首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thirty-five S isotope analyses obtained from six carbonatite complexes from the Superior Province, Canadian Shield, ranging in age from 1,897 Ma to 1,093 Ma, have δ34SCDT values of between ?4.5‰ and +3.4‰. Pyrrhotite, chalcopyrite and pyrite mineral separates were used. Each complex possesses its own distinct range and mean S isotope composition. The range for Schryburt Lake is: ?4.5‰ to ?3.4‰ ( mean?=??3.9‰), for Big Beaver House: ?3.6‰ to ?1.5‰ (mean?=??2.2‰), for Cargill: ?1.5‰–+0.5‰ (mean?=??0.7‰), for Spanish River: ?0.1‰–+0.1‰ (mean?=?0.0‰), and for Firesand River: +1.3‰–+3.4‰ (mean?=?+1.7‰). A single sample from Carb Lake yielded a δ34SCDT value of +2.8‰. Differences in isotope compositions can be related to isotope effects brought about during melt generation and emplacment, such as variations in fo2 and temperature. The different S and C isotope data for most complexes, however, suggest that the parental melts could have been generated from a heterogeneous mantle source, although process-driven changes cannot be completely ruled out.  相似文献   

2.
A combined Lu-Hf and U-Th-Pb isotopic study was made of 25 zircons and 2 whole rocks from the late Archean crust (2,888-2,668 Ma) in the southern Superior Province, Canada. The relative abundances of U, Th, Lu and Hf in zircons from the low grade Michipicoten and Gamitagama greenstone belts show variable patterns which in part reflect the bulk compositional differences of their parent rocks. Zircons from the high grade lower crustal regions adjacent to these belts (Kapuskasing Structural Zone) are distinguished from the low grade zircons by their strong depletions of Lu and Hf. The low Hf contents imply that the growth of metamorphic zircon involves a significant fractionation of the Zr/Hf ratio.Initial Hf isotope ratios for Hf in zircons from the low grade rocks are correlated with silica enrichment of their host rocks. e Hf varies from +9.2 to –1.3 and data from similar rock types exhibit correlations of e Hf with time. Whole rock basalt analyses yield e Hf values of +8.7 and +11.3 suggesting their derivation from a depleted mantle. The basalt data fall on an evolution trend which implies that differentiation from a chondritic mantle occurred at 3,100-2,900 Ma. Low e Hf values (–1.3 to +1.4) for rhyolites and granites are consistent with a derivation involving remelting of old crust similar to a 2,888 Ma granite with e HF of +0.5. Significantly higher values (+1.4 to +3.9) are found in zircons from 2,748-2,682 Ma dacites and tonalites suggesting that their parent rocks had higher Lu/Hf ratios. This may indicate that their parent rocks were mafic. However, there is some evidence that the possible lower crustal source reservoirs of these rocks may have undergone processes early in their histories which increased their Lu/ Hf ratios. This would give rise to the higher e Hf values observed in their derivatives.  相似文献   

3.
This work considers geochemical and isotopic characteristics of the source of the Archean Panozero pluton derived from LILEand LREE-enriched lithospheric mantle. Sr and Nd isotopic data on clinopyroxenes and augites define a source with Sri = 0.7017 and ɛNd(t) varying within a narrow range from + 0.7 to + 1.4 (averaging + 1.1), which is close to previously obtained whole-rock isotopic data. Similar ɛNd(t) were obtained for the Archean alkaline rocks of Canada, whereas the Archean mafic rocks of the Baltic and Canadian Shields formed from depleted mantle have ɛNd(t) ∼2. Lead isotope measurements on K-feldspars (KFsp) and monzonite showed that the source of the pluton has μ = 8.98 for the Stacey-Kramers two-stage model, at low U/Pb and high Th/U ratios. Different lead isotope composition corresponding to μ = 10.43 was determined in KFsp from quartz monzonites. Diverse interpretations of obtained data have been proposed. It was noted that the Pb-Pb isotopic system was disturbed by a later (∼ 1.9 Ga) thermal event. The ratios of elements of similar compatibility were used to determine the geochemical specifics of source of the Panozero pluton. Their comparison with numerous literature data on metasomatized mantle xenoliths and minerals in them showed that the mantle source strongly differed from primitive mantle in ratios of elements, whose mineralmelt partitioning coefficients considerably differs from mineral-fluid partitioning, for instance, Nb/La. Mantle source that was responsible for geochemical peculiarities of the Panozero pluton was made up of Phl, CPx, and Ap.  相似文献   

4.
Volcanic suites from Wawa greenstone belts in the southern Superior Province comprise an association of typical late Archean arc volcanic rocks including adakites, magnesian andesites (MA), niobium-enriched basalts (NEB), and ‘normal’ tholeiitic to calc-alkaline basalts to rhyolites. The adakites represent melts from subducted oceanic crust and all other suites were derived from the mantle wedge above the subducting oceanic lithosphere. The magnesian andesites are interpreted to be the product of hybridization of adakite melts with arc mantle wedge peridotite. The initial ?Hf values of the ∼2.7 Ga Wawa adakites (+3.5 to +5.2), magnesian andesites (+2.6 to +5.1), niobium-enriched basalts (+4.4 to +6.6), and ‘normal’ tholeiitic to calc-alkaline arc basalts (+5.3 to +6.4) are consistent with long-term depleted mantle sources. The niobium-enriched basalts and ‘normal’ arc basalts have more depleted ?Hf values than the adakites and magnesian andesites. The initial ?Nd values in the magnesian andesites (+0.4 to +2.0), niobium-enriched basalts (+1.4 to +2.4), and ‘normal’ arc tholeiitic to calc-alkaline basalts (+1.6 to +2.9) overlap with, but extend to lower values than, the slab-derived adakites (+2.3 to +2.8). The lower initial ?Nd values in the mantle-wedge-derived suites, particularly in the magnesian andesites, are attributed to recycling of an Nd-enriched component with lower ?Nd to the mantle wedge. As a group, the slab-derived adakites plot closest to the 2.7 Ga depleted mantle value in ?Nd versus ?Hf space, additionally suggesting that the Nd-enriched component in the mantle wedge did not originate from the 2.7 Ga slab-derived melts. Accordingly, we suggest that the enriched component had been added to the mantle wedge at variable proportions by recycling of older continental material. This recycling process may have occurred as early as 50-70 Ma before the initiation of the 2.7 Ga subduction zone. The selective enrichment of Nd in the sources of the Superior Province magmas can be explained by experimental studies and geochemical observations in modern subduction systems, indicating that light rare earth elements (e.g., La, Ce, Sm, Nd) are more soluble than high field strength elements (e.g., Zr, Hf, Nb, Ta) in aqueous fluids that are derived from subducted slabs. As a corollary, we suggest that the recycled Nd-enriched component was added to the mantle source of the Wawa arc magmas by dehydration of subducted sediments.  相似文献   

5.
Contributions to Mineralogy and Petrology - Adakitic geochemical features characterize the Desliens suite of pre-tectonic diorite to tonalite sills intruded into volcanogenic greywackes of the...  相似文献   

6.
The 2685–2752 Ma old granite-greenstone crust in the Rainy Lake area, Ontario, consists of metaigneous and metasedimentary rocks that range in composition from tholeiite to monzogranite and include anorthosite, trachyandesite, monzodiorite and high-silica rhyodacite. Major element, rare earth and other trace element data are the basis for modelling the formation of the crust by melting of large-ionlithophile element enriched and unenriched mantle, by melting of basalt at mantle to crustal levels and by melting of monzodiorite and tonalite at crustal levels.

All metaigneous rocks lie on a 143Nd/144Nd vs. 147Sm/144Nd isochron with an age of 2737 ±42 Ma and an initial 143Nd/144Nd of 0.509178 ±33 (εNd = +1.9). This age is consistent with U-Pb zircon ages, which suggests the Nd isotopic system has been unaffected since the crust-forming events. The positive initial εNd's are further evidence for time-averaged depletion in Sm/Nd relative to CHUR for the Archean mantle. The similarity of the initial Nd isotopic composition for both mantle-derived and crustally-derived rocks suggests rapid recycling of crustal components, which were previously derived from depleted mantle sources.

Initial 143Nd/144Nd ratios on individual rocks range from εNd = +3.3 to εNd = −0.4. Younger granitoids have lower εNd values (+1.5 to −0.1) relative to tholeiites and monzodiorites crystallized from mantle-derived melts (+3.3 to +1.0). Thus, incorporation of slightly older crust (ca. 100–200 Ma) in some of the granitoid source areas is possible. Mantle-derived rocks form an isochron of 2764 ±58 Ma that represents a minimum age for enrichment processes in the mantle sources for the Rainy Lake area. Consideration of data from the Abitibi belt suggests such enrichment processes in the mantle may have preceded crust-forming events in a wide area of the Superior Province, perhaps by as much as 50–70 Ma.  相似文献   


7.
New mineralogical and chemical data for ophiolitic rocks from the southwesternmost Liguride Units are presented in order to constrain their ocean-floor origin and subsequent emplacement in an accretionary wedge. Their complete petrochemical evolution is particularly well preserved in the southern Apennine metabasites. Metadolerites show amphibolite and greenschist facies mineral assemblages of ocean-floor metamorphism. Metabasalts display greenschist facies ocean-floor metamorphism and spilitic alteration. Veins cutting the mafic rocks show mineral assemblage of the prehnite–pumpellyite metamorphic facies. HP/LT orogenic metamorphism, reflecting underplating of the ophiolitic suite at the base of the Liguride accretionary wedge during subduction of the western Tethys oceanic lithosphere produced a mineral assemblage typical of the lawsonite–glaucophane facies. Bulk-rock chemistry suggests that the mafic protoliths had a MORB-type affinity, and were affected by ocean-floor rodingitic and/or spilitic alteration. Hydrothermal alteration-induced LREE mobility and LREE enrichment may be correlated with the ocean-floor metamorphism.  相似文献   

8.
With an age of ca. 2.7 Ga, greenschist facies volcaniclastic rocks and lamprophyre dikes in the Wawa area (Superior Craton) host the only diamonds emplaced in the Archean available for study today. Nitrogen aggregation in Wawa diamonds ranges from Type IaA to IaB, suggesting mantle residence times of tens to hundreds of millions of years. The carbon isotopic composition (δ13C) of cube diamonds is similar to the accepted mantle value (− 5.0‰). Octahedral diamonds show a slight shift (by + 1.5‰) to isotopically less negative values suggesting a subduction-derived, isotopically heavy component in the diamond-forming fluids. Syngenetic inclusions in Wawa diamonds are exclusively peridotitic and, similar to many diamond occurrences worldwide, are dominated by the harzburgitic paragenesis. Compositionally they provide a perfect match to inclusions from diamonds with isotopically dated Paleo- to Mesoarchean crystallization ages. Several high-Cr harzburgitic garnet inclusions contain a small majorite component suggesting crystallization at depth of up to 300 km. Combining diamond and inclusion data indicates that Wawa diamonds formed and resided in a very thick package of chemically depleted lithospheric mantle that predates stabilization of the Superior Craton. If late granite blooms are interpreted as final stages of cratonization then a similar disconnect between Paleo- to Mesoarchean diamondiferous mantle lithosphere and Neoarchean cratonization is also apparent in other areas (e.g., the Lac de Gras area of the Slave Craton) and may suggest that early continental nuclei formed and retained their own diamondiferous roots.  相似文献   

9.
A change in the polarity of magnetization with depth in the 2.45 Ga Matachewan dyke swarm is used to document vertical crustal movements that occurred at 1.9–2.3 Ga along the Kapuskasing Structural Zone, a 500-km-long fault zone that transects the Archean Superior Province of Canada. At shallow crustal levels dykes have a primary magnetization dominantly of one polarity, but at greater depths (20 km down) a polarity change occurs associated with the growth of exsolved magnetite in feldspar due to slow crustal cooling after cessation of Matachewan igneous activity. Regions of the dyke swarm with one dominant polarity are separated from those with opposite polarity by major faults. Using this polarity distribution and associated variations in the intensity of feldspar clouding and hydrous alteration, maps of the southern Superior Province are produced that display regional crustal tilting on which are superimposed more local fault-bounded blocks associated with the Kapuskasing zone. Some of these blocks have been recognized for the first time as a result of this study.The paleomagnetic work has also shown that the Matachewan swarm is regionally distorted both within and north of the Kapuskasing zone, and originally had a more radial disposition. This widespread distortion suggests that the lower crust was still relatively ductile at the time of deformation, perhaps due to high heat flow associated with the waning stages of the Matachewan mantle plume beneath.  相似文献   

10.
The Pikwitonei granulite domain and parts of the Cross Lakesubprovince, located along the northwestern margin of the ArcheanSuperior Province, expose an oblique cross-section through 20km of Archean continental crust. The area has been investigatedusing phase equilibrium and geochronological techniques to derivequantitative pressure-temperature-time paths as a function ofdepth in the crust. Ages from metamorphic minerals indicatethat metamorphism lasted at least from 2744 Ma to 259O Ma, butgrowth of garnet and zircon occurred only during short intervalsat 2744–2738, 2700–2687, 2660–2637, and 2629–2591Ma. Constraints from experimentally calibrated geobarometersand geothermometers and phase petrology indicate that ‘peak’conditions for the last metamorphism, at 2640 Ma, were 575?C/3kbat Utik Lake, 750?C/7kb at Cauchon Lake, 830?C/7?5–8 kbat Natawahunan Lake, and 9 kb close to the Thompson mobile belt. High-grade metamorphism was associated with intrusion and possiblyunderplating of magmas that had temperatures in excess of 1100?Cand contributed significant amounts of heat that promoted high-grademetamorphism. Mineral textures indicate that during progrademetamorphism, the terrane passed from the andalusite into thesillimanite stability field. After ‘peak’ metamorphismat 2640 Ma the terrane cooled nearly isobarically at a rateof 1–2?C/Ma. The observed characteristics of the amphiboliteto granulite terrane are consistent with a model where metamorphismoccurred in a continental magmatic arc setting with a magmaticarc superimposed on older continental crust. Following high-grademetamorphism, the time-integrated uplift rate was <70m/Ma.The crustal cross-section was exposed by late tectonic processesthat were unrelated to the high-grade metamorphism.  相似文献   

11.
The Xigaze ophiolite in the central part of the Yarlung–Zangbo suture zone, southern Tibet, has a well-preserved sequence of sheeted dykes, basalts, cumulates and mantle peridotites at Jiding and Luqu. Both the basalts and diabases at Jiding have similar compositions with SiO2 ranging from 45.9 to 53.5 wt%, MgO from 3.1 to 6.8 wt% and TiO2 from 0.87 to 1.21 wt%. Their Mg#s [100Mg/(Mg + Fe)] range from 40 to 60, indicating crystallization from relatively evolved magmas. They have LREE-depleted, chondrite-normalized REE diagrams, suggesting a depleted mantle source. These basaltic rocks have slightly negative Nb- and Ti-anomalies, suggesting that the Xigaze ophiolite represents a fragment of mature MORB lithosphere modified in a suprasubduction zone environment. The mantle peridotites at Luqu are high depleted with low CaO (0.3–1.2 wt%) and Al2O3 (0.04–0.42 wt%). They display V-shaped, chondrite-normalized REE patterns with (La/Gd)N ratios ranging from 3.17 to 64.6 and (Gd/Yb)N from 0.02 to 0.20, features reflecting secondary metasomatism by melts derived from the underlying subducted slab. Thus, the geochemistry of both the basaltic rocks and mantle peridotites suggests that the Xigaze ophiolite formed in a suprasubduction zone.Both the diabases and basalts have Pd/Ir ratios ranging from 7 to 77, similar to MORB. However, they have very low PGE abundances, closely approximating the predicted concentration in a silicate melt that has fully equilibrated with a fractionated immiscible sulfide melt, indicating that the rocks originated from magmas that were S-saturated before eruption. Moderate degrees of partial melting and early precipitation of PGE alloys explain their high Pd/Ir ratios and negative Pt-anomalies. The mantle peridotites contain variable amounts of Pd (5.99–13.5 ppb) and Pt (7.92–20.5 ppb), and have a relatively narrow range of Ir (3.47–5.01 ppb). In the mantle-normalized Ni, PGE, Au and Cu diagram, they are relatively rich in Pd and depleted in Cu. There is a positive correlation between CaO and Pd. The Pd enrichment is possibly due to secondary enrichment by metasomatism. Al2O3 and Hf do not correlate with Ir, but show positive variations with Pt, Pd and Au, indicating that some noble metals can be enriched by metasomatic fluids or melts carrying a little Al and Hf. We propose a model in which the low PGE contents and high Pd/Ir ratios of the basaltic rocks reflect precipitation of sulfides and moderate degrees of partial melting. The high Pd mantle peridotites of Xigaze ophiolites were formed by secondary metasomatism by a boninitic melt above a subduction zone.  相似文献   

12.
The paper presents U–Pb ages for zircon, titanite, andmonazite, and Hf isotopic data for zircon, from the rocks oftwo magmatic suites occurring mostly in the Archean Uchi Subprovinceand partly in the neighbouring Berens River and English Riversubprovinces of the northwestern Superior Province, Ontario.These data, together with observations on the morphologies and,where evident, the inheritance of the zircon crystals, constrainthe nature of the sources of the magmas and provide a recordof various crustal processes in their evolution. The older of the two magmatic suites formed at 2744–2740Ma along segments of a common arc system. The suite consistsof (1) several trondhjemitic to granodioritic plutons, withHf values of 6•1, intruded into older crust and possiblyformed from magma produced by partial melting of subducted,juvenile oceanic crust; (2) an assemblage of dacitic pyroclasticvolcanic rocks, with Hf values of 3•2–4•0, associatedwith tholeiitic basalts and probably derived from magma meltedfrom arc mantle; and (3) a bimodal assemblage of tholeiiticbasalts, rhyolites, and porphyries, also with Hf values of 6•1,associated with a volcanogenic massive sulphide deposit andapparently formed by differentiation of mantle-derived basalticmelts at shallow levels in an extensional back-arc setting. The second magmatic suite, formed between 2702 and 2693 Ma,comprises late orogenic plutons and batholiths of dioritic todominantly granodioritic composition. The characteristics ofthese intrusions are consistent with a process combining meltingof a metasomatized mantle source and subsequent fractional crystallizationof the derived magmas at shallow depths. However, most of thestudied occurrences show evidence of crustal contamination throughvarious combinations of assimilation of lower-crustal material,assimilation of underthrust sedimentary rocks, and contaminationby wall rock materials during the latest stages in the emplacementof the plutons. The involvement of crustal material is indicatedby the presence of zircon xenocrysts and by Hf values rangingfrom 1•4 to 4•4. Only one intrusion, with an Hf valueof 5•0 and no xenocrystic zircon, appears to have escapedwidespread contamination, perhaps because the ascent of itsmagma was facilitated by a crustal-scale fracture system.  相似文献   

13.
The central Wabigoon subprovince of the Superior Province, likemost plutonic domains within Archean cratons, is dominated bygranitoid rocks of the tonalite–trondhjemite–granodiorite(TTG) series. Heterogeneous <2·83–2·74Ga tonalite gneisses and foliated tonalite to granodiorite units,emplaced at 2·722–2·709 Ga, exhibit initial  相似文献   

14.
The whole-rock δ 18O values of samples from twelve discrete Archean plutons intruding the western Wabigoon granite-greenstone belt, northwestern Ontario, range from 6.8 to 9.5‰. Most samples with δ 18O > 8.7‰, however, come from portions of the Burditt Lake stock, or the Esox Lake area, that have been affected by deuteric or metasomatic activity. The distribution of δ 18O values for the remaining samples is very similar to that known for the large batholithic complexes and gneissic terrains that dominate this portion of northwestern Ontario. The generally low δ 18O values of the discrete granitoid plutons suggest that 18O-rich supracrustal rocks were unimportant in their genesis. Like the granitoids of the batholithic complexes and gneissic terrains, the discrete granitoid plutons represent new additions to the Archean sialic crust.  相似文献   

15.
吉林晚古生代榆木川基性岩的地球化学特征及其岩石成因   总被引:2,自引:0,他引:2  
位于兴蒙造山带张广才岭块体的榆木川辉绿玢岩,K—AT年龄测定表明其形成年龄为262~264Ma,主微量元素研究表明,辉绿玢岩SiO2含量为47.02%~52.60%,贫K2O(0.13%~0.47%),Na2O〉K2O,属于低钾拉斑系列,稀土分布模式属于轻稀土略亏损的平坦型,微量元素原始地幔标准化图解中大离子亲石元素(Rh、Ba、Sr)较为富集,但不存在高场强元素(Nb、Ta)的亏损,同位素组成显示Sr同位素初始比值在0.704958~0.705631之间,εNd(t)值(72~81)较高且变化较小,表明其来源于亏损地幔的部分熔融且成岩过程中未受到地壳物质的混染。基性岩形成于造山后的伸展拉张背景,并结合前人的研究成果,认为晚古生代(约270Ma)兴蒙造山带已经进入晚期,此时加厚的岩石圈由于重力不稳定发生拆沉减薄作用,导致软流圈的大量上涌和岩石圈拉张,从而引起先存亏损岩石圈地幔的部分熔融,最后侵入地壳深部形成研究区辉绿玢岩。  相似文献   

16.
The ca. 2.7–2.5 Ga Slave Province is a granitegreenstone terrane comprising deformed sedimentary and subordinate volcanic belts extensively intruded by granitoid rocks. The Nd isotopic data are reported for 58 samples of supracrustal and granitoid rocks exposed along a 400 km, east-west, transect at 65°N across the structural grain of the province. Initial Nd values reveal distinctly different crustal sources in the eastern compared to the western parts of the province, as expected from tectonic assembly of the province through accretion of juvenile crust to older continental crust. Supracrustal sequences (ca. 2.71–2.65 Ga) from the central and eastern parts of the province have positive Nd(1) values (+0.3 to +3.6), consistent with juvenile sources and formation remote from significantly older crust. Syn to late-deformation (ca. 2.63–2.60 Ga), mantle-derived diorites and related tonalites (type I) from the central and eastern parts of the province have similar initial Nd values (-0.1 to +2.7). In contrast, samples from the westernmost plutons, which intrude exposed pre-3.1 Ga crust, have much lower Nd(1) values (-1.0 to4.6) suggesting contamination of these magmas by older crust. The Nd(1) values of post-deformation granites (s.s.) (type II) also vary systematically across the province: values for granites west of longitude 110°30W range from-0.2 to -5.3; those to the east range from +0.6 to +3.7. These data suggest mixed crustal sources dominated by Mid to Early Archean material ( Nd-2.6 to- 17 at 2.6 Ga) for the western granitoid rocks and juvenile sources for the eastern granites. The Nd isotopic data are consistent with the geology of the province in that exposures of Mid to Early Archean crustal rocks, predating the principal 2.7–2.5 Ga orogenic event are restricted to the western part of the province. The asymmetric pattern defined by the Nd isotopic data indicates the presence of distinct crustal rocks beneath the Slave Province. Similar isotopic variations observed across Phanerozoic collisional orogens have been interpreted to reflect tectonic assembly of crust by accretion of juvenile crustal terranes to an older continental margin. This process may also have been an important mechanism in the cratonization of the Slave Province.  相似文献   

17.
A suite of 80 macrodiamonds recovered from volcaniclastic breccia of Wawa (southern Ontario) was characterized on the basis of morphology, nitrogen content and aggregation, cathodoluminescence (CL), and mineral inclusions. The host calc-alkaline lamprophyric breccias were emplaced at 2.68–2.74 Ga, contemporaneously with voluminous bimodal volcanism of the Michipicoten greenstone belt. The studied suite of diamonds differs from the vast majority of diamond suites found worldwide. First, the suite is hosted by calc-alkaline lamprophyric volcanics rather than by kimberlite or lamproite. Second, the host volcanic rock is amongst the oldest known diamondiferous rocks on Earth, and has experienced regional metamorphism and deformation. Finally, most diamonds show yellow-orange-red CL and contain mineral inclusions not in equilibrium with each other or their host diamond. The majority of the diamonds in the Wawa suite are colorless, weakly resorbed, octahedral single crystals and aggregates. The diamonds contain 0–740 ppm N and show two modes of N aggregation at 0–30 and 60–95% B-centers suggesting mantle storage at 1,100–1,170°C. Cathodoluminescence and FTIR spectroscopy shows that emission peaks present in orange CL stones do not likely result from irradiation or single substitutional N, in contrast to other diamonds with red CL. The diamonds contain primary inclusions of olivine (Fo92 and Fo89), omphacite, orthopyroxene (En93), pentlandite, albite, and An-rich plagioclase. These peridotitic and eclogitic minerals are commonly found within single diamonds in a mixed paragenesis which also combines shallow and deep phases. This apparent disequilibrium can be explained by effective small-scale mixing of subducted oceanic crust and mantle rocks in fast “cold” plumes ascending from the top of the slabs in convergent margins. Alternatively, the diamonds could have formed in the pre-2.7–2.9 Ga cratonic mantle and experienced subsequent alteration of syngenetic inclusions related to host magmatism and ensuing metamorphism. Neither orogenic nor cratonic model of the diamond origin fully explains all of the observed characteristics of the diamonds and their host rocks. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

18.
Six diverse intrusive igneous types are exposed as discrete outcrops within an area of 900 km2 in the southern Snake Range, White Pine County, Nevada. The previously recognized variety among these igneous types is reflected in the wide range of 18O values (–1.1 to 13.4 permil) found in these rocks. This range of 18O values probably results from differences in source material and post-crystallization history of the different intrusive types.The Jurassic intrusive of the Snake Creek-Williams Canyon area represents the chemical equivalent of a large part of a differentiation sequence, with the entire range of composition (63–76 percent SiO2) exposed over a horizontal distance of about five km. The rather regular increase of 18O values from the most mafic to the most felsic parts of this pluton, together with 18O values determined for constituent minerals recovered from five of the samples, supports a fractional crystallization model. The high 18O values found (10.2–12.2 permil) indicate that the magma likely was derived from or assimilated sedimentary materials.Nine samples of the Cretaceous two-mica granite of the Pole Canyon-Can Young Canyon area have 18O values in the range 10.6–12.1 permil. These high 18O values, an initial87Sr/86Sr ratio of 0.7165, and the presence of muscovite along with an accessory mineral suite limited to monazite, apatite, zircon, and an allanite-like mineral, characterize this intrusive mass as an S-type granite. It probably formed through anatexis of late Precambrian pelitic rocks.The granitoid rock exposed in the Young Canyon-Kious Basin area is Tertiary (32 m.y.). Most of this intrusive has been cataclastically deformed as a result of late (18 m.y.) movement on the overlying Snake Range decollement. The undeformed portion of this intrusive has 18O values of 8.7–10.0 permil. However, the deformed portion of this intrusive has 18O values as low as –1.1 permil, apparently resulting from isotopic exchange between this rock and ground water at the time of cataclasis.Although the igneous types exposed in the southern Snake Range differ petrologically and range in age from Jurassic to Tertiary, most have relatively high 18O values compared with other granitoid rocks of the Basin-Range Province.  相似文献   

19.
The Archean Eye Dashwa Lakes pluton (2672±24 Ma) has domains of mineralogically fresh isotropic granite, domains that have undergone bulk hydrothermal alteration, and at least eleven sets of sequential fracture arrays, each with distinctive mineral assemblages. Fresh granite is characterized by whole rock 18O=8.1 to 8.6 and primary magmatic quartz-feldspar (+1.3), quartz-biotite (5.2 to 5.4) and quartz-magnetite (+9.8) fractionations. Magmatic fluids had a calculated isotopic composition of 18O=7.9±0.5, and D=–80±5. These isotropic volumes of the granite have not experienced significant incursion of external thermal waters. Pegmatites, quartz-molybdenite veins, and phlogopite-muscovite coated fractures are sporadically distributed in the granite, and were precipitated from high-temperature magmatic fluids where 18O=8.0 to 10.3 and D=–80±5.The most abundant variety of fracture filling assemblage is epidote-quartz-chlorite±muscovite: fractures are bounded by domains of mineralogically similar bulk hydrothermal alteration of the granite. These minerals formed at 160 to 280° C, in the presence of NaCl, and NaCl-MgCl2 brines (up to 25 wt% NaCl equivalent) of probable evolved marine water origin ( 18O=+0.4 to +3.8, D=–10 to –35) undergoing transient boiling. Upper plateau 40Ar/39Ar ages for the muscovite are 2650±15 Ma. Sequentially in the chronology of fracture-infiltration events, calcite-fluorite veins were deposited from boiling fluids at 340 to 390° C, isotopically characterized by 18O=4.7 and 13C=–5; and rare prehnite-chlorite lined fractures formed at 250 to 290° C. A generation of adularia-bearing veins precipitated at 140 to 230° C, from CaCl2-NaCl brines, where 18O=0 to –6.5 and D=–10 to –30. Incremental 40Ar/39Ar age spectra on the K-feldspar yield an upper plateau of 1100 Ma. Subsequently, hematite developed during reactivation of earlier fractures, at 140 to 210° C in the presence of fluids characterized by 18O=–0.4 to –5.4 and D=–15 to –25. Arrays of open fractures partially occupied by gypsum and goethite reflect a fluid infiltration event at temperatures <50° C. Many of the earlier generations of fracture minerals have transgranular fracture infillings which record the presence of low temperature (88–190° C), hypersaline CaCl2-NaCl brines. Narrow fractures lined with clays±calcite are sites for seepage of modern ground-waters. The isotopic signature of clay ( 18O=12 to 20, D=–80±5) plots near the line for modern kaolinites, confirming its formation in the presence of recent surface waters. Calcites coexisting with the clay minerals, and in fractured pegmatite show a common isotopic signature ( 18O=23±0.5, 13C=–13.6), indicating precipitation from modern groundwaters, where reactivated fractures have acted as conduits for infiltration of surface waters to depths of 200 m. Intermittent fracture-infiltration has occurred over 2.7 Ga. The early sequences of fracture-related fluid flow are interpreted in terms of devolatilization of the granite, followed by thermal contraction fracturing, incursion of marine water and convective cooling in the Archean. Hematite and adularia fracture fillings correspond to a stage when meteoric water infiltrated the volcanicplutonic terrain during Proterozoic and later times. Episodic fracture-fluid expulsion events may have been driven by seismic pumping, in response to magmatically and tectonically induced stresses within the Shield, with surface waters penetrating to depths of 15 km in the crust.  相似文献   

20.
Peridotites that sample Archean mantle roots are frequentlyincompatible trace element enriched despite their refractorymajor element compositions. To constrain the trace element budgetof the lithosphere beneath the Canadian craton, trace elementand rare earth element (REE) abundances were determined fora suite of garnet peridotites and garnet pyroxenites from theNikos kimberlite pipe on Somerset Island, Canadian Arctic, theirconstituent garnet and clinopyroxene, and the host kimberlite.These refractory mantle xenoliths are depleted in fusible majorelements, but enriched in incompatible trace elements, suchas large ion lithophile elements (LILE), Th, U and light rareearth elements (LREE). Mass balance calculations based on modalabundances of clinopyroxene and garnet and their respectiveREE contents yield discrepancies between calculated and analyzedREE contents for the Nikos bulk rocks that amount to LREE deficienciesof 70–99%, suggesting the presence of small amounts ofinterstitial kimberlite liquid (0·4–2 wt %) toaccount for the excess LREE abundances. These results indicatethat the peridotites had in fact depleted or flat LREE patternsbefore contamination by their host kimberlite. LREE and Sr enrichmentin clinopyroxene and low Zr and Sr abundances in garnet in low-temperatureperidotites (800–1100°C) compared with high-temperatureperidotites (1200–1400°C) suggest that the shallowlithosphere is geochemically distinct from the deep lithospherebeneath the northern margin of the Canadian craton. The Somersetmantle root appears to be characterized by a depth zonationthat may date from the time of its stabilization in the Archean. KEY WORDS: Canada; mantle; metasomatism; peridotite; trace elements  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号