首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We carried out Washington system photometry of the intermediate-age Large Magellanic Cloud (LMC) star clusters NGC 2155 and SL 896 (LW 480). We derive ages and metallicities from the T 1 versus     colour–magnitude diagrams (CMDs). For the first time an age has been obtained for SL 896,     . For NGC 2155 we derive     . The two clusters basically define the lower age limit of the LMC age gap. In particular, NGC 2155 is confirmed as the oldest intermediate-age LMC cluster so far studied. The derived metallicities are     and     for NGC 2155 and SL 896, respectively. We also studied the CMDs of the surrounding fields, which have a dominant turn-off comparable to that of the clusters themselves, and similar metallicity, showing that one is dealing with an intermediate-age disc where clusters and field stars have the same origin. We inserted the present clusters in the LMC and Small Magellanic Cloud (SMC) age–metallicity relations, using a set of homogeneous determinations with the same method as in our previous studies, now totalling 15 LMC clusters and four SMC clusters, together with some additional values from the literature. The LMC and SMC age–metallicity relations appear to be remarkably complementary, since the SMC was actively star-forming during the LMC quiescent age gap epoch.  相似文献   

2.
3.
Colour–magnitude diagrams in the Washington system are presented for the first time for five star clusters projected on to the outer region of the Small Magellanic Cloud (SMC). The clusters are found to have ages in the range 0.1–1.0 Gyr, as derived from the fit of isochrones with   Z = 0.004  . This sample increases substantially the number of young clusters in the outer SMC – particularly in the south-east quadrant – with well-derived parameters. We combine our results with those for other clusters in the literature to derive as large and homogeneous a data base as possible (totalling 49 clusters) in order to study global effects. We find no conclusive evidence for a dispersion in the cluster ages and metallicities as a function of their distance from the galaxy centre, in the SMC outer region. L 114 and 115, although very distant, are very young clusters, lying in the bridge of the SMC and therefore most likely formed during the interaction which formed this feature. We also find very good agreement between the cluster age–metallicity relation (AMR) and the prediction from a bursting model from Pagel & Tautvaišienė with a burst that occurred 3 Gyr ago. Comparing the present cluster AMR with that derived by Harris & Zaritsky for field stars in the main body of the SMC, we find that field stars and clusters underwent similar chemical enrichment histories during approximately the last couple of Gyr, but their chemical evolution was clearly different between 4 and 10 Gyr ago.  相似文献   

4.
Colour–magnitude diagrams are presented for the first time for L32, L38, K28 (L43), K44 (L68) and L116, which are clusters projected on to the outer parts of the Small Magellanic Cloud (SMC). The photometry was carried out in the Washington system C and T 1 filters, allowing the determination of ages by means of the magnitude difference between the red giant clump and the main-sequence turn-off, and metallicities from the red giant branch locus. The clusters have ages in the range 2–6 Gyr , and metallicities in the range −1.65<[Fe/H]<−1.10, increasing the sample of intermediate-age clusters in the SMC. L116, the outermost cluster projected on to the SMC, is a foreground cluster, and somewhat closer to us than the Large Magellanic Cloud. Our results, combined with those for other clusters in the literature, show epochs of sudden chemical enrichment in the age–metallicity plane, which favour a bursting star formation history as opposed to a continuous one for the SMC.  相似文献   

5.
6.
Colour–magnitude diagrams (CMDs) are presented for the first time for 10 star clusters projected on to the Small Magellanic Cloud (SMC). The photometry was carried out in the Washington system C and T 1 filters allowing the determination of ages by means of the magnitude difference between the red giant clump and the main-sequence turnoff (MSTO), and metallicities from the red giant branch (RGB) locus. The clusters all have ages in the range 1.5–4 Gyr and metallicities between  −1.3 < [Fe/H] < −0.6  , with respective errors of ∼0.5 Gyr and 0.3 dex. This increases substantially the sample of intermediate-age clusters in the SMC with well-derived parameters. We combine our results with those for other clusters in the literature to derive as large and homogeneous a data base as possible (totalling 26 clusters) in order to study global effects. We find evidence for two peaks in the age distribution of SMC clusters, at ∼6.5 and 2.5 Gyr, in good agreement with previous hints involving smaller samples. The most recent peak occurs at a time that corresponds to a very close encounter between the Large Magellanic Cloud (LMC) and the SMC according to the recent dynamical models of Bekki et al. that they used to explain the enhancement of LMC clusters with this age. It appears cluster formation may have been similarly stimulated in the SMC by this encounter as well. We also find very good agreement between cluster ages and metallicities and the prediction from a bursting model from Pagel and Tautvaišienė with a burst that occurred 3 Gyr ago. These two lines of evidence together favour a bursting cluster formation history as opposed to a continuous one for the SMC.  相似文献   

7.
We present CCD photometry in the Washington system C and T 1 passbands down to   T 1∼ 22  in the fields of L35, L45, L49, L50, L62, L63 and L85, seven poorly studied star clusters in the inner region of the Small Magellanic Cloud (SMC). We measured T 1 magnitudes and   C − T 1  colours for a total of 114 826 stars distributed throughout cluster areas of 13.7 × 13.7 arcmin2 each. Cluster radii were estimated from star counts distributed throughout the entire observed fields. The seven clusters are generally characterized by a relatively small angular size and by a high field star contamination. We performed an in-depth analysis of the field star contamination of the colour–magnitude diagrams (CMDs), and statistically cleaned the cluster CMDs. Based on the best fits of isochrones computed by the Padova group to the  ( T 1,  C − T 1)  CMDs, we derive ages for the sample, assuming Z = 0.004, finding ages between 25 Myr and 1.2 Gyr. We then examined different relationships between positions in the SMC, age and metallicity of a larger sample of clusters including our previous work whose ages and metallicities are on the same scale used in this paper. We confirm previous results in the sense that the further a cluster is from the centre of the galaxy, the older and more metal poor it is, with some dispersion; although clusters associated with the Magellanic Bridge clearly do not obey the general trend. The number of clusters within ∼ 2° of the SMC centre appears to have increased substantially after ∼2.5 Gyr ago, hinting at a burst.  相似文献   

8.
9.
We present integrated JHK S Two-Micron All-Sky Survey photometry and a compilation of integrated-light optical photoelectric measurements for 84 star clusters in the Magellanic Clouds. These clusters range in age from ≈200 Myr to >10 Gyr, and have [Fe/H] values from −2.2 to −0.1 dex. We find a spread in the intrinsic colours of clusters with similar ages and metallicities, at least some of which is due to stochastic fluctuations in the number of bright stars residing in low-mass clusters. We use 54 clusters with the most-reliable age and metallicity estimates as test particles to evaluate the performance of four widely used simple stellar population models in the optical/near-infrared (near-IR) colour–colour space. All models reproduce the reddening-corrected colours of the old (≥10 Gyr) globular clusters quite well, but model performance varies at younger ages. In order to account for the effects of stochastic fluctuations in individual clusters, we provide composite   B − V , B − J , V − J , V − K S  and   J − K S  colours for Magellanic Cloud clusters in several different age intervals. The accumulated masses for most composite clusters are higher than that needed to keep luminosity variations due to stochastic fluctuations below the 10 per cent level. The colours of the composite clusters are clearly distinct in optical–near-IR colour–colour space for the following intervals of age: >10 Gyr, 2–9 Gyr, 1–2 Gyr, and 200 Myr−1 Gyr. This suggests that a combination of optical plus near-IR colours can be used to differentiate clusters of different age and metallicity.  相似文献   

10.
We report on HST observations of six candidate old globular clusters in the Large Magellanic Cloud (LMC): NGC 1754, 1835, 1898, 1916, 2005 and 2019. Deep exposures with the F555W and F814W filters provide us with colour–magnitude diagrams that reach to an apparent magnitude in V of ∼25, well below the main-sequence turn-off. These particular clusters are associated with significantly high LMC field star densities and care was taken to subtract the field stars from the cluster colour–magnitude diagrams accurately. In two cases there is significant variable reddening across at least part of the image, but only for NGC 1916 does the differential reddening preclude accurate measurements of the CMD characteristics. The morphologies of the colour–magnitude diagrams match well those of Galactic globular clusters of similar metallicity. All six have well-developed horizontal branches, while four clearly have stars on both sides of the RR Lyrae gap. The abundances obtained from measurements of the height of the red giant branch above the level of the horizontal branch are 0.3 dex higher, on average, than previously measured spectroscopic abundances. Detailed comparisons with Galactic globular cluster fiducials show that all six clusters are old objects, very similar in age to classical Galactic globulars such as M5, with little age spread among the clusters. This result is consistent with ages derived by measuring the magnitude difference between the horizontal branch and main-sequence turn-off. We also find a similar chronology by comparing the horizontal branch morphologies and abundances with the horizontal branch evolutionary tracks of Lee, Demarque &38; Zinn. Our results imply that the LMC formed at the same time as the Milky Way Galaxy.  相似文献   

11.
12.
13.
14.
15.
We present colour–magnitude diagrams for two rich (≈104 M) Large Magellanic Cloud star clusters with ages ≈107 yr, constructed from optical and near-infrared data obtained with the Hubble Space Telescope . These data are part of an HST project to study LMC clusters with a range of ages. In this paper we investigate the massive star content of the young clusters, and determine the cluster ages and metallicities, paying particular attention to Be-star and blue-straggler populations and evidence of age spreads. We compare our data with detailed stellar-population simulations to investigate the turn-off structure of ≈25 Myr stellar systems, highlighting the complexity of the blue-straggler phenomenon.  相似文献   

16.
We present V and I photometry of two open clusters in the LMC down to V ∼26. The clusters were imaged with the Wide Field and Planetary Camera 2 (WFPC2) on board the Hubble Space Telescope ( HST ), as part of the Medium Deep Survey Key Project. Both are low-luminosity ( MV ∼−3.5), low-mass ( M ∼103 M⊙) systems. The chance discovery of these two clusters in two parallel WFPC2 fields suggests a significant incompleteness in the LMC cluster census near the bar. One of the clusters is roughly elliptical and compact, with a steep light profile, a central surface brightness μ V (0)∼20.2 mag arcsec−2, a half-light radius r hl∼0.9 pc (total visual major diameter D ∼3 pc) and an estimated mass M ∼1500 M⊙. From the colour–magnitude diagram and isochrone fits we estimate its age as τ∼(2–5)×108 yr. Its mass function has a fitted slope of Γ=Δlogφ( M )/Δlog M =−1.8±0.7 in the range probed (0.9≲ M /M⊙≲4.5). The other cluster is more irregular and sparse, having shallower density and surface brightness profiles. We obtain Γ=−1.2±0.4, and estimate its mass as M ∼400 M⊙. A derived upper limit for its age is τ≲5×108 yr. Both clusters have mass functions with slopes similar to that of R136, a massive LMC cluster, for which HST results indicate Γ∼−1.2. They also seem to be relaxed in their cores and well contained in their tidal radii.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号