首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
 The solubility of hydroxyl in coesite was investigated in multianvil experiments performed at 1200 °C over the nominal pressure range 5–10 GPa, at an f O2 close to the Ni-NiO buffer. The starting material for each experiment was a cylinder of pure silica glass plus talc, which dehydrates at high P and T to provide a source of water and hydrogen (plus enstatite and excess SiO2). Fourier-transform infrared (FTIR) spectra of the recovered coesite crystals show five sharp bands at 3606, 3573, 3523, 3459, and 3299 cm−1, indicative of structurally bonded hydrogen (hydroxyl). The concentration of hydrogen increases with pressure from 285 H/106 Si (at 5 GPa) to 1415 H/106 Si (at 10 GPa). Assuming a model of incorporation by (4H)Si defects, the data are fit well by the equation C OH=Af 2 H2<\INF>Oexp(−PΔV/RT), with A=4.38 H/106 Si/GPa, and ΔV=20.6 × 10−6 m3 mol−1. An alternative model entailing association of hydrogen with cation substitution can also be used to fit the data. These results show that the solubility of hydroxyl in coesite is approximately an order of magnitude lower than in olivines and pyroxenes, but comparable to that in pyropic garnet. However, FTIR investigations on a variety of ultrahigh pressure metamorphic rocks have failed in all cases to detect the presence of water or hydrogen in coesite, indicating either that it grew in dry environments or lost its hydrogen during partial transformation to quartz. On the other hand, micro-FTIR investigations of quartz crystals replacing coesite show that they contain varying amounts of H2O. These results support the hypothesis that preservation of coesite is not necessarily linked to fast exhumation rates but is crucially dependent on limited fluid infiltration during exhumation. Received: 23 August 1999 / Accepted: 10 April 2000  相似文献   

2.
Low-temperature single-crystal Raman spectrum of pyrope   总被引:1,自引:1,他引:0  
 The single-crystal polarized Raman spectra of synthetic pyrope, Mg3Al2Si3O12, were measured at room temperature and 5 K, as were the room-temperature unpolarized spectra of two natural pyrope-rich crystals. No major differences in the spectra between room temperature and 5 K are observed or are present between the synthetic and the natural crystals. The spectra are consistent with the proposal that the Mg cation is dynamically disordered and not statically distributed over subsites in the large triangular-dodecahedral E-site in pyrope. A low-energy band at about 135 cm−1 softens and shows a large decrease in its line width with decreasing temperature. The presence of a weak, broad band at about 280 cm−1 may be due to anharmonic effects, as could the one at 135 cm−1. The latter is assigned to the rattling motion of Mg in pyrope in the plane of the longer Mg-O(4) bonds (Kolesov and Geiger 1998). The successful modeling of the anisotropic motion of the Mg cation in pyrope, which has an anharmonic character, provides a valuable test of the validity of empirical or semi-empirical lattice-dynamic calculations for silicates. Received: 10 May 1999 / Accepted: 10 April 2000  相似文献   

3.
Summary The OH content of four rutile and two cassiterite single-crystals was studied by nuclear reaction analysis (NRA) and by polarised FTIR microspectroscopy. The OH absorption bands of both minerals are centered around 3300 cm−1 with different absorption features. The analytical H2O content determined by NRA ranges from 70 to 820 wt.ppm. The integrated molar absorption coefficients deduced from the total integrated OH absorbances are equal to 38000 lċmol−1 H2Oċcm−2 for rutile and 65000 lċmol−1 H2Oċcm−2 for cassiterite. For both minerals the absorption coefficients are significantly smaller than those expected from the linear calibration curves given by Paterson (1982) and by Libowitzky and Rossman (1997).
Zusammenfassung OH-Absorptionskoeffizienten von Rutil und Cassiterit ermittelt durch Kernreaktions-Analyse und FTIR Spektroskopie Der OH-Gehalt von vier Rutil- und zwei Cassiterit-Einkristallen wurde mittels Kernreaktions-Analyse (NRA) und polarisierter FTIR Mikrospektroskopie untersucht. Die OH Absorptionsbanden beider Minerale sind um 3.300 cm−1 zentriert, mit unterschiedlichen Absorptionserscheinungen. Der analytische H2O-Gehalt, der mit NRA bestimmt wurde, schwankt von 70 bis 820 Gew.ppm. Die integrierten molaren Absorptionskoeffizienten, die auf den gesamten integrierten OH-Absorptionen basieren, betragen etwa 38.000 lċmol−1 H2Oċcm−2 für Rutil and 65.000 lċmol−1 H2Oċcm−2 für Cassiterit. Für beide Minerale sind die Absorptionskoeffizienten signifikant kleiner als die, die auf Grund der linearen Kalibrationskurven von Paterson (1982) und Libowitzky und Rossmann (1997) zu erwarten sind.


Received January 4, 2000; revised version accepted April 10, 2000  相似文献   

4.
Mineral inclusions in pyrope crystals from Garnet Ridge in the Navajo Volcanic Field on the Colorado Plateau are investigated in this study with emphasis on the oxide minerals. Each pyrope crystal is roughly uniform in composition except for diffusion halos surrounding some inclusions. The pyrope crystals have near constant Ca:Fe:Mg ratios, 0.3 to 5.7 wt% Cr2O3, and 20 to 220 ppm H2O. Thermobarometric calculations show that pyrope crystals with different Cr contents formed at different depths ranging from 50 km (where T ≈ 600 °C and P = 15 kbar) to 95 km (where T ≈ 800 °C and P = 30 kbar) along the local geotherm. In addition to previously reported inclusions of rutile, spinel and ilmenite, we discovered crichtonite series minerals (AM21O38, where A = Sr, Ca, Ba and LREE, and M mainly includes Ti, Cr, Fe and Zr), srilankite (ZrTi2O6), and a new oxide mineral, carmichaelite (MO2−x(OH)x, where M = Ti, Cr, Fe, Al and Mg). Relatively large rutile inclusions contain a significant Nb (up to 2.7 wt% Nb2O5), Cr (up to ∼6 wt% Cr2O3), and OH (up to ∼0.9 wt% H2O). The Cr and OH contents of rutile inclusions are positively related to those of pyrope hosts, respectively. Needle- and blade-like oxide inclusions are commonly preferentially oriented. Composite inclusions consisting mainly of carbonate, amphibole, phlogopite, chlorapatite, spinel and rutile are interpreted to have crystallized from trapped fluid/melt. These minerals in composite inclusions commonly occur at the boundaries between garnet host and large silicate inclusions of peridotitic origin, such as olivine, enstatite and diopside. The Ti-rich oxide minerals may constitute a potential repository for high field strength elements (HFSE), large ion lithophile elements and light rare earth elements (LREE) in the upper mantle. The composite and exotic oxide inclusions strongly suggest an episode of metasomatism in the depleted upper mantle beneath the Colorado Plateau, contemporaneous with the formation of pyrope crystals. Our observations show that mantle metasomatism may deplete HFSE in metasomatic fluids/melts. Such fluids/melts may subsequently contribute substantial trace elements to island arc basalts, providing a possible mechanism for HFSE depletion in these rocks. Received: 20 December 1997 / Accepted: 15 October 1998  相似文献   

5.
 Infrared absorption spectra of brucite Mg (OH)2 were measured under high pressure and high temperature from 0.1 MPa 25 °C to 16 GPa 360 °C using infrared synchrotron radiation at BL43IR of Spring-8 and a high-temperature diamond-anvil cell. Brucite originally has an absorption peak at 3700 cm−1, which is due to the OH dipole at ambient pressure. Over 3 GPa, brucite shows a pressure-induced absorption peak at 3650 cm−1. The pressure-induced peak can be assigned to a new OH dipole under pressure. The new peak indicates that brucite has a new proton site under pressure and undergoes a high-pressure phase transition. From observations of the pressure-induced peak under various PT condition, a stable region of the high-pressure phase was determined. The original peak shifts to lower wavenumber at −0.25 cm−1 GPa−1, while the pressure-induced peak shifts at −5.1 cm−1 GPa−1. These negative dependences of original and pressure-induced peak shifts against pressure result from enhanced hydrogen bond by shortened O–H···O distance, and the two dependences must result from the differences of hydrogen bond types of the original and pressure-induced peaks, most likely from trifurcated and bent types, respectively. Under high pressure and high temperature, the pressure-induced peak disappears, but a broad absorption band between 3300 and 3500 cm−1 was observed. The broad absorption band may suggest free proton, and the possibility of proton conduction in brucite under high pressure and temperature. Received: 16 July 2001 / Accepted: 25 December 2001  相似文献   

6.
Diffusion couples made from homogeneous gem quality natural pyrope and almandine garnets were annealed within graphite capsules under anhydrous conditions at 22–40 kbar, 1057–1400 °C in a piston-cylinder apparatus. The concentration profiles that developed in each couple were modeled to retrieve the self diffusion coefficients [D(I)] of the divalent cations Fe, Mg, Mn and Ca. Because of their usually low concentrations and lack of sufficient compositional change across the interface of the diffusion couples, only a few reliable data can be obtained for D(Ca) and D(Mn) from these experiments. However, nine sets of D(Fe) and D(Mg) data were retrieved in the above P-T range, and cast in the form of Arrhenian relation, D=D 0exp{−[Q(1 bar)+PΔV +]/RT}. The values of the activation energy (Q) and activation volume (ΔV +) depend on whether f O2 is constrained by graphite in the system C-O or held constant. For the first case, we have for Fe:Q(1 bar)=65,532±10,111 cal/mol, D 0=3.50 (±2.30)×10−5 cm2/s, ΔV +=5.6(±2.9) cm3/mol, and for Mg:Q(1 bar)=60,760±8,257 cal/mol, D 0=4.66 (±2.48)×10−5 cm2/s, ΔV +=5.3(±3.0) cm3/mol. Here the ΔV + values have been taken from Chakraborty and Ganguly (1992). For the condition of constant f O2, the Q values are ∼9 kcal lower and ΔV + values are ∼4.9 cm3/mol larger than the above values. Lower temperature extrapolation of the Arrhenian relation for D(Mg) is in good agreement with the Mg tracer diffusion data (D * Mg) of Chakraborty and Rubie (1996) and Cygan and Lasaga (1985) at 1 bar, 750–900 °C, when all data are normalized to the same pressure and to f O2 defined by graphite in the system C-O. The D * Mg data of Schwandt et al. (1995), on the other hand, are lower by more than an order of magnitude than the low temperature extrapolation of the present data, when all data are normalized to the same pressure and to f O2 defined by the graphite buffer. Comparison of the D(Fe), D(Mg) and D(Mn) data in the pyrope-almandine diffusion couple with those in the spessartine-almandine diffusion couple of Chakraborty and Ganguly (1992) shows that the self diffusion of Fe and Mn are significantly enhanced with the increase in Mn/Mg ratio; the enhancement effect on D(Mg) is, however, relatively small. Proper application of the self diffusion data to calculate interdiffusion coefficient or D matrix elements for the purpose of modeling of diffusion processes in natural garnets must take into account these compositional effects on D(I) along with the effects of thermodynamic nonideality, f O2, and pressure. Received: 8 May 1997 / Accepted: 2 October 1997  相似文献   

7.
 Calorimetric and PVT data for the high-pressure phase Mg5Al5Si6O21(OH)7 (Mg-sursassite) have been obtained. The enthalpy of drop solution of three different samples was measured by high-temperature oxide melt calorimetry in two laboratories (UC Davis, California, and Ruhr University Bochum, Germany) using lead borate (2PbO·B2O3) at T=700 C as solvent. The resulting values were used to calculate the enthalpy of formation from different thermodynamic datasets; they range from −221.1 to −259.4 kJ mol−1 (formation from the oxides) respectively −13892.2 to −13927.9 kJ mol−1 (formation from the elements). The heat capacity of Mg5Al5Si6O21(OH)7 has been measured from T=50 C to T=500 C by differential scanning calorimetry in step-scanning mode. A Berman and Brown (1985)-type four-term equation represents the heat capacity over the entire temperature range to within the experimental uncertainty: C P (Mg-sursassite) =(1571.104 −10560.89×T −0.5−26217890.0 ×T −2+1798861000.0×T −3) J K−1 mol−1 (T in K). The P V T behaviour of Mg-sursassite has been determined under high pressures and high temperatures up to 8 GPa and 800 C using a MAX 80 cubic anvil high-pressure apparatus. The samples were mixed with Vaseline to ensure hydrostatic pressure-transmitting conditions, NaCl served as an internal standard for pressure calibration. By fitting a Birch-Murnaghan EOS to the data, the bulk modulus was determined as 116.0±1.3 GPa, (K =4), V T,0 =446.49 3 exp[∫(0.33±0.05) × 10−4 + (0.65±0.85)×10−8 T dT], (K T/T) P  = −0.011± 0.004 GPa K−1. The thermodynamic data obtained for Mg-sursassite are consistent with phase equilibrium data reported recently (Fockenberg 1998); the best agreement was obtained with Δf H 0 298 (Mg-sursassite) = −13901.33 kJ mol−1, and S 0 298 (Mg-sursassite) = 614.61 J K−1 mol−1. Received: 21 September 2000 / Accepted: 26 February 2001  相似文献   

8.
Near-infrared (NIR) absorption bands related to total water (4000 and 7050 cm−1), OH groups (4500 cm−1) and molecular H2O (5200 cm−1) were studied in two polymerised glasses, a synthetic albitic composition and a natural obsidian. The water contents of the glasses were determined using Karl Fischer titration. Molar absorption coefficients were calculated for each of the bands using albitic glasses containing between 0.54 and 9.16 wt.% H2O and rhyolitic glasses containing between 0.97 and 9.20 wt.% H2O. Different combinations of baseline type and intensity measure (peak height/area) for the combination bands at 4500 and 5200 cm−1 were used to investigate the effect of evaluation procedure on calculated hydrous species concentrations. Total water contents calculated using each of the baseline/molar absorption coefficient combinations agree to within 5.8% relative for rhyolitic and 6.5% relative for albitic glasses (maximum absolute differences of 0.08 and 0.15 wt.% H2O, respectively). In glasses with water contents >1 wt.%, calculated hydrous species concentrations vary by up to 17% relative for OH and 11% relative for H2O (maximum absolute differences of 0.33 and 0.43 wt.% H2O, respectively). This variation in calculated species concentrations is typically greater in rhyolitic glasses than albitic. In situ, micro-FTIR analysis at 300 and 100 K was used to investigate the effect of varying temperature on the NIR spectra of the glasses. The linear and integral molar absorption coefficients for each of the bands were recalculated from the 100 K spectra, and were found to vary systematically from the 300 K values. Linear molar absorption coefficients for the 4000 and 7050 cm−1 bands decrease by 16–20% and integral molar absorption coefficients by up to 30%. Depending on glass composition and baseline type, the integral molar absorption coefficients for the absorption bands related to OH groups and molecular H2O change by up to −5.8 and +7.4%, respectively, while linear molar absorption coefficients show less variation, with a maximum change of ∼4%. Using the new molar absorption coefficients for the combination bands to calculate species concentrations at 100 K, the maximum change in species concentration is 0.08 wt.% H2O, compared with 0.39 wt.% which would be calculated if constant values were assumed for the combination band molar absorption coefficients. Almost all the changes in the spectra can therefore be interpreted in terms of changing molar absorption coefficient, rather than interconversion between hydrous species. Received: 17 December 1998 / Revised, accepted 8 July 1999  相似文献   

9.
 One well-defined OH Raman band at 3651 ± 1 cm−1 and one weak feature near 3700 ± 5 cm−1 are recognized for the hydrous γ-phase of Mg2SiO4. Like the hydrous β-phase, the H2O content in the γ-phase shifts most of the corresponding silicate modes towards lower frequencies. Variations in Raman spectra of the hydrous γ-phase were investigated up to about 200 kbar at room temperature and in the range 81–873 K at atmospheric pressure. Unlike the anhydrous γ-phase, which remains intact up to at least 873 K, the hydrous γ-phase sometimes converts to a defective forsterite structure above 800 K. Although the hydrous γ-phase remains intact up to at least 800 K, Raman signals of the OH bands disappear completely above 423 K. The Raman frequency of the well-defined OH band decreases linearly with increasing temperature between 81 and 423 K. In the region of the silicate vibrations, the Raman frequencies of the two most intense bands increase nonlinearly with increasing pressure, and decrease with increasing temperature. The frequencies for all other weak bands, however, decreased linearly with increasing temperature. The latter most likely reflects the larger scatter of the data for the weak bands. Received: 27 April 2001 / Accepted: 12 September 2001  相似文献   

10.
 The incorporation of hydrogen (deuterium) into the coesite structure was investigated at pressures from 3.1 to 7.5 GPa and temperatures of 700, 800, and 1100 °C. Hydrogen could only be incorporated into the coesite structure at pressures greater 5.0 GPa and 1100 °C . No correlation between the concentration of trace elements such as Al and B and the hydrogen content was observed based on ion probe analysis (1335 ± 16 H ppm and 17 ± 1 Al ppm at 7.5 GPa, 1100 °C). The FTIR spectra show three relatively intense bands at 3575, 3516, and 3459 cm−11 to ν3, respectively) and two very weak bands at 3296 and 3210 cm−14 and ν5, respectively). The band at 3516 cm−1 is strongly asymmetric and can be resolved into two bands, 3528 (ν2a) and 3508 (ν2b) cm−1, with nearly identical areas. Polarized infrared absorption spectra of coesite single-crystal slabs, cut parallel to (0 1 0) and (1 0 0), were collected to locate the OH dipoles in the structure and to calibrate the IR spectroscopy for quantitative analysis of OH in coesite (ɛ i ,tot=190 000 ± 30 000 l mol−1 H2O cm−2). The polarized spectra revealed a strong pleochroism of the OH bands. High-pressure FTIR spectra at pressures up to 8 GPa were performed in a diamond-anvil cell to gain further insight into incorporation mechanism of OH in coesite. The peak positions of the ν1, ν2, and ν3 bands decrease linearly with pressure. The mode Grüneisen parameters for ν1, ν2, and ν3 are −0.074, −0.144 and −0.398, respectively. There is a linear increase of the pressure derivatives with band position which follows the trend proposed by Hofmeister et al. (1999). The full widths at half maximum (FWHM) of the ν1, ν2, and ν3 bands increase from 35, 21, and 28 cm−1 in the spectra at ambient conditions to 71, 68, and 105 in the 8 GPa spectra, respectively. On the basis of these results, a model for the incorporation of hydrogen in coesite was developed: the OH defects are introduced into the structure by the substitution Si4+(Si2)+4O2−= [4](Si2) + 4OH, which gives rise to four vibrations, ν1, ν2a, ν2b, and ν3. Because the OH(D)-bearing samples do contain traces of Al and B, the bands ν4 and ν5 may be coupled to Al and/or B substitution. Received: 19 December 2000 / Accepted: 23 April 2001  相似文献   

11.
A suite of more than 200 garnet single crystals, extracted from 150 xenoliths, covering the whole range of types of garnet parageneses in mantle xenoliths so far known from kimberlites of the Siberian platform and collected from nearly all the kimberlite pipes known in that tectonic unit, as well as some garnets found as inclusions in diamonds and olivine megacrysts from such kimberlites, were studied by means of electron microprobe analysis and single-crystal IR absorption spectroscopy in the v OH vibrational range in search of the occurrence, energy and intensity of the v OH bands of hydroxyl defects in such garnets and its potential use in an elucidation of the nature of the fluid phase in the mantle beneath the Siberian platform. The v OH single-crystal spectra show either one or a combination of two or more of the following major v OH bands, I 3645–3662 cm−1, II 3561–3583 cm−1, III 3515–3527 cm−1, and minor bands, Ia 3623–3631 cm−1, IIa 3593–3607 cm−1. The type of combination of such bands in the spectrum of a specific garnet depends on the type of the rock series of the host xenolith, Mg, Mg-Ca, Ca, Mg-Fe, or alkremite, on the xenolith type as well as on the chemical composition of the respective garnet. Nearly all garnets contain band systems I and II. Band system III occurs in Ti-rich garnets, with wt% TiO2 > ca. 0.4, from xenoliths of the Mg-Ca and Mg-Fe series, only. The v OH spectra do not correspond to those of OH defects in synthetic pyropes or natural ultra-high pressure garnets from diamondiferous metamorphics. There were no indications of v OH from inclusions of other minerals within the selected 60 × 60 μm measuring areas in the garnets. The v OH spectra of pyrope-knorringite- and pyrope-knorringite-uvarovite-rich garnets included in diamonds do not show band systems I to III. Instead, they exhibit one weak, broad band (Δv OH 200–460 cm−1) near 3570 cm−1, a result that was also obtained on pyrope-knorringite-rich garnets extracted from two olivine megacrysts. The quantitative evaluation, on the basis of relevant existing calibrational data (Bell et al. 1995), of the sum of integral intensities of all v OH bonds of the garnets studied yielded a wide range of “water” concentrations within the set of the different garnets, between values below the detection limit of our single-crystal IR method, near 2 × 10−4 wt%, up to 163 × 10−4 wt%. The “water” contents vary in a complex manner in garnets from different xenolith types, obviously depending on a large number of constraints, inherent in the crystal chemistry as well as the formation conditions of the garnets during the crystallization of their mantle host rocks. Secondary alteration effects during uplift of the kimberlite, play, if any, only a minor role. Despite the very complex pattern of the “water” contents of the garnets, preventing an evaluation of a straightforward correlation between “water” contents of the garnets and the composition of the mantle's fluid phase during garnet formation, at least two general conclusions could be drawn: (1) the wide variation of “water” contents in garnets is not indicative of regional or local differences in the composition of the mantle's fluid phase; (2) garnets formed in the high-pressure/high-temperature diamond-pyrope facies invariably contain significantly lower amounts of “water” than garnets formed under the conditions of the graphite-pyrope facies. This latter result (2) may point to significantly lower f H2O and f O2 in the former as compared to the latter facies. Received: 25 November 1997 / Accepted: 9 March 1998  相似文献   

12.
 Single crystals of synthetic vanadium-, chromium- and cobalt-bearing garnets, Pyr:V0.06, Pyr:V0.13, Pyr:Cr0.04, Pyr:Co0.10, and Gt:Co3.00, and a natural vanadium-bearing grossular, Gross:V0.07 (Cr3+ < 0.005), were studied by electronic absorption spectroscopy in the wavenumber range 35 000–5000 cm−1 under ambient conditions and at temperatures up to 600 K and pressures up to 8 GPa. The T and P behavior of the absorption band energies and intensities shows the following for the different transition metal-bearing garnets: Cr: The thermal expansion of chromium octahedra are similar to and the Racah parameter the same in synthetic Cr-doped pyrope, αpoly≅ 1.3 × 10−5 K−1, and in natural pyrope, αpoly≅ 1.5 × 10−5 K−1, and B=655 cm−1, respectively. Ca2+[8]-free garnets have a slightly stronger crystal field at the Y[6] site and, therefore, the energies of the two spin-allowed Cr3+ dd bands are ca. 300 cm−1 higher in Mg-pyrope than in natural Ca-bearing pyrope. Co: Increasing temperature causes only a small thermal expansion of the cobalt dodecahedra. Increasing pressure gives rise to appreciable compression, which is similar to that of the Fe2+-dodecahedra in almandine, where k=125 ± 25 GPa. T and P dependence of the Co band intensities may be caused by strong spin-orbit coupling. V: Occurs in at least two valence states and structural sites: (1) V3+ in octahedral sites gives rise to two spin-allowed bands, at 17 220 cm−1 and 24 600 cm−1, whose temperature dependence is typical for spin-allowed dd transitions in centrosymmetric sites. (2) V4+, which causes a set of dd absorption bands similar to those observed in the spectrum of V4+-doped Zr[SiO4]. The P behavior of the V absorption bands indicates an interaction between V3+ and V4+ species. Received: 27 June 2001 / Accepted: 19 December 2001  相似文献   

13.
Summary  Transmission M?ssbauer spectra of synthetic Ca-free P21/c Mg0.22Fe0.78SiO3 clinopyroxene were collected at temperatures in the range 4.2 to 745 K and in an external magnetic field of 60 kOe at 180 K. The magnetic order-disorder transition temperature was determined by M?ssbauer thermoscanning to be 21 ± 3 K. Above this temperature, all M?ssbauer spectra consist of a superposition of two doublets, respectively produced by Fe2+ ions at an almost regular octahedral M1 site and at a more distorted octahedral M2 site. The temperature variation of the Fe2+ center shifts were analyzed using the Debye model for the lattice vibrations. The characteristic M?ssbauer temperatures were found to be 356 K ± 35 K for M1 and 333 K ± 25 K for M2. From the external field (60 kOe) M?ssbauer spectrum recorded at 180 K, the principal component V zz of the electric field gradient (EFG) was determined to be positive for both sites but precise values for the magnitudes of the asymmetry parameters η of the EFG could not be determined. The temperature variations of the M1 and M2 quadrupole splittings ΔE Q(T ) are consistent with the higher distortion of the M2 octahedra. Using the crystal-field model to interpret ΔE Q(T ), the energy gaps δ1 and δ2 of the first excited electronic states within the 5D orbital term were estimated to be 410 ± 50 cm−1 and 730 ± 50 cm−1 for M1, and δ1 = 1050 ± 75 cm−1 for M2. Received May 29, 2000;/revised version accepted July 13, 2001  相似文献   

14.
The solubility and incorporation mechanisms of water in synthetic, water-saturated jadeite and Na-rich clinopyroxenes have been experimentally investigated. Infrared spectra for water-saturated jadeite synthesised from 2.0 to 10 GPa show two prominent sharp peaks at 3,373 and 3,613 cm–1 together with several weaker features in the OH-stretching region, indicating that there are at least 5 distinct modes of hydrogen incorporation in the structure. Water solubility in pure jadeite reaches a maximum of about 450 ppm by weight at 2 GPa and slowly decreases with increasing pressure to about 100 ppm at 10 GPa. Solubility can be described by the function cOH=A fH2O0.5 exp (–PVSolid/RT), where cOH is water solubility in ppm H2O by weight, A is 7.144 ppm/bar0.5, fH2O is water fugacity, and VSolid=8.019 cm3/mol is the volume change of the clinopyroxene upon incorporation of OH. Jadeite provides a good model for understanding hydrogen incorporation mechanisms in more complex omphacite compositions. Assignment of absorption bands in IR spectra verifies the importance of cation vacancies on the M2 site in providing mechanisms for hydrogen incorporation. However, results also suggest that substitution of lower valency cations onto the M1 site may also be important. Solid solution of jadeite with diopside and in particular, with Ca-Eskola component leads to a drastic increase of water solubility, and the bulk composition has a more important effect on the capacity of omphacite to store water than pressure and temperature. Omphacite is expected to be the major carrier of water in a subducted eclogite after the breakdown of hydrous minerals.Editorial responsibility: W. Schreyer  相似文献   

15.
Oxygen and hydrogen stable isotope ratios of eclogite-facies metagabbros and metabasalts from the Cycladic archipelago (Greece) document the scale and timing of fluid–rock interaction in subducted oceanic crust. Close similarities are found between the isotopic compositions of the high-pressure rocks and their ocean-floor equivalents. High-pressure minerals in metagabbros have low δ18O values: garnet 2.6 to 5.9‰, glaucophane 4.3 to 7.1‰; omphacite 3.5 to 6.2‰. Precursor actinolite that was formed during the hydrothermal alteration of the oceanic crust by seawater analyses at 3.7 to 6.3‰. These compositions are in the range of the δ18O values of unaltered igneous oceanic crust and high-temperature hydrothermally altered oceanic crust. In contrast, high-pressure metabasalts are characterised by 18O-enriched isotopic compositions (garnet 9.2 to 11.5‰, glaucophane 10.6 to 12.5‰, omphacite 10.2 to 12.8‰), which are consistent with the precursor basalts having undergone low-temperature alteration by seawater. D/H ratios of glaucophane and actinolite are also consistent with alteration by seawater. Remarkably constant oxygen isotope fractionations, compatible with isotopic equilibrium, are observed among high-pressure minerals, with Δglaucophane−garnet = 1.37 ± 0.24‰ and Δomphacite−garnet = 0.72 ± 0.24‰. For the estimated metamorphic temperature of 500 °C, these fractionations yield coefficients in the equation Δ = A * 106/T 2 (in Kelvin) of Aglaucophane−garnet = 0.87 ± 0.15 and Aomphacite−garnet = 0.72 ± 0.24. A fractionation of Δglaucophane–actinolite = 0.94 ± 0.21‰ is measured in metagabbros, and indicates that isotopic equilibrium was established during the metamorphic reaction in which glaucophane formed at the expense of actinolite. The preservation of the isotopic compositions of gabbroic and basaltic oceanic crust and the equilibrium fractionations among minerals shows that high-pressure metamorphism occurred at low water/rock ratios. The isotopic equilibrium is only observed at hand-specimen scale, at an outcrop scale isotopic compositional differences occur among adjacent rocks. This heterogeneity reflects metre-scale compositional variations that developed during hydrothermal alteration by seawater and were subsequently inherited by the high-pressure metamorphic rocks. Received: 4 January 1999 / Accepted: 7 July 1999  相似文献   

16.
 Thermodynamic properties of high-pressure minerals that are not recoverable from synthesis experiments by conventional quenching methods (“unquenchable” phases) usually are calculated from equation of state data and phase diagram topologies. The present study shows that, with cryogenic methods of recovery and sample treatment, phases with a suitable decomposition rate can be made accessible to direct thermodynamic measurements. A set of samples of Ca(OH)2-II has been synthesized in a multianvil device and subsequently recovered by cooling the high-pressure assembly with liquid nitrogen. Upon heating from liquid nitrogen to room temperature, the material transformed back to Ca(OH)2-I. The heat effect of this backtransformation was measured by differential scanning calorimetry. A commercial differential scanning calorimeter (Netzsch DSC 404), modified to allow sample loading at liquid nitrogen temperature was used to heat the material from −150 to +200 °C at rates varying between 5 and 15 °C min−1. The transformation started around −50 °C very gradually, and peaked at about 0 °C. To obtain a baseline correction, each sample was scanned under exactly the same conditions after the backtransformation was complete. Because of the relative sluggishness, onset and offset temperatures were not well defined as compared to fast (e.g., melting) reactions. To aid in integration, the resulting signals were successfully fitted using a generic asymmetric peak model. The enthalpy of backtransformation was determined to be ΔH =−10.37 ± 0.50 kJ mol−1. From previous in situ X-ray diffraction experiments, the location of the direct transformation in P-T space has been constrained to 5.7 ± 0.4 GPa at 500 °C (Kunz et al. 1996). With the reaction volume known from the same study, and assuming that ΔC p of the transformation remains negligible between the conditions of our measurements and 500 °C, our result gives an estimate of the entropy of transition and the P-T slope of the reaction curve. To a first approximation, the values ΔS = −16.00 ± 0.65 J(mol · K)−1 and dP/dT = 0.0040 ± 0.0002 GPa/K have been determined. These results need to be refined by equation of state data for Ca(OH)2-II. Received: 30 December 1999 / Accepted: 10 April 2000  相似文献   

17.
Polarized absorption spectra, σ and π, in the spectral range 30000–400 cm−1 (3.71–0.05 eV) were obtained on crystal slabs // [001] of deep blue rutile at various temperatures from 88 to 773 K. The rutile crystals were grown in Pt-capsules from carefully dried 99.999% TiO2 rutile powder at 50 kbar/1500 °C using graphite heating cells in a belt-type apparatus. Impurities were below the detection limits of the electron microprobe (about 0.005 wt% for elements with Z≥13). The spectra are characterized by an unpolarized absorption edge at 24300 cm−1, two weak and relatively narrow (Δν1/2≈3500–4000 cm−1), slightly σ-polarized bands ν1 at 23500 cm−1 and ν2 at 18500 cm−1, and a complex, strong band system in the NIR (near infra red) with sharp weak peaks in the region of the OH stretching fundamentals superimposed on the NIR system in the σ-spectra. The NIR band system and the UV edge produce an absorption minimum in both spectra, σ and π, at 21000 cm−1, i.e. in the blue, which explains the colour of the crystals. Bands ν1 and ν2 are assigned to dd transitions to the Jahn-Teller split upper Eg state of octahedral Ti3+. The NIR band system can be fitted as a sum of three components. Two of them are partly π-polarized, nearly Gaussian bands, both with large half widths 6000–7000 cm−1, ν3 at 12000 cm–1 and the most intense ν4 at 6500 cm−1. The third NIR band ν5 of a mixed Lorentz-Gaussian shape with a maximum at 3000 cm−1 forms a shoulder on the low-energy wing of ν4. Energy positions, half band widths and temperature behaviour of these bands are consistent with a small polaron type of Ti3+Ti4+ charge transfer (CT). Polarization dependence of CT bands can be explained on the basis of the structural model of defect rutile by Bursill and Blanchin (1983) involving interstitial titanium. Two OH bands at 3322 and 3279 cm−1 in σ-spectra show different stability during annealing, indicating two different positions of proton in the rutile structure, one of them probably connected with Ti3+ impurity. Total water concentration in blue rutile determined by IR spectroscopy is 0.10 wt-% OH. The EPR spectra measured in the temperature interval 20–295 K show the presence of an electron centre at temperatures above 100 K and Ti3+ ions in more than one structural position, but predominantly in compressed interstitial octahedral sites, at lower temperatures. These results are in good agreement with the conclusions based on the electronic absorption data. Received: 24 March 1997 / Revised, accepted: 14 October 1997  相似文献   

18.
The IR spectrum of an alpine, hydrothermally formed diopside containing 17 wt ppm H2O consists of three main OH absorption bands centred at 3647, 3464 and 3359 cm−1. Jadeite from a Californian vein occurrence is characterised by bands at 3616 and 3557 cm−1 and contains about 197 wt ppm H2O. Based on the pleochroic scheme of the OH absorption bands in diopside, OH defect incorporation models are derived on the basis of fully occupied cation sites and under the assumption of M1 and M2 site vacancies; OH defects replacing O2 oxygen atoms are most common. The less pronounced OH pleochroism and the broad band absorption pattern of jadeite indicate a high degree of OH defect disordering. The pleochroic scheme of the main absorption bands at 3616 and 3557 cm−1 implies partial replacement of O2 oxygen atoms by OH dipoles pointing to vacant Si sites. Under the assumption of M1 and M2 site vacancies, O1–H and O2–H defects are also derivable. OH incorporation modes assuming Si-vacancies should be considered for jadeite-rich clinopyroxenes formed in deep crust and upper mantle regions.  相似文献   

19.
Summary Kristiansenite occurs as a late hydrothermal mineral in vugs in an amazonite pegmatite at Heftetjern, T?rdal, Telemark, Norway. Tapering crystals, rarely up to 2 mm long, are colourless, white, or slightly yellowish. The mineral has the ideal composition Ca2ScSn(Si2O7)(Si2O6OH) and is triclinic C1 with cell parameters a = 10.028(1), b = 8.408(1), c = 13.339(2) ?, α = 90.01(1), β = 109.10(1), γ = 90.00(1)°, V = 1062.7(3) ?3 (Z = 4). It has a monoclinic cell within ∼ 0.1 ? and is polysynthetically twinned on {010} by metric merohedry. The strongest reflections in the X-ray powder pattern are [d in ?, (I obs), (hkl)]: 5.18 (53) (1–11), 3.146 (100) (004), 3.089 (63) (−222), 2.901 (19) (221), 2.595 (34) (222), 2.142 (17) (−3–31). The Mohs’ hardness is 5?–6; Dcalc. = 3.64 g/cm3; only a mean refractive index of 1.74 could be measured. Scandium enrichment in the Heftetjern pegmatite and the crystal chemistry of scandium are briefly discussed. Received April 30, 2001; accepted July 28, 2001  相似文献   

20.
The Sungun porphyry copper deposit is hosted in a Diorite/granodioritic to quartz-monzonitic stock that intruded Eocene volcanosedimentary and Cretaceous carbonate rocks. Copper mineralization is associated mainly with potassic alteration and to a lesser extent with sericitic alteration. Based on previously published fluid inclusion and isotopic data by Hezarkhani and Williams-Jones most of the copper is interpreted to have deposited during the waning stages of orthomagmatic hydrothermal activity at temperatures of 400 to 300 °C. These data also indicate that the hydrothermal system involved meteoric waters, and boiled extensively. In this work, thermodynamic data are used to delineate the stability fields of alteration and ore assemblages as a function of fS2, fO2 and pH. The solubility of chalcopyrite was evaluated in this range of conditions using recently published experimental data. During early potassic alteration (>450 °C), Copper solubility is calculated to have been >50 000 ppm, whereas the copper content of the initial fluid responsible for ore deposition is estimated, from fluid inclusion data, to have been 1200–3800 ppm. This indicates that initially the fluid was highly undersaturated with respect to chalcopyrite, which agrees with the observation that veins formed at T > 400 °C contain molybdenite but rarely chalcopyrite. Copper solubility drops rapidly with decreasing temperature, and at 400 °C is approximately 1000 ppm, within the range estimated from fluid inclusion data, whereas at 350 °C it is only 25 ppm. These calculations are consistent with observations that the bulk of the chalcopyrite deposited at Sungun is hosted by veins formed at temperatures of 360 ± 60 °C. Other factors that, in principle, may reduce chalcopyrite solubility are increases in pH, and decreases in fO2 and aCl. Our analysis shows, however, that most of the change in pH occurred at high temperature when chalcopyrite was grossly undersaturated in the fluid, and that the direction of change in fO2 increased chalcopyrite solubility. We propose that the Sungun deposit formed mainly in response to the sharp temperature decrease that accompanied boiling, and partly as a result of the additional heat loss and decrease in aCl, which occurred as a result of mixing of acidic Cu-bearing magmatic waters with cooler meteoric waters of lower salinity. Received: 8 July 1998 / Accepted: 8 April 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号