首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We discuss Ulmschneider's claim to have established that the short-period acoustic wave energy input is the only one able to balance the chromospheric radiation loss. We first review the range of uncertainty in empirical and radiative equilibrium models, on which estimates of the excess radiation coming from mechanical heating rest. We then show that Ulmschneider's estimate of this excess radiation from such models uses an over-simplified computational method. The resultant of uncertainty in models and in computational methods suggests that Ulmschneider's results on excess radiation from heating in the low chromosphere is subject to overestimation by an order of magnitude.  相似文献   

2.
The stability of radial solar acoustic oscillations is studied using a time-dependent formulation of mixing-length theory. Though the radiation field is treated somewhat simplistically with the Eddington approximation, and we appreciate that any coupling of the pulsation to the radiation field is important, for the lower frequency radial modes that have been computed this should not produce too serious an error. Instead, we have concentrated upon treating the coupling with convection as accurately as is currently possible with generalized mixing-length theory in order to learn something about its pertinence. Our principal conclusion is that, according to this theory, solar radial acoustic oscillations are expected to be stable and generated by turbulence. Moreover, the theory predicts changes in mode frequency that may, in part, explain the discrepancy between solar observations and the adiabatic pulsation frequencies of theoretical models. We also compute the amplitudes of the modes using a theory of stochastic excitation. These are in good agreement with observed power spectra.  相似文献   

3.
The data deduced from the UV-spectroscope on theCopernicus satellite strongly suggest that the most important ionization source in interstellar space near the solar system is a UV radiation field originating from B-stars. Adopting this hypothesis, we have used the ionization state of several elements in the interstellar medium observed byCopernicus to determine the required radiation field. From this, the degree of ionization of elements that could not be observed byCopernicus is estimated.It is shown that this interpretation of thecopernicus data can be made consistent with neutral interstellar hydrogen densities inferred from extraterrestrial L observations and with electron densities deduced from pulsar dispersion measures. Furthermore, it is shown that the ratio of neutral interstellar helium to neutral interstellar hydrogen is likely to be 2 to 3 times as large as the cosmic abundance ratio of these elements. The possibility that this ratio is about 10 times as large, meaning equal interstellar neutral hydrogen and helium densities near the solar system, cannot be ruled out. It would, however, require an interstellar radiation temperature near 9000 K. A comparison of the intensity of the interplanetary back scattered He 584 Å and the H 1216 Å radiation would lead to a direct determination of this ratio provided the solar radiation at these lines is known.  相似文献   

4.
Reviving a calculation made by Eddington in the 1920s, and using the most recent and comprehensive databases available on stars and galaxies, including more than 2,500,000 stars and around 20,000 galaxies we have computed their total radiation received at the Earth just outside its atmosphere. This radiation density, if thermalized, would be equivalent to a temperature of 4.212 K. The comparability of this temperature to that of the cosmic microwave background (2.723 K) may either be a pure coincidence or may hold a key to some as yet unknown, aspect of the universe.  相似文献   

5.
《New Astronomy Reviews》2002,46(8-10):553-558
Radioactive nuclei, especially those created in SN explosion, have long been suggested to be important contributors of galactic positrons. In this paper we describe the findings of three independent OSSE/SMM/TGRS studies of positron annihilation radiation, demonstrating that the three studies are largely in agreement as to the distribution of galactic annihilation radiation. We then assess the predicted yields and distributions of SN-synthesized radionuclei, determining that they are marginally compatible with the findings of the annihilation radiation studies.  相似文献   

6.
7.
Dulk  G. A.  Winglee  R. M. 《Solar physics》1987,113(1-2):187-193

In recent years radiation has been observed from planets, Sun and stars that is best explained by the cyclotron maser instability; in fact, all celestial bodies that might feasibly emit and be detected by their cyclotron maser radiation have been detected. Here we review those observations, the developments in the theory, the recent work on the effiency of energy transfer by cyclotron maser radiation, and some recent and future observations that might demonstrate whether the mechanism is energetically important in solar and stellar flares.

  相似文献   

8.
The ultrahigh-energy (>20 TeV ) gamma rays emitted by active galactic nuclei can be absorbed in intergalactic space through the production of electron-positron pairs during their interaction with extragalactic background photon fields. The electrons and positrons produced by this interaction form an electromagnetic halo. We have studied the halo formation and calculated the halo radiation spectrum. The magnetic field in the halo formation region is assumed to be strong enough for the electron velocities to be isotropized. For such fields, the halo formation process can be described by the method of generations. We calculated the synchrotron and Compton backscattering radiation spectra for the total halo luminosity. We obtained the spatial distribution of the radiation for a point gamma-ray source.  相似文献   

9.
O. Bschorr 《Solar physics》1988,116(2):401-404
In a gas heat transport is accompanied by the transport of momentum. The momentum change that accompanies a spatial change in heat flow - this is the radiometer force - results in a pressure gradient. This effect is analogous to the radiation pressure of wavemechanical energy transport. The radiometer pressure increases with temperature and temperature gradient but is independent of the gas density. In the transition zone and in the solar corona the radiometer forces have a definite effect on the pressure balance within the solar atmosphere. In this note the relationship between the radiometer pressure and the acoustic radiation pressure in the solar atmosphere is derived.  相似文献   

10.
The temperature in the optically thick interior of protoplanetary discs is essential for the interpretation of millimetre observations of the discs, for the vertical structure of the discs, for models of the disc evolution and the planet formation, and for the chemistry in the discs. Since large icy grains have a large albedo even in the infrared, the effect of scattering of the diffuse radiation in the discs on the interior temperature should be examined. We have performed a series of numerical radiation transfer simulations, including isotropic scattering by grains with various typical sizes for the diffuse radiation as well as for the incident stellar radiation. We also have developed an analytic model including isotropic scattering to understand the physics concealed in the numerical results. With the analytic model, we have shown that the standard two-layer approach is valid only for grey opacity (i.e. grain size ≳10 μm) even without scattering. A three-layer interpretation is required for grain size ≲10 μm. When the grain size is 0.1–10 μm, the numerical simulations show that the isotropic scattering reduces the temperature of the disc interior. This reduction is nicely explained by the analytic three-layer model as a result of the energy loss by scatterings of the incident stellar radiation and of the warm diffuse radiation in the disc atmosphere. For grain size ≳10 μm (i.e. grey scattering), the numerical simulations show that the isotropic scattering does not affect the interior temperature. This is nicely explained by the analytic two-layer model; the energy loss by scattering in the disc atmosphere is exactly offset by the 'green-house effect' due to the scattering of the cold diffuse radiation in the interior.  相似文献   

11.
Increases in the X-ray radiation that is emitted during a solar X-ray flare induce significant changes in the ionospheric D region. Because of the numerous complex processes in the ionosphere and the characteristics of the radiation and plasma, the causal-consequential relationship between the X-ray radiation and ionospheric parameters is not easily determined. In addition, modeling the ionospheric D-region plasma parameters is very difficult because of the lack of data for numerous time- and space-dependent physical quantities. In this article we first give a qualitative analysis of the relationship between the electron density and the recorded solar X-ray intensity. After this, we analyze the differences in the relationships between the D-region response and various X-ray radiation properties. The quantitative study is performed for data observed on 5 May 2010 in the time period between 11:40 UT?–?12:40 UT when the GOES 14 satellite detected a considerable X-ray intensity increase. Modeling the electron density is based on characteristics of the 23.4 kHz signal emitted in Germany and recorded by the receiver in Serbia.  相似文献   

12.
The properties of the hot zone in the accretion flow near the surface of a magnetized white dwarf have been studied. For this purpose, the aperiodic optical variability of LS Peg, one of the brightest intermediate polars in the northern sky, has been investigated. The main radiation of the hot zone, which is then reemitted in the optical band, results from the radiation of an optically thin plasma heated during the passage of the accretion flow of a standing shock. Recently, Semena and Revnivtsev (2012) have shown that the aperiodic variability (flickering) of accreting magnetized white dwarfs should have a characteristic feature in the range of Fourier frequencies corresponding to the plasma cooling time in this hot region. The photometric brightness measurements for LS Peg made with the RTT-150 telescope using a high-speed ANDOR iXon CCD array have allowed the break frequency in the power spectrum of the source’s variability to be constrained. Constraints on the geometry of the accretion column for the white dwarf in LS Peg and on the plasma parameters in it have been obtained.  相似文献   

13.
It is generally believed that the synchrotron radiation of electrons from the internal shock is the main radiation mechanism of the prompt GRB (gamma-ray burst) emission. However, what this model predicts can not explain observations well. In this paper, we confirm that electrons are quickly cooled due to radiation losses and also point out that the synchrotron radiation spectrum presented in previous papers is a relatively rough estimation. We get the precise synchrotron radiation spectrum of fast-cooling electrons by carrying out a numerical calculation, and thereby reasonably explain the observed distribution of low-energy spectral index (α) of long GRBs based on a unified model. In addition, we fit the correlation between α and the peak energy of the νFν spectrum (Ep).  相似文献   

14.
We have compiled infrared photometric data from the literature of practically all T Tauri stars found up to date including 444 classical T Tauri stars (CTTSs), 1698 weak-line T Tauri stars (WTTSs) and 1258 not classified T Tauri stars (3400 in total) in addition to 196 post-T Tauri stars (PTTSs). From this data bank we extract the infrared characteristics of the different groups and discuss different origins of the infrared radiation. The observational data are taken from the AKARI, IRAS, WISE and 2MASS missions. We show that in the wavelength range 1–140 μm, all T Tauri stars have infrared excesses. CTTSs have more infrared excess than WTTSs, while PTTSs have little or no infrared excess. We found that in the 1–3 μm wavelength range the infrared emission of T Tauri stars is mainly due to thermal radiation from the photosphere and hot dust grains from circumstellar envelopes. In the 3–140 μm wavelength range the infrared emission of T Tauri stars is mainly due to radiation from dusty/gaseous disks surrounding the stars. In addition, we also make a comparison between T Tauri stars and Herbig AeBe stars (HAeBe). There are some differences between these two kinds of objects in that for HAeBe stars the infrared radiation as a rule originates in dusty/gaseous disks in the 1–3 μm wavelength range, while in the range 3–12 μm it is possibly due to PAH emission for about half of HAeBe stars. In other wavelength ranges both kinds of stars have similar infrared characteristics indicating emission from dusty/gaseous disks.  相似文献   

15.
An intense interpulse radio frequency radiation of PSR 1919+21 has been detected in the range of 16.7, 20 and 25 MHz. An integrated waveform of this radiation was investigated with time resolutions ofT/16 andT/64, and several characteristic regions of the intensity maxima and minima have been revealed. As has been shown, the maximum number of the best pronounced interpulses is about four, their location being symmetrical relative to the centre of the main pulse. The fine frequency structure of the integrated radiation was also investigated. It has been found that the shape of the signal can differ considerably with a frequency diversity of 10 to 100 kHz and only slightly with a separation of 5 to 10 MHz, the difference diminishing with an increase of the observation bandwidth and of the averaging time. Pulse broadening was studied at 16.7 and 25 MHz and has been found to agree with the interstellar scattering mechanism. The mean intensity of the main pulse and the interpulses has been evaluated and an essential difference of their spectral indices established.  相似文献   

16.
In this paper we have found secular solutions at the triangular equilibrium point in the generalized photogravitational restricted three body problem. The problem is generalised in the sense that smaller primary is an oblate spheroid and more massive primary as source of radiation. The triangular point has long or short-period retrograde elliptical orbits. The critical mass parameter decreases with the increase in oblateness and radiation pressure. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
A method of computing the diffuse reflection and transmission radiation by an inhomogeneous, plane-parallel planetary atmosphere with internal emission source is discussed by use of the adding method. If the atmosphere is simulated by a number of homogeneous sub-layers, the radiation diffusely reflected or transmitted by the atmosphere can be expressed in terms of the reflection and transmission matrices of the radiation of sub-layers. The diffusely transmitted radiation due to the internal emission source can be also easily computed in the same manner. These equations for the emergent radiation are in a quite general form and are applicable to radiative transfer in the atmosphere in the region from ultraviolet to infrared radiation. With this method, the tiresome treatment due to the polarity effect of radiation is overcome.  相似文献   

18.
The objective of this paper is to draw attention to the close similarity between the observable universe and the photon mean free path sphere. It is hoped that by analyzing in depth this apparent connection one will be able to explain why our present epoch appears to have special properties. It is shown that some theoretical arguments point to an equality between the number of particles in the observable universe and the number of particles in the largest self-gravitating photon mean free path sphere (MxPhMFPS.) This equality, supported by observational data, leads to a series of equations that relate in simple manner characteristics of the observable universe with characteristics of the MxPhMFPS, and allows a more precise approximation of the values of the main cosmological parameters. It is also shown that by replacing the protons in the MxPhMFPS with positrons, the radiation resulted by their interaction with the existing electrons has an energy equal to the energy of the electromagnetic radiation in the observable universe.  相似文献   

19.
Spacecraft and their subsystem components are subject to a very hazardous radiation environment in both near-Earth and deep space orbits. Knowledge of the effects of this high energy particle and electromagnetic radiation is essential in designing sensors, electronic circuits and living habitats for humans in near Earth orbit, en route to and on the Moon and Mars. This paper discusses the use of Monte Carlo simulations to optimize system design, radiation source modeling, and determination of background in sensors due to galactic cosmic rays and radiation from the Moon. The results demonstrate the use of Monte Carlo particle transport toolkits to predict secondary production, determine dose rates in space and design required shielding geometry.  相似文献   

20.
An exact similarity solution for a spherical magnetogasdynamic shock is obtained in the case when radiation energy, radiation pressure and radiative heat flux are important. The total energy of the shock wave increase with time. We have shown that due to the magnetic field the flow variables are considerably changed. Also, due to increases in radiation pressure number the radiation flux is increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号