首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Small-scale elastic heterogeneities (<5  km) are found in the upper lithosphere underneath the Gräfenberg array, southeast Germany. The results are based on the analysis of broadband recordings of 17 intermediate-depth (201–272  km) events from the Hindu Kush region. The wavefront of the first P arrival and the following 40  s coda are separated into coherent and incoherent (scattered) parts in the frequency range from 0.05 to 5  Hz. The frequency-dependent intensities of the mean and fluctuation wavefields are used to describe the scattering characteristics of the lithosphere underneath the receivers. It is possible to discriminate a weak-fluctuation regime of the wavefield in the frequency range below approximately 1.5–2.5  Hz and a strong-fluctuation regime starting at 2.0–2.5  Hz and continuing to higher frequencies. In order to explain the observed wavefield fluctuations, an approach with seismic scattering at random media-type structures is proposed. The preferred model contains heterogeneities with 3–7 per cent perturbations in seismic velocity and correlation lengths of 0.6–4.8  km in the crust. This is compatible with models from active seismic experiments. Scattering in the lithospheric mantle is not required, but cannot be excluded at weak velocity contrasts (<3 per cent).  相似文献   

2.
Summary. TRM, ARM and Isr stabilities with respect to alternating fields and high- and low-temperature treatment are compared for a set of artificial rock specimens. The specimens contain grain-size fractions of a homogeneous natural magnetite and a natural magnetite showing exsolution lamellae. The grain-size fractions are in the PSD-MD range and vary between < 5 and 250 μm. For large MD grains the coercivity spectra of ARM are similar to those of Isr but differ from those of TRM particularly in the lower part of the spectrum. For small (< 5μm) grains the coercivity spectrum of ARM is similar to that of TRM, and both spectra are different from the coercivity spectrum of Isr. The use of ARM instead of TRM to determine palaeo-intensities is discussed in relation to the results obtained. During high- and low-temperature treatment ARM behaves similarly to Isr but unlike TRM for all grain sizes studied. The results of this study are discussed in terms of a remanence composed of PSD surface moments and MD and PSD bulk moments.  相似文献   

3.
Hydraulic conductivities of fractured sandstone bore cores of 0.1 m in diameter are calculated using detailed characterization of the fracture geometry parameters determined using a resin casting technique. The accuracy of the measurements was about  0.25–1.25 μm  with the image size used. The values of the effective fracture apertures vary between 10 μm and 50 μm. For modelling purposes the samples are sectioned serially, perpendicular to the flow direction along the cylinder axis. The hydraulic conductivity of individual slices is estimated by summing the contribution of the matrix (assumed uniform) and each fracture (depending on its length and aperture). Finally, the hydraulic conductivity of the bulk sample is estimated by a harmonic average in series along the flow path. Results of this geometrical upscaling compare favourably with actual conductivity measured in hydraulic and pneumatic experiments carried out prior to sectioning. This study shows that the determination of larger-scale conductivity can be achieved, based on the evaluation of fracture geometry parameters (e.g. fracture aperture, fracture width and fracture length), measured using an optical method, at least at the laboratory scale.  相似文献   

4.
Summary. Initial susceptibility, coercive force and several types of remanent coercive forces were measured on a set of artificial rock specimens containing grain-size fractions of a natural magnetite and titanomagnetite, both of which are optically homogeneous and a natural titanomagnetite and titanomaghemite, both of which show exsolution phenomena. It was found subsequently that the optically homogeneous titanomagnetite contains some submicroscopic Fe-rich inclusions. These inclusions are magnetically screened in coarse grains; only for the lower grain sizes studied they have an appreciable influence on the data. The size of the fractions varied from < 5 to 250 μm. The parameters and several parameter ratios are plotted as a function of grain size. Several of these parameters can be used as mineralogical and grain-size indicators. The varying degree of exsolution of the minerals is reflected in the gradients of the plots. From plots of initial susceptibility versus grain size it is concluded that the shape of the grains does not play a dominant role in determining the change of this parameter with grain size. Variation of the various parameters with grain size is explained in terms of a gradual transition from large PSD grains to MD grains without there being any sharp transition. For titanomagnetite ( x = 0.55) the transition takes place at grain sizes that are about 15 μm larger than for magnetite.  相似文献   

5.
This paper describes an efficient approach for computing the frequency response of seismic waves propagating in 2- and 3-D earth models within which the magnitude and phase are required at many locations. The approach consists of running an explicit finite difference time domain (TD) code with a time harmonic source out to steady-state. The magnitudes and phases at locations in the model are computed using phase sensitive detection (PSD). PSD does not require storage of time-series (unlike a fast Fourier transform), reducing its memory requirements. Additionally, the response from multiple sources can be obtained from a single finite difference run by encoding each source with a different frequency. For 2-D models with many sources, this time domain phase sensitive detection (TD–PSD) approach has a higher arithmetic complexity than direct solution of the finite difference frequency domain (FD) equations using nested dissection re-ordering (FD–ND). The storage requirements for 2-D finite difference TD–PSD are lower than FD–ND. For 3-D finite difference models, TD–PSD has significantly lower arithmetic complexity and storage requirements than FD–ND, and therefore, may prove useful for computing the frequency response of large 3-D earth models.  相似文献   

6.
In the pseudo-Thellier method for relative palaeointensity determinations (Tauxe et al. 1995) the slope of the NRM intensity left after AF demagnetization versus ARM intensity gained at the same peak field is used as a palaeointensity measure. We tested this method on a marine core from the Azores, spanning the last 276  kyr. We compared the pseudo-Thellier palaeointensity record with the conventional record obtained earlier by Lehman et al . (1996 ), who normalized NRM by SIRM. The two records show similar features: intensity lows with deviating palaeomagnetic directions at 40–45  ka and at 180–190  ka. The first interval is associated with the Laschamps excursion, while the 180–190  ka low represents the Iceland Basin excursion (Channell et al. 1997). The pseudo-Thellier method, in combination with a jackknife resampling scheme, provides error estimates on the palaeointensity.
  Spectral analysis of the rock magnetic parameters and the palaeointensity estimates shows orbitally forced periods, particularly 23  kyr for climatic precession. This suggests that palaeointensity is still slightly contaminated by climate. Fuzzy c -means cluster analysis of rock magnetic and geochemical parameters yields a seven-cluster model of predominantly calcareous clusters and detrital clusters. The clusters show a strong correlation with climate, for example samples from detrital clusters predominantly appear during rapid warming. Although both the pseudo-Thellier palaeointensity m a and fuzzy clusters show climatic influences, we have not been able to find an unambiguous connection between the clusters and m a .  相似文献   

7.
A 3-D P -velocity map of the crust and upper mantle beneath the southeastern part of India has been reconstructed through the inversion of teleseismic traveltimes. Salient geological features in the study region include the Archean Dharwar Craton and Eastern Ghat metamorphic belt (EGMB), and the Proterozoic Cuddapah and Godavari basins. The Krishna–Godavari basin, on the eastern coastal margin, evolved in response to the Indo–Antarctica breakup. A 24-station temporary network provided 1161 traveltimes, which were used to model 3-D P -velocity variation. The velocity model accounts of 80 per cent of the observed data variance. The velocity picture to a depth of 120 km shows two patterns: a high velocity beneath the interior domain (Dharwar craton and Cuddapah basin), and a lower velocity beneath the eastern margin region (EGMB and coastal basin). Across the array velocity variations of 7–10 per cent in the crust (0–40 km) and 3–5 per cent in the uppermost mantle (40–120 km) are observed. At deeper levels (120–210 km) the upper-mantle velocity differences are insignificant among different geological units. The presence of such a low velocity along the eastern margin suggests significantly thin lithosphere (<100 km) beneath it compared to a thick lithosphere (>200 km) beneath the eastern Dharwar craton. Such lithospheric thinning could be a consequence of Indo–Antarctica break-up.  相似文献   

8.
The investigation of L g attenuation characteristics in the region bounding the western branch of the East African rift system using digital recordings from a seismic network located along the rift between Lake Rukwa and Lake Malawi is reported. A set of 24 recordings of L g waves from 12 regional earthquakes has been used for the determination of anelastic attenuation, Q Lg , and regional body-wave magnitude, m b Lg , scale. The events used have body-wave magnitudes, m b , between 4.6 and 5.5, which have been determined teleseismically and listed in ISC bulletins. The data were time-domain displacement amplitudes measured at 10 different frequencies (0.7–5.0  Hz). Q Lg and its frequency dependence, η , in the region can be represented in the form Q Lg = (186.2 ± 6.5)  f  (0.78±0.05). This model is in agreement with models established in other active tectonic regions. The L g -wave-based magnitude formula for the region is given by m b Lg = log   A + (3.76 ± 0.38)  log   D − (5.72 ± 1.06), where A is a half-peak-to-peak maximum amplitude of the 1  s L g wave amplitude in microns and D is the epicentral distance in kilometres. Magnitude results for the 12 regional earthquakes tested are in good agreement with the ISC body-wave magnitude scale.  相似文献   

9.
We report on calculations of the on-shore run-up of waves that might be generated by the impact of subkilometre asteroids into the deep ocean. The calculations were done with the COULWAVE code, which models the propagation and shore-interaction of non-linear moderate- to long-wavelength waves  ( kh < π)  using the extended Boussinesq approximation. We carried out run-up calculations for several different situations: (1) laboratory-scale monochromatic wave trains onto simple slopes; (2) 10–100 m monochromatic wave trains onto simple slopes; (3) 10–100 m monochromatic wave trains onto a compound slope representing a typical bathymetric profile of the Pacific coast of North America; (4) time-variable scaled trains generated by the collapse of an impact cavity in deep water onto simple slopes and (5) full-amplitude trains onto the Pacific coast profile. For the last case, we also investigated the effects of bottom friction on the run-up. For all cases, we compare our results with the so-called 'Irribaren scaling': The relative run-up   R / H 0=ξ= s ( H 0/ L 0)−1/2  , where the run-up is   R , H 0  is the deep-water waveheight, L 0 is the deep-water wavelength, s is the slope and ξ is a dimensionless quantity known as the Irribaren number. Our results suggest that Irribaren scaling breaks down for shallow slopes   s ≤ 0.01  when  ξ < 0.1 − 0.2  , below which   R / H 0  is approximately constant. This regime corresponds to steep waves and very shallow slopes, which are the most relevant for impact tsunami, but also the most difficult to access experimentally.  相似文献   

10.
Using the viscoelastic correspondence principle, we utilize the surface coseismic spheroidal deformation fields (i.e. vertical displacements, potential perturbations and gravity changes) of SNREI earth models caused by four typical types of point dislocation, derived by Sun & Okubo (1993 ), to deduce the fundamental formulas for spheroidal fields relevant to viscoelastic earth models. In computations, we employ a strike-slip dislocation on a vertical plane buried at the bottom of the lithosphere to estimate the maximal viscous relaxation responses to this kind of source that possibly exist on the surface of the earth. We take the seismic moment as 1022  N  m, which is characteristic of an average large earthquake. The numerical results demonstrate that, if we take the viscosity as 1019  Pa  s in the asthenosphere, and 1021  Pa  s in the other mantle layers, the rates of surface vertical displacements and gravity changes within about 2.5° for the 10 postseismic years are respectively 1.5–8.1  cm  yr−1 and 4.0–14.9  μgal  yr−1 : the viscous relaxation for this mantle viscosity profile proceeds much faster than for a constant mantle viscosity of 1021  Pa  s.  相似文献   

11.
Inference of mantle viscosity from GRACE and relative sea level data   总被引:12,自引:0,他引:12  
Gravity Recovery And Climate Experiment (GRACE) satellite observations of secular changes in gravity near Hudson Bay, and geological measurements of relative sea level (RSL) changes over the last 10 000 yr in the same region, are used in a Monte Carlo inversion to infer-mantle viscosity structure. The GRACE secular change in gravity shows a significant positive anomaly over a broad region (>3000 km) near Hudson Bay with a maximum of ∼2.5 μGal yr−1 slightly west of Hudson Bay. The pattern of this anomaly is remarkably consistent with that predicted for postglacial rebound using the ICE-5G deglaciation history, strongly suggesting a postglacial rebound origin for the gravity change. We find that the GRACE and RSL data are insensitive to mantle viscosity below 1800 km depth, a conclusion similar to that from previous studies that used only RSL data. For a mantle with homogeneous viscosity, the GRACE and RSL data require a viscosity between  1.4 × 1021  and  2.3 × 1021  Pa s. An inversion for two mantle viscosity layers separated at a depth of 670 km, shows an ensemble of viscosity structures compatible with the data. While the lowest misfit occurs for upper- and lower-mantle viscosities of  5.3 × 1020  and  2.3 × 1021  Pa s, respectively, a weaker upper mantle may be compensated by a stronger lower mantle, such that there exist other models that also provide a reasonable fit to the data. We find that the GRACE and RSL data used in this study cannot resolve more than two layers in the upper 1800 km of the mantle.  相似文献   

12.
20 magnetotelluric (MT) soundings were collected on the Isle of Skye, Scotland to provide a high-resolution three-dimensional (3-D) electrical resistivity model of a volcanic province within the framework of a project jointly interpreting gravity, seismic, geological and MT data. The full 3-D inversion of the MT data jointly interpreted with gravity data reveals upper crustal structure. The main features of the model are interpreted in conjunction with previous geological mapping and borehole data. Our model extends to 13 km depth, several kilometres below the top of the Lewisian basement. The top of the Lewisian basement is at approximately 7–8 km depth and the topography of its surface was controlled by Precambrian rifting, during which a 4.5 km thick sequence of Torridonian sediments was deposited. The Mesozoic sediments above, which can reach up to 2.2 km thick, have small-scale depocentres and are covered by up to 600 m of Tertiary lava flows. The interpretation of the resistivity model shows that 3-D MT inversion is an appropriate tool to image sedimentary structures beneath extrusive basalt units, where conventional seismic reflection methods may fail.  相似文献   

13.
Summary. The mid-crustal earthquake of 1973 March 9 (mb= 5.5, h ≤ 20 km) located 60 km south-west of Sydney, Australia, provides unambiguous evidence of contemporary thrust faulting in South-eastern Australia — a region of high heat flow and Cenozoic basaltic volcanism. Aftershock locations suggest a steeply dipping fault in the depth range from 8 to 24 km with a lateral extent of about 8 km. The mechanism solution is consistent with a tectonic stress field that is dominated by east—west horizontal compression. A seismic moment of 5.7 ± 1023± 20 per cent dyne-cm was computed from surface-wave amplitudes. Minimum values of slip and stress drop, 2 cm and 1 bar respectively, were estimated from the moment and a fault size taken' from aftershock locations.
Refinement modelling by a controlled Monte Carlo technique was used to provide unbiased models directly from multimode group velocities. The dispersion of fundamental and higher mode surface waves recorded at the digital high-gain station at Charters Towers, Queensland, and the WWSSN station at Adelaide, South Australia, is satisfied by crust- and upper-mantle models which have neither pronounced S-wave low-velocity zones nor thick high-velocity lids within 140 km of the Earth's surface. These models have subcrustal shear velocities of 4.20–4.32 km/s which are 0.4–0.5 km/s slower than Canadian shield shear velocities (CANSD).  相似文献   

14.
A Late Miocene delta complex is located in the Danish Central Graben. The delta complex provides the opportunity to study the spatial development of a wave-fluvial dominated delta complex in three dimensions. Based on 3D seismic data (seismic sections and amplitude maps) and well data the complex has been investigated. The delta was developed during an initial rise and then a significant fall (approximately 90 m) in relative sea-level. The prograding clinoformal package of the delta complex has clinoform dips of 2–3° and a thickness of maximum 115 m. The sediments are deposited in five elongated depositional units with the long axis parallel to the delta slope, and progradation occurred in a south-westerly direction. The grain size of the units vary from muddy to coarse-grained sand. Incised canyons running parallel to the depositional direction tend to be straight or have low sinuosity and incise approximately 90 m into the top of the delta. The delta complex has been subdivided into two systems tracts based on a study of clinoform migration patterns: (1) Rising trajectory in Unit 1–4 of the complex, the sea-level was rising as documents a highstand systems tract (HST). (2) Descending trajectory in Unit 5 documenting a forced regression wedge systems tract (FRWST) as the sea-level was falling, creating incised canyons.  相似文献   

15.
Magnetotelluric data from the backarc of the Central Andes in NW Argentinawere re-examined by employing impedance tensor decomposition and 2-D inversion and modelling techniques. The data in the period range of 50–15 000 s were collected on a profile of 220 km length reaching from the Eastern Cordillera across the Santa Barbara System to the Andean foreland of the Argentinean Chaco.
After a dimensionality analysis, data from most sites were treated as regional 2-D. The exception was the eastern section of the profile, where the magnetotelluric transfer functions for periods ≤ 1000 s reflect a 3-D earth. Application of two tensor decomposition schemes yielded a regional strike direction of N–S, which is the azimuth of the Central Andean mountain chains. Several 2-D models were obtained by pseudo- and full 2-D Occam inversion schemes. Special emphasis was placed on the inversion of phase data to reduce the influence of static shifts in the apparent resistivity data. The smooth inversion models all show a good conductor at depth. A final model was then calculated using a finite element forward algorithm.
The most prominent feature of the resulting model is a conductor which rises from depths of 180 km below the Chaco region to 80 km beneath the Santa Barbara System and the Eastern Cordillera. Its interpretation as a rise of the electrical asthenosphere is supported by seismic attenuation studies. Magnetotelluric results, surface heat-flow distribution in the area, and the electrical properties of crustal and mantle rocks suggest that the upper mantle is predominantly ductile beneath the Eastern Cordillera and the western Santa Barbara System. This generally agrees with anelastic seismic attenuation models of the area and is useful in discriminating between models of Q quality factor distribution.  相似文献   

16.
Gravity changes are presented from a series of field microgravity surveys conducted at Mt Etna between August 1994 and November 1996, a period including the 1995–1996 explosive summit activity. Data were collected along a microgravity network of 69 stations at a monthly to annual sampling rate, depending on each subarray of the network.
  Results show that seasonal changes in water level within the volcano may induce gravity changes of up to 20  μgal on Etna's southern slope, and indicate that significant magma movement occurred within and below Etna's edifice between 1994 and 1996. In particular, between September 1994 and October 1995, a mass increase of 2 × 1010  kg occurred 2000  m beneath the summit craters. Between October 1995 and July 1996 this mass was lost, while another 2 × 1010  kg was injected at about 1000  m  a.s.l. into the 1989 fracture system. From the gravity data alone, it is not possible to distinguish whether the first shallow intrusion (1994–1995) was then injected laterally into the 1989 fracture, or summit activity was fed by the first shallow intrusion, while new magma entered the 1989 fracture system.
  While magma was being redistributed within the volcanic edifice, measurements along an E–W-trending profile on the southern slope of the volcano detected some 1.5 × 1011  kg of magma accumulating 2–3  km below sea level between October 1995 and November 1996.  相似文献   

17.
The Ethiopian side of central Afar was struck in August 1989 by the largest seismic sequence (three 6.1 ≤ M s ≤ 6.3 events, 15 with M s or m b ≥ 5.0) since that of Serdo in 1969. Using the Djibouti seismological network, we relocated 297 of the events of that sequence. As most of the large events took place outside the network, we assessed the accuracy and stability of earthquake relocations by using three different velocity models and two relocation codes to try to relate individual shocks to distinct faults and surface breaks. A majority of the events apparently occurred underneath the floor of the Dôbi graben, an area about 45  km long and 15  km wide, rupturing boundary and inner floor faults, in agreement with the surface cracks and scarps that we mapped in the area. The relocation shows that the principal events propagated about 50  km northwestwards along the graben in the first 40  hr. A day and a half after the beginning of the sequence, smaller events ( M ≤ 4) started to propagate more than 55  km eastwards, towards Asal Lake. Using two three-component stations installed near the Ethiopian border, we could determine reliable depths for 21 events. The depths are compatible with a seismogenic crust about 14  km thick in the Dôbi and Hanle graben area. Although the Dôbi sequence ruptured about 50  km of the fault array extending from Serdo to Asal, where the regional stress was released by earthquakes in 1969 and 1978, respectively, a seismic gap about 50  km long still subsists along the northern part of the Gaggade region (Der'êla half-graben).  相似文献   

18.
Novaya Zemlya was covered by the eastern part of the Barents–Kara ice sheet during the glacial maximum of marine isotope stage 2 (MIS 2). We obtained 14C ages on 37 samples of mollusc shells from various sites on the islands. Most samples yielded ages in the range of 48–26 14C Ky. Such old samples are sensitive to contamination by young 14C, and therefore their reliability was assessed using replicate analyses and amino acid geochronology. The extent of aspartic acid racemization (Asp D/L) indicates that many of the 14C ages are correct, whereas some are minimum ages only. The results indicate that a substantial part of Novaya Zemlya was ice-free about 35–27 14C Kya, and probably even earlier. Corresponding shorelines up to >140 m a.s.l. indicate a large Barents–Kara ice sheet during early MIS 3. These results are consistent with findings from Svalbard and northern Russia: in both places a large MIS 4/3 Barents–Kara ice sheet is postulated to have retreated about 50 Kya, followed by an ice-free interstadial that lasted until up to ca. 25 Kya. The duration of the MIS 2 glaciation in Novaya Zemlya was calculated by applying the D/L values to a kinetic equation for Asp racemization. This indicates that the islands were ice covered for less than 3000 years if the basal temperature was 0oC, and for less than 10 000 years if it was −5oC.  相似文献   

19.
The conductivity structure of the Earth's mantle was estimated using the induction method down to 2100  km depth for the Europe–Asia region. For this purpose, the responses obtained at seven geomagnetic observatories (IRT, KIV, MOS, NVS, HLP, WIT and NGK) were analysed, together with reliable published results for 11  yr variations. 1-D spherical modelling has shown that, beneath the mid-mantle conductive layer (600–800  km), the conductivity increases slowly from about 1  S  m−1 at 1000  km depth to 10  S  m−1 at 1900  km, while further down (1900–2100  km) this increase is faster. Published models of the lower mantle conductivity obtained using the secular, 30–60  yr variations were also considered, in order to estimate the conductivity at depths down to the core. The new regional model of the lower mantle conductivity does not contradict most modern geoelectrical sounding results. This model supports the idea that the mantle base, situated below 2100  km depth, has a very high conductivity.  相似文献   

20.
Palaeomagnetic and geochronological measurements have been carried out on the late Pleistocene basaltic–andesitic unit of Monte Chirica–Costa Rasa, on the island of Lipari (Aeolian Archipelago). The lava flow sequence is about 10  m thick and has been sampled in detail. Magnetic properties are rather uniform; Curie temperatures of 540° to 580 °C, and the saturation IRM reached at applied values of 0.1  T point to titanomagnetite as the main magnetization carrier. Thermal and AF demagnetization have shown the presence of secondary magnetization components. These were removed mostly at 450°–500 °C or 20–30  mT, indicating a highly stable ChRM with directions from transitional to reverse. Where a ChRM could not be isolated by application of the demagnetization techniques, the converging remagnetization circles method gave a mean ChRM value fully comparable with that obtained from other methods. 40Ar/39Ar determinations were performed on two lava flows, in the lower and upper parts of the sequence. The former shows a transitional ChRM direction and a whole-rock age of 157±12  ka, the latter a reverse direction, a whole-rock age of 143±17  ka and a ground-mass age of 128±23  ka. The radiometric data and the reconstructed stratigraphy, which indicate ages of 150±10  ka and 104±3.5  ka, respectively, for the volcanic units at the bottom and top of the Monte Chirica–Costa Rasa unit, suggest that the reverse directions recorded in Lipari are related to the Blake event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号