首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Shear-wave splitting from local deep earthquakes is investigated to clarify the volume and the location of two anisotropic bodies in the mantle wedge beneath central Honshu, Japan. We observe a spatial variation in splitting parameters depending on the combination of sources and receivers, nearly N–S fast in the northern region, nearly E–W fast in the southern region and small time delays in the eastern region. Using forward modelling, two models with 30 and 10 per cent anisotropy are tested by means of a global search for the locations of anisotropic bodies with various volumes. The optimum model is obtained for 30 per cent anisotropy, which means a 5 per cent velocity difference between fast and slow polarized waves. The northern anisotropic body has a volume of 1.00° (longitude) × 0.5° (latitude) × 75 km (depth), with the orientation of the symmetry axis being N20°E. The southern anisotropic body has a volume of 1.25° × 1.25° × 100 km with the symmetry axis along N95°E. Our results show that the anisotropic bodies are located in low-velocity and low- Q regions of the mantle. This, together with petrological data and the location of volcanoes in the arc, suggests that the possible cause of the anisotropy is the preferred alignment of cracks filled with melt.  相似文献   

2.
Summary. Reduced Pn travel times from the Archaean Pilbara Craton of north-west Australia show a strong correlation with azimuth, which could be used as evidence of anisotropy. However, the azimuthal correlation could also be explained by a southerly dip of between 1 and 2° on the crust–mantle boundary, although the models from several reversed seismic profiles across the craton suggest a smaller dip.
A time-term analysis of the Pn date yielded several models. The preferred solution, in which the dip on the crust–mantle boundary is similar to that in the models from the reversed profiles, has approximately 2 per cent anisotropy in the uppermost mantle, with the direction of maximum velocity 30° east of north. One possible cause of the anisotropy is that olivine crystals were aligned by syntectonic recrystallization and/or power law creep in the tensional environment caused at the base of the lithosphere by flexure during loading of the lithosphere by the strata of the Hamersley Basin which overlies the Pilbara Craton.
A seismic discontinuity occurs about 15 km below the crust–mantle boundary under the craton. A qualitative analysis of all available seismic data suggests that the velocity below the boundary is probably also anisotropic, with the direction of maximum velocity between north and 40° west of north. The direction of minimum velocity below the sub-Moho boundary correlates loosely with the direction of basement lineaments in the Proterozoic Capricorn Orogenic Belt to the south of the craton, suggesting that the anisotropy under the boundary may be younger than that immediately under the crust/mantle boundary. This is consistent with the notion that the Archaean lithosphere was thinner than the present lithosphere.  相似文献   

3.
Summary. Four types of crustal and upper-mantle rocks have been used for the investigation of seismic P -wave velocities in three mutually perpendicular directions. Hydrostatic pressure, up to 6 kbar and temperatures up to 500°C were applied to the samples. Measurements of the ultrasonic P -wave travel times and velocities were carried out along two geotherms. All rock types show an anisotropic behaviour which is caused by the orientation of certain minerals. The anisotropy is not dependent on temperature and pressure. Gneiss and peridotite have 5–6 per cent anisotropy whereas granite and a metagabbro show values of only 2–3 per cent. The smallest velocity is always in the z direction, perpendicular to a schistocity or foliation. It is shown that the data agree with those of field observation. We conclude that anisotropy caused by preferred orientation of minerals must be expected in the whole lithosphere. Additional effects of layering, of cracks, and of nonhydrostatic stresses are estimated.  相似文献   

4.
Summary. A series of long-range explosion seismological experiments has been conducted by the use of specially designed ocean bottom seismographs (OBSs) in the Western Pacific. OBS studies of apparent velocity measurements by the use of natural earthquakes have also been made. The experiments have made clear that large-scale P -wave anisotropy exists in the entire thickness of the oceanic lithosphere. The existence of the large-scale anisotropy in the oceanic lithosphere has been demonstrated for the first time by seismic body-wave studies. Previously, anisotropy had been found only in the uppermost oceanic mantle in the Eastern Pacific.
The azimuth of the maximum velocity, 8.6 km s-1, is about 155° clock-wise from north. The direction is perpendicular to the magnetic lineation of the region, however, the direction differs from the direction of the present plate motion by about 30°. So it appears that the anisotropy has been 'frozen' at least since the change of the plate motion that occurred 40 Myr ago. The frozen anisotropy should set important constraints on the mechanical properties of the lithosphere such as the viscosity and temperature of the lower lithosphere.  相似文献   

5.
As a baseline measurement for understanding the Himalayan–Tibetan orogen, a product of continent–continent collision between India and Eurasia, we analyse digital seismic data in order to constrain the seismic anisotropy of the Indian shield. Based on spatially sparse data that are currently available in the public domain, there is little shear-wave birefringence for SKS phases under the Indian shield, even though it is part of a fast-moving plate in the hotspot frame of reference. If most of the northern Indian mantle has little transverse anisotropy, the onset of significant anisotropy under Tibet marks the northern terminus of intact Indian lithosphere that is thrusting under the Himalayan–Tibetan orogen. Beyond this terminus, tectonic fabric such as that associated with the deforming lithospheric mantle of Eurasia must be present in the upper mantle. Along the profile from Yadong to Golmud, the only profile in Tibet where a number of shear-wave birefringence data are available, the amount of birefringence shows two marked increases, near 30° and 33°N, between which a local high in Bouguer gravity anomaly is observed. Such a correlation between patterns of shear-wave birefringence and gravity anomalies is explained by the juxtaposition of Indian lithosphere against the overlying Eurasian lithosphere: while the Eurasian lithospheric mantle appears only to the north of 30°N, the Indian lithospheric mantle extends northwards to near 33°N.  相似文献   

6.
The determination of the lower edges of magnetized bodies in the Earth's crust is a complex geophysical problem, although these values can be estimated by using geothermal data. An analysis of the temperature regime and location of the lower edges of magnetized bodies has been carried out for the geosynclinal region of the southern Caucasus and the area joining the ancient platform with the Arabian Shield in Israel. Geothermal calculations for Israel have been performed for three models of the thermal regime for the Earth's crust and upper mantle. The process of ultrabasic rock serpentinization is accompanied by the transformation of iron suboxide to iron oxide. Both these processes run under identical thermodynamic conditions within an average temperature interval of 200°-400°C. The Curie surface controls the position of lower edges only in fault zones where oxidation conditions hold up to great depths.  相似文献   

7.
Shear wave splitting measurements from S arrivals of local earthquakes recorded at the Incorporated Research Institutions for Seismology (IRIS) broadband sensor SNZO are used to determine a basic anisotropic structure for the subduction zone in the Wellington region. With the use of high-frequency filters, fast anisotropic polarization ( φ ) and splitting time ( δt ) measurements typical of crustal anisotropy are evident, but the larger splitting expected from the mantle is often not resolved. The small splitting seen agrees well with the results of previous studies concerning shallow crustal anisotropy. With the use of lower-frequency filters, measurements more consistent with mantle anisotropy are made. Anisotropy of 4.4 ± 0.9 per cent with a fast polarization of 29° ± 38° is calculated for the subducting slab, from 20 to 70  km depth. Using this result in addition to the results of previous studies, a model is proposed. The model requires a frequency-dependent anisotropy of less than 1.4 per cent when measured with a period of ~2  s to be present in the sub-slab mantle.
Separate from this population, a band of events in northern Cook Strait with an 86° ± 10° fast polarization is seen. This is at about 40° from the strike of the Hikurangi margin, and suggests a source of shear strain 40° removed from that found in the majority of the region. The cause of this is probably a deformation in the subducting slab in this region, as it moves towards a greater incline to the south.  相似文献   

8.
利用NCEP/NCAR再分析春季逐月平均位势高度、风、温度、垂直速度等物理量的格点资料,通过图形分析技术进行天气系统识别,建立3类宁夏春季干旱多层次环流概念模型,并对各类型主要影响因子进行特征量对比计算,得出了宁夏春季干旱监测预测定量化指标。在如下条件下,宁夏易发生春季干旱:(1)500 hPa东亚大槽位于120°-140°E,其中位于120°-130°E间时发生的干旱强度最大,偏东或偏西则强度减弱;(2)500 hPa中亚脊强盛、完整且位于60°-100°E,位于80°E附近干旱强度最大,弱脊分裂或偏西则干旱强度较弱;(3)副热带高压呈带状,脊线位于20°N以南且西脊点位于110°E以西时;(4)850 hPa偏南气流强度较弱,北界位于27°N以南时;(5)700 hPa判定区域(30°-50°N、90°-110°E)内干区控制范围比率达45%时;(6)500 hPa判定区域(30°-50°N、90°-110°E)内下沉气流区占区域面积的比率≥75%,700 hPa下沉气流区占区域面积的比率≥60%,且宁夏北部受下沉气流区控制。利用图形分析法对宁夏春季干旱进行监测预测,对2010年和2011年春季气候趋势进行拟合检验,效果良好。  相似文献   

9.
Summary. Particle-motion plots of shear waves have been studied for the section FG of the FENNOLORA seismic experiment. Shear-wave splitting is observed on some records and the polarization of the first arriving shear waves show two peaks at about N35°W and N65°E. These results can be interpreted as being due to crack-induced anisotropy with the crack direction dominated by a (dominant) horizontal stress around N35°W. This is consistent with in situ stress measurements and focal mechanism studies in Scandinavia. the results show that seismic refraction experiments may be useful in providing evidence of crack-induced anisotropy in the stable continental crust.  相似文献   

10.
Summary. Earlier interpretations of P n travel-times from the extensive quarry-blast observation scheme in western Germany — now supplemented by explosion data from the 1972 Rhinegraben experiment — have been checked and enhanced using the new MOZAIC time-term method. The large data set (762 travel times) continues to require a considerable anisotropy of upper-mantle P velocity. The resulting estimates of the overall velocity variation — probably 0.50–0.60 km/s about a mean value of 8.05 km/s, that is, 6 to 7 per cent anisotropy — and of the direction of the maximum velocity (close to 20° E of north) are reasonably reliable. However, the detailed form of the anisotropy is obscured by various limitations of the data.
These results allow a realistic assessment of the resolving power of refraction-based studies of velocity anisotropy in the lithosphere. It is concluded that though such studies are probably adequate if the measurement of in situ anisotropy is required within the context of a generalized discussion of lithospheric dynamics they are not appropriate if a detailed specification of the anisotropy is desired.  相似文献   

11.
Low-field magnetic susceptibility and its anisotropy (AMS) were measured for a suite of sandstone and siltstone samples. AMS orientations measured on two systems (Bartington and Digico) differed before thermal treatment of the samples but became the same after thermal demagnetization in air to 600 °C. Six position measurement schemes for the Bartington system do not eliminate the effects of specimen inhomogeneity and other errors, whereas 12- and 24-position measurements give good agreement with the Digico anisotropy meter and with the observed petrofabric. Thermal demagnetization from temperatures between 400 and 650 °C had the effect of enhancing both the magnetic susceptibility and AMS. Although the most profound mineralogical change due to heating was the conversion of kaolinite into metakaolin, IRM, XRD, DTA and Mössbauer spectroscopic analysis demonstrate that the changes in magnetic properties were due to the transformation upon heating of trace amounts of sulphides into magnetite and/or maghemite and haematite. Both magnetic susceptibility and the degree of anisotropy decrease with higher-temperature thermal demagnetization due to the oxidation of the newly formed magnetite and/or maghemite into haematite. The magnetic foliation of the newly formed magnetite/maghemite and haematite is parallel to the bedding, possibly following the orientation of the original sulphides.  相似文献   

12.
Split S waves observed at Hockley, Texas from events in the Tonga–Fiji region of the southwest Pacific show predominantly vertically polarized shear-wave ( SV  ) energy arriving earlier than horizontally polarized ( SH ) energy for rays propagating horizontally through D" . After corrections are made for the effects of upper-mantle anisotropy beneath Hockley, a time lag of 1.5 to 2.0  s remains for the furthest events (93.9°–100.6° ), while the time lags of the nearer observations (90.5°–92.9° ) nearly disappear. At closer distances, the S waves from these same events do not penetrate as deeply into the lower mantle, and are not split. These observations suggest that a patch of D" beneath the central Pacific is anisotropic, while the mantle immediately above the patch is isotropic. The thickness of the anisotropic zone appears to be of the order of 100–200  km.
  Observations of shear-wave splitting have previously been made for paths that traverse D" under the Caribbean and under Alaska. SH leads SV , the reverse of the Hockley observations, but in these areas the fact that SV  leads SH in the HKT data shown here suggests a different sort of anisotropy under the central Pacific from that under Alaska and the Caribbean. The case of SH travelling faster than SV  is consistent with transverse isotropy with a vertical axis of symmetry (VTI) and does not require variations with azimuth. The case of SV  leading SH is consistent with transverse isotropy with a horizontal axis of symmetry (HTI), an azimuthally anisotropic medium, and with a VTI medium formed by a hexagonal crystal. Given that (Mg,Fe)SiO3 perovskite appears unlikely to form anisotropic fabrics on a large scale, the presence of anisotropy may point to chemical heterogeneity in the lowermost mantle, possibly due to mantle–core interactions.  相似文献   

13.
Summary. Available seismic refraction data from three different continental areas, northern Britain and the eastern and western United States, has been studied for possible Pn , velocity anisotropy using the methods described by Bamford. There are various deficiencies in the time—distance data used in each case but, while the uppermost mantle beneath northern Britain and the eastern United States seems to be isotropic within the limits of measurement error, there is a small but significant anisotropy beneath the western United States.
Both the amount (up to 3 per cent) and the direction (70–80° east of north) of this anisotropy are very similar to the results obtained in the Pacific Ocean off California. We tentatively conclude that this anisotropy is present as a consequence of the subduction of oceanic lithosphere beneath the western United States.  相似文献   

14.
Taiwan Chelungpu-fault Drilling Project (TCDP) was initiated to understand the physical mechanisms involved in the large displacements of the 1999 Taiwan Chi-Chi earthquake. Continuous measurements of cores (including laboratory work) and a suite of geophysical downhole logs, including P - and S -wave sonic velocity, gamma ray, electrical resistivity, density, temperature, electrical borehole images and dipole-shear sonic imager, were acquired in Hole-A over the depth of 500–2003 m. Integrated studies of cores and logs facilitate qualitative and quantitative comparison of subsurface structures and physical properties of rocks. A total of 10 subunits were divided on the basis of geophysical characteristics. Generally, formation velocity and temperature increase with depth as a result of the overburden and thermal gradient, respectively. Gamma ray, resistivity, formation density, shear velocity anisotropy and density-derived porosity are primarily dependent on the lithology. Zones with changes of percentage of shear wave anisotropy and the fast shear polarization azimuth deduced from Dipole Shear-Imager (DSI) are associated with the appearance of fractures, steep bedding and shear zones. The fast shear wave azimuth is in good agreement with overall dip of the bedding (approximately 30° towards SE) and maximum horizontal compressional direction, particularly in the Kueichulin Formation showing strong shear wave velocity anisotropy. Bedding-parallel fractures are prevalent within cores, whereas minor sets of high-angle, NNW–SSE trending with N- and S-dipping fractures are sporadically distributed. The fault zone at depth 1111 m (FZA1111) is the Chi-Chi earthquake slip zone and could be a fluid conduit after the earthquake. The drastic change in fast shear wave polarization direction across the underlying, non-active Sanyi thrust at depth 1710 m reflects changes in stratigraphy, physical properties and structural geometry.  相似文献   

15.
High noise levels hamper teleseismic shear wave splitting measurements, which bandpass filtering does not always help. To investigate how robust splitting measurements are to noise, we analysed a set of synthetic records with known splitting parameters and added fixed levels of noise. In the presence of weak anisotropy, single-waveform splitting measurements are unreliable when operating with noisy data sets. A practical rule in terms of S/N ratio and splitting delay time parameters is that splitting is confidently detectable at S/N > 8, regardless of the wave's original polarization orientation. However, for the evidence of weak anisotropy to be detectable and measurable at an S/N value of 4, the backazimuth separation of the phases from the fast polarization direction needs to be higher than 20°. Stacks of individual measurements consistently yield reliable results down to S/N values of 4. Applying stacking to data from DSB (Dublin, Ireland), the fast polarization direction φ and lag time δt are 58° and 0.95  s. This orientation reflects surface trends of deformation in the area, as found elsewhere in the UK. Our result thus reinforces the proposed model that the detected anisotropy in the British Isles originates from lithospheric coherent deformation preserved from the last main tectonic episode.  相似文献   

16.
2003年夏季东南印度洋上层海洋的水文特征   总被引:1,自引:0,他引:1       下载免费PDF全文
本文利用 2 0 0 3年 2月我国第 1 9次南极考察队在南极普里兹湾到澳大利亚弗里曼特尔南印度洋断面上获得的XBT和XCTD数据 ,分析了该断面上层的水团分布和锋面的特征 ,并讨论了极锋以南表层的淡水输入和热量输入与海冰、降水及平流之间的关系。南极夏季表层水(AASSW)、亚南极表层水 (SASW)、亚热带表层水 (STSW)分布于温盐跃层之上的混合层中 ,由南向北依次分布。AASSW之下是向北延伸的温度最小值层 ,即冬季水 (WW) ,其下则是涌升的上层南极饶及深层水 (UCDW)。南侵的高温高盐的亚热带表层水 (STSW)之下是温度和盐度相对均匀的亚南极模式水 (SAMW)。本航次发现 ,在 63.5°S ,79.7°E的 60 0m以深有低盐水体 (相对其周围水体 )存在 ,核心盐度 34.5 8,位于 80 0- 90 0m水深之间。这是历次考察在该断面所不曾观测到的现象。断面上的锋面从南向北依次为南极陆坡锋 (ASF)、极锋 (PF)、亚南极锋 (SAF)和亚热带锋 (STF)。ASF位于 65°S以南的 1 0 0m以深 ,等温线和等盐线向南倾斜 ;PF位于 5 4°S ,90 .4°E ;SAF位于 45 .3°- 47.5°S ,1 0 2 .5°- 1 0 4 .4°E之间 ,深达整个测量深度 ,温度具有两个高梯度核心 ;首次在该断面观测到双STF结构 ,位于 41 .9°- 42 .6°S,1 0 6.7°- 1 0 7.3°E和 37.7°- 38  相似文献   

17.
Summary. Three principal directions of magnetization are recognized in the central part of the Lewisian metamorphic terrain of north-west Scotland. The first ('A') magnetization is a high blocking temperature component residing in magnetite and imposed during post-Laxfordian uplift and cooling. Fifty sites yield an overall mean D = 285.9°, I = 54.9° and palaeomagnetic pole at 273.2° E, 37.6° N ( dp = 3.7°, dm = 5.2°); this magnetization was probably acquired at crustal depths of 6–10 km and is linked to K—Ar uplift ages averaging 1650–1625 Ma. The second ('B') magnetizations are defined by E—W directions and also reside in high blocking temperature components; they are, however, dipolar, have some properties distinct from the 'A' magnetizations, and are correlated with late stages in the history of the complex at 1400–1200 Ma. The third ('C') NE directed magnetizations reside predominantly in low blocking temperature components in pyrrhotite and possibly maghemite, and were probably acquired at a late stage of the regional uplift; they do not correlate with post-1450 Ma magnetizations from the Laurentian Shield and probably relate to the as yet undefined interval 1600–1450 Ma. The collective palaeomagnetic data and certain geologic data suggest that the Lewisian foreland should be rotated by 30° clockwise about a local axis of rotation on the conventional reconstruction of the North Atlantic continents; this rotation is associated with Lower Palaeozoic trans-current movements and may be related to a fourth ('D') magnetization of viscous origin.
A collective assessment of 1850–1600 Ma palaeomagnetic data for the Laurentian Shield defines a large apw loop; there is widespread agreement between data from the constituent structural provinces of the Shield although different metamorphic regions define complementary segments of the loop related to uplift over different intervals of time.  相似文献   

18.
The presence of anisotropy requires that tomographic methods be generalized to account for anisotropy. This generalization allows geological structure to be correctly imaged and allows the anisotropic parameters to be estimated. Use of isotropic inversion for imaging anisotropic structures gives systematic trends in the traveltime and polarization residuals. However, due to the limited directional coverage, the traveltimes along may not be sufficient to study the anisotropic properties of the structure. Polarizations can provide independent information on the structure. Traveltime and polarization inversion are applied to synthetic examples simulating VSP experiments. Transverse isotropy and 1-D structure are assumed. Plots of traveltime and polarization residuals are an important tool to detect the anomalies due to the presence of anisotropy. For receivers located in anisotropic layers, polarization residuals display consistent anomalies of several degrees. The synthetic examples show that even the simple 1-D problem is difficult, when using direct arrivals only. Large a posteriori errors in anisotropic parameters are obtained by traveltime inversion in layers where available incidence angles are less than 45°. Resolution of the tomographic image of VSP data is greatly improved by a combination of traveltime and polarization information. In order to obtain accurate inversion results, the measurement error of polarization data should be kept to within a few degrees.  相似文献   

19.
Summary. Palaeomagnetic investigations are reported from 24 sites in the Proterozoic Zig-Zag Dal Basalt Formation and 12 sites in the Midsominersø Dolerites of eastern North Greenland. The Zig-Zag Dal Basalt is a typical tholeiitic flood basalt sequence, and dolerite intrusions in the underlying sandstones are thought to be genetically related to the basalts.
After a detailed AF demagnetization programme 19 sites in the basalts and 10 sites in the dolerites reveal one stable component of magnetization, probably of TRM and/or CRM origin residing in small single domain titano-magnetite grains. The degree of anisotropy has not affected the direction of the remanent magnetization. The maximum axis of the anisotropy ellipsoid is parallel to the flow direction of the magma, whereas the minimum axis is perpendicular to the flow plane.
Only one polarity of the geomagnetic field was found. The mean palaeomagnetic pole positions for the two rock types are not significantly different (basalt: 12.2°S, 62.8°E with A 95= 3.8°; dolerites: 6.9°S, 62.0°E with A 95 = 5.1°). After correction for Phanerozoic drift of Greenland the two mean poles compare closely to a relevant North American APW-curve for 1250–1350 Ma, in good agreement with Rb-Sr isochron ages of 1250 Ma obtained for the intrusives. The palaeogeographical position of Greenland was near equator with the major geographical axis orientated E-W.  相似文献   

20.
Summary. Pacific earthquakes studied by Gogna, also three important explosions in the Tuamotu archipelago, are rediscussed. The results are very consistent, but those from Tuamotu are later than Gogna's by about 1 s in the times of P about 60°. Both sets of data give PKP residuals about -5 s about 140° - 142°, indicating that the observations there referred to the neighbourhood of the cusp of the travel-time curve but the ISS had compared them with the DEF branch. The corresponding difference in the 1940 tables is about 2 s.
Analysis at intervals of 1° indicated that the cusp of PKP is about 141° instead of 143° as in the 1940 tables and the difference between it and the DEF branch at these distances is about - 5 s.
Travel times of S under the Pacific were found but need more data, especially at distances under 10°.
Times of PcP reported by Kogan and Carder were compared with those calculated from P in Gogan's explosions, and indicated a radius of the core of 3479.8 ± 1.8 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号