence plant community structure along environmental gradients. In wetland habitats, salinity and soil type are factors that can vary along gradients and therefore affect plant growth. To test for intraspecific growth variation in response to these factors, a greenhouse study was conducted using common plants that occur in northern Gulf of Mexico brackish and salt marshes. Individual plants of Distichlis spicata, Phragmites australis, Schoenoplectus californicus, and Schoenoplectus robustus were collected from several locations along the coast in Louisiana, USA. Plant identity, based on collection location, was used as a measure of intraspecific variability. Prepared soil mixtures were organic, silt, or clay, and salinity treatments were 0 or 18 psu. Significant intraspecific variation in stem number, total stem height, or biomass was found in all species. Within species, response to soil type varied, but increased salinity significantly decreased growth in all individuals. Findings indicate that inclusion of multiple genets within species is an important consideration for marsh restoration projects that include vegetation plantings. This strategy will facilitate establishment of plant communities that have the flexibility to adapt to changing environmental conditions and, therefore, are capable of persisting over time.  相似文献   

7.
In alpine meadow ecosystems, considerable spatial heterogeneity in forb-dominant vegetation exists as a result of severe grassland degeneration; however, there is limited quantitative information on the vegetative differences between degenerated and pristine grasslands. Therefore, a field study, which seeks to identify the edaphic factors driving the variation in plant composition and distribution, was conducted in a severely degraded alpine meadow located in the Qinghai-Tibetan Plateau, NW China. Five meadows, an original meadow and four degraded meadows, were used to determine the differentiation and relationships between the vegetation and soil of degraded alpine meadows. The dominated species of these degraded meadows are Ligularia virgaureaArtemisia gmelinii (LA), Oxytropis ochrocephalaLeontopodium nanum (OL), Aconitum pendulumPotentilla anserina (AP) and Stellera chamaejasmeArtemisia nanschanica (SA), respectively. The results indicate that vegetation cover, grass biomass, species number and diversity indices clearly decrease from the original to the degraded meadow. Soil water, clay and nutrient content are also reduced with grassland degradation in surface and subsoil layers. The joint study of floristic and edaphic variables confirms that the soil features, especially the bulk density, sand content, pH, salinity, N and K, mainly determine the establishment of vegetation in the severely degraded fields of this study. These results may be useful for alpine grassland ecosystem restoration and management.  相似文献   

8.
Biological soil crusts (BSCs) perform essential ecosystem functions in arid and semi-arid ecosystems worldwide. The formation, development, and distribution of BSCs are influenced by changes in multiple environmental factors, including changes in the vascular plant community. The influence of changes in vegetation factors on BSC cover in 8-, 12-, and 16-year-old rehabilitated grasslands were studied in the hilly area of the Chinese Loess Plateau. The rate of degradation of BSCs underneath litter (P < 0.01) and the degradation cover of BSCs (P < 0.05) differed significantly between the 8- and 16-year-old successions. Stepwise multiple linear regression analysis showed that the main vegetation factors influencing the dynamics of BSC cover differed among the 8-, 12-, and 16-year-old rehabilitated grasslands. Basal cover, phytomass, and litter cover were the main vegetation factors influencing the dynamics of BSC cover on 8-year-old rehabilitated grassland. Phytomass, litter thickness, and litter cover were the main factors influencing the dynamics of BSC cover on 12-year-old rehabilitated grassland. On 16-year-old rehabilitated grassland, Pielou evenness index, litter thickness, and litter biomass were the main vegetation factors influencing degradation of BSC cover underneath litter, whereas basal cover, litter thickness, and litter biomass were the main vegetation factors influencing the degradation cover of BSCs. At particular stages of herbaceous succession, vegetation factors can have a large influence on changes in the community’s basal cover and litter, which are key factors influencing changes in BSC cover. The degradation of BSCs underneath litter may be a result of complicated eco-physiological processes.  相似文献   

9.
The vegetation community succession influences soil nutrient cycling, and this process is mediated by soil microorganisms in the forest ecosystem. A degraded succession series of karst forests were chosen in which vegetation community changed from deciduous broadleaved trees (FO) toward shrubs (SH), and shrubs–grasses (SHG) in the southwest China. Soil organic carbon (SOC), total nitrogen (TN), labile organic carbon (LOC), water extractable organic matter (WEOM), microbial biomass carbon and nitrogen (MBC and MBN), bacterial and fungal diversity, as well as soil enzyme activities were tested. The results showed that SOC, LOC, MBC, MBN, and enzyme activities declined with vegetation succession, with the relatively stronger decrease of microbial biomass and functions, whereas WEOM was higher in SHG than in other systems. In addition, soil bacterial and fungal composition in FO was different from both SH and SHG. Despite positive relationship with SOC, LOC, and TN (p < 0.01), MBC, MBN appeared to be more significantly correlated to LOC than to SOC. It suggested that vegetation conversion resulted in significant changes in carbon fractions and bioavailability, furthermore, caused the change in soil microbial community and function in the forest ecosystem.  相似文献   

10.
Using field surveys and laboratory analysis, soil physical and chemical properties were studied at a site exhibiting the reversal of desertification in Yanchi County of China’s Ningxia Hui autonomous region. The dominant soil particle size changed from coarse-fine sand to a combination of very fine sand and silt + clay, and corresponding levels of each soil nutrient increased. The content of coarse-fine sand (2–0.1 mm) was significantly and negatively correlated with soil nutrient contents, whereas nutrient contents were significantly and positively correlated with the contents of very fine sand (0.1–0.05 mm) and silt + clay (<0.05 mm). The increasingly fine soil texture and the nutrient enrichment both facilitated rehabilitation of desertified land. The silt + clay content contributed the most to the increasing soil nutrient contents, and thus appears to be the key factor in reversal of desertification. Soil nutrient concentrations in the bulk soil increased with increasing content of soil nutrients with different particle fractions, and there were significant positive correlations between them. The nutrients in all particle size classes jointly decided the effect of soil nutrient contents on the reversal process. Principal-components analysis (PCA) revealed that the soil quality tended to increase during the reversal process, and that nutrient factors were more significant than particle size (i.e., were the dominant factor that influenced soil quality). Available nutrients and soil organic matter (SOM) were the most important nutrient factors. Silt + clay were the most important particle factors.  相似文献   

11.
The root biomass distribution in alpine ecosystems (alpine meadow, alpine steppe, desert grassland and alpine desert) was investigated along a transect on the northern Tibetan Plateau in 2009. The results showed that roots were mainly concentrated in the 0–20 cm layer, and root biomass decreased exponentially with increasing soil depth. Root biomass was estimated to be 1,381.41 ± 245.29 g m−2 in the top 20 cm soil, accounting for 85% of the total root biomass. The distribution pattern of the root biomass proportion along the soil profile was similar in different alpine ecosystems. The root biomass density varied with different alpine ecosystems and the total average root biomass was 1,626.08 ± 301.76 g m−2. Root biomass was significantly correlated with average relative humidity, annual precipitation and soil organic matter. This indicates that precipitation and soil organic matter might be crucial for plant growth in the study area, while temperature is not an important factor controlling root growth.  相似文献   

12.
This paper examines how perennial Aster tripolium and annual Salicornia procumbens salt marshes alter the biomass, density, taxon diversity, and community structure of benthic macrofauna, and also examines the role of elevation, sediment grain size, plant cover, and marsh age. Core samples were collected on a fixed grid on an intertidal flat in the Westerschelde estuary (51.4° N, 4.1° E) over 5 years (2004–2008) of salt marsh development. In unvegetated areas, macrobenthic biomass, density, and taxon diversity were highest when elevation was highest, benthic diatoms were most abundant, and sediment median grain size was smallest. In contrast, in salt marsh areas, macrobenthic biomass and taxon diversity increased with median grain size, while the effects of elevation and diatom abundance on macrobenthic biomass, density, and diversity were not significant. In fine sediments, macrofaunal community structure in the salt marsh was particularly affected; common polychaetes such as Nereis diversicolor, Heteromastus filiformis, and Pygospio elegans had low abundance and oligochaetes had high abundance. Marsh age had a negative influence on the density of macrofauna, and A. tripolium stands had lower macrofaunal densities than the younger S. procumbens stands. There were no significant effects of marsh age, plant cover, and vegetation type on macrobenthic biomass, taxon diversity, and community structure. The results highlight that ecosystem engineering effects of salt marsh plants on macrofauna are conditional. Organic enrichment of the sediment and mechanical hindering of macrofaunal activity by plant roots are proposed as plausible mechanisms for the influence of the salt marsh plants on macrofauna.  相似文献   

13.
In the salt marshes of Tomales Bay, California, where grazing by cattle increases the input of nitrogen to the marsh (either directly or indirectly as runoff from within the salt marsh watershed), high salt marsh vegetation is dominated byDistichlis spicata and is less diverse than marshes without excess nutrients. Using a field experiment, I investigated the role of soil fertility on the plant community of the high salt marsh. I hypothesized that when soil fertility is increased by nitrogen addition plant productivity will increase, as indicated by height, biomass, and cover, and competitive exclusion, byD. spicata, will lead to a reduction in species richness and evenness, especially where the initial density ofDistichlis is high (from transplanting). After two growing seasons, biweekly nitrogen addition to the high salt marsh led to increased plant biomass and cover. Diversity was not reduced, and space preemption byDistichlis-transplants did not confer a competitive advantage. Although the dominant species thrived (e.g.,Salicornia virginica, D. spicata, Triglochin concinna) they did not displace subdominant species and decrease diversity. The vegetation response in this high salt marsh system does not support the hypothesis that as biomass and cover (indicators of productivity) increase in response to increased nitrogen, competitive exclusion will occur and diversity will decrease.  相似文献   

14.
The critical area around an oasis where desertification occurs determines the ecological security and stability of the oasis. In this study, the soil quality in the critical area of desertification surrounding the Ejina Oasis was evaluated by using a soil quality index (SQI). The soil surface moisture content was related to vegetation cover; it remained high to a distance of 600 m from the oasis, decreased at distances of 600 to 1,700 m, and then gradually increased to a distance of 1,900 m. The sand content and soil bulk density gradually decreased to a distance of 300 m from the oasis; however, the silt and clay contents, soil pH, soil organic matter (SOM), and total and available nutrients increased away from the oasis. From 300 to 1,900 m, the sand content and soil bulk density increased; however, values of other soil properties decreased. Thus, a distance of 300 m from the edge of the oasis represents an obvious demarcation point for soil properties. SOM and the clay content were the key factors that determined soil quality. SQI increased from 0.284 at the edge of the oasis to 0.793 at 300 m, decreased to 0.262 at 1,400 m, and then decreased further to 0.142 at 1,900 m. SQI was lowest at distances of 1,400–1,900 m. The area beyond 300 m from the oasis was most vulnerable to desertification, and is thus the area where desertification control measures should be strengthened.  相似文献   

15.
内蒙古东部两大沙地土壤理化特性沙漠化演变规律的比较   总被引:2,自引:0,他引:2  
为了了解不同地带沙地土壤理化特性沙漠化演变规律的差异及其机制,研究比较了科尔沁沙地和呼伦贝尔沙地土壤理化特性的沙漠化演变特征,得到以下结论:沙漠化过程中,2个沙地的土壤黏粉粒含量均大幅度下降,沙粒含量明显增加,但科尔沁沙地土壤机械组成的变化幅度要大于呼伦贝尔沙地,而且前者黏粉粒主要释放期早于后者;科尔沁沙地土壤温度趋于...  相似文献   

16.
Based on remote sensing monitoring, observations and experiments in wind tunnel and field, aeolian processes and landscape change of the Sonid grassland of Inner Mongolia Plateau in northern China were explored in this paper. Aeolian process was very strong and seriously affected by human disturbances on the Sonid grassland of Inner Mongolia Plateau. Sand transport rate of grassland increased quickly with the increase of desertification severities, especially at the very severe desertification stage of sand sheet emergence. Human disturbances can seriously destroy balanced-state soil surface to induce new soil wind erosion over and over again, in particular at the higher wind speeds. Spatial variation of wind erosion was strongly related to land use/cover change, and finally led to landscape change, while emergence of erosional bare patches might be the key link, especially around herdsmen’s settlements and along roads or fences. Avoiding grazing before windy season is very important for decreasing soil wind erosion, not only to protect vegetation cover, but also to reduce trampling-inducing destruction of the soil surface structure. Prohibition of overgrazing must be strictly obeyed under any possible climate conditions, and reclamation should be more careful. Reducing human disturbances by selective emigration and eco-compensation mechanism would be considered as a priority for reducing local wind erosion.  相似文献   

17.
利用PYGV、 R2A、 NB和Czapek 4种培养基, 研究了不同海拔下黑河上游祁连山区土壤细菌群落结构的变化规律.结果表明: 可培养细菌数量为4.6×106~37.0×106CFU·g-1, 随海拔升高明显减少; 基于16S rRNA基因序列分析共发现了7个门、 19个属、 26种细菌, 其中Agreia pratensis, Mucilaginibacter ximonensis, 嗜冷冷杆菌(Cryobacterium psychrophilum)和氧化节杆菌(Arthrobacter oxydans)四种细菌是优势种; 嗜冷冷杆菌的相对丰度在高海拔地区明显增加, Agreia pratensis的相对丰度随海拔升高而降低; 细菌的多样性随海拔升高呈现出先升高后降低的趋势. 冗余分析(RDA)显示, 可培养细菌数量与海拔呈显著负相关, 细菌的多样性与植被指数和土壤理化性质均存在明显的相关关系, 说明可培养细菌数量主要受海拔的影响, 而植被和土壤理化性质是影响细菌群落多样性的主要因素.  相似文献   

18.
In highlands of semiarid Turkey, ecosystems have been significantly transformed through human actions, and today changes are taking place very rapidly, causing harmful consequences such as soil degradation. This paper examines two neighboring land use types in Indagi Mountain Pass, Cankiri, Turkey, to determine effects of the conversion of Blackpine (Pinus nigra Arn. subsp. pallasiana) plantation from grassland 40 years ago on soil organic carbon (SOC) and soil erodibility (USLE-K). For this purpose, a total of 302 disturbed and undisturbed soil samples were taken at irregular intervals from two sites and from two soil depths of 0–10 cm (D1) and 10–20 cm (D2). In terms of SOC, conversion did not make any statistical difference between grassland and plantation; however, there were statistically significant differences with soil depth within each land use, and SOC contents significantly decreased with the soil depth (P < 0.05) and mostly accumulated in D1. SOC values were 2.4 and 1.8% for grassland and 2.8 and 1.6% for plantation, respectively, at D1 and D2. USLE-K values also statistically differed significantly with the land use, and in contrast to the statistics of SOC, there was no change in USLE-K with the soil depth. Since USLE-K was estimated using SOC, hydraulic conductivity (HC) and soil textural composition––sand (S), silt (Si), and clay (C) contents of soils––as well as SOC did not change with the land use, we ascribed the changes of USLE-K with the land uses to the differences in the HC as strongly affected by the interactions between SOC and contents of S, Si, and C. On an average, the soil of the grassland (USLE-K = 0.161 t ha h ha−1 MJ−1 mm−1) was more erodible than those of the plantation (USLE-K = 0.126 t ha h ha−1 MJ−1 mm−1). Additionally, topographic factors, such as aspect and slope, were statistically effective on spatial distribution of the USLE-K and SOC.  相似文献   

19.
Microbiological and physical-chemical characteristics of subtropical forest,grassland and cropfield soils from the karst areas of Southwest China were investigated.The study revealed that the conversion of natural forest to other forms of land would lead to a reduction in soil organic C(26.2%-35.3%),total N(37.2%-55.8%),totalP(32.9%-43.6%),microbial biomass C(35.4%-49.1%),N(37.2%-55.8),and P(25.8%-41.9%).Comparative analysis of microbial activity in terms of basal soil respiration showed maximum activity in forest soil and minimum in cropfield soil.Analysis of microbial metabolic respiratory activity indicated a relatively greater respiratory loss of CO2-C per unit microbial biomass in cropfield and grassland than in forest soil.Considering the importance of microbial components in soil,it is concluded that land use in different ways will lead to the reduction of biological stabilty of soil.  相似文献   

20.
土壤碳库在陆地生态系统碳循环中起着关键性的作用。在对吉林西部进行为期6年(2004-2009年)的环境调查基础上,采集了217个土壤剖面,获取了2 170个土壤样品的平均容重、含水率和有机碳含量,分析了不同土地利用类型下土壤有机碳(SOC)的垂向分布特征、原因和机理。结果表明:不同土地利用类型的土壤有机碳垂向分布表现出截然不同的特征,大致可分为“下降型”、“上升型”和“不变型”3种。呈下降型的草地、农田、湿地等SOC含量主要富集在0~30 cm耕作层,并随深度增加而快速下降;滩地为上升型,良好的水文条件和相对茂盛的植物为有机质提供了有利条件;不变型包括盐碱地、林地和沙地,SOC含量处于全区最低水平。不同土地利用类型的土壤有机碳密度差异很大,从大到小依次为水田、草地、旱田、湿地、退化草地、滩地、林地、沙地、盐碱地,其中水田为(169.25±17.70) t/hm2,盐碱地为 (26.50±10.00) t/hm2。植被生物量和土壤理化性质是影响土壤有机碳含量的主要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号