首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Tracing the sediment delivery from its source terrain to its ultimate sink envisage multiple factors that play a vital role in understanding present day erosional engine.To accomplish this,it is significant to distinguish the variable end-members contributing to the basin.The findings from the study of dryland coastal fluvial regime in Kachchh(Western India),which is one of the end members contributing to the Gulf of Kachchh coast(partial sink) and finally to the Arabian Sea(ultimate sink) have been presented here.Multi-proxy sediment provenance proxies such as grain-size,clay minerals,geochemistry and magnetic minerals have been employed to evaluate the provenance discriminating characteristics of the Kachchh dryland fluvial system and factors influencing them.The results of different proxies indicate that the provenance signatures of uplands are quite characteristic with magnetic susceptibility(χ) values of 20×10~(-7)m~3kg~(-1) and smectite(S)/kaolinite(K) ratio between 0.26 and 0.49.The middle reaches show marked increase in magnetic mineral concentration with χ values(140×10~(-7)m~3kg~(-1))and S/K ratio(4.92),while the estuarine tract shows χ values(80×10~(-7)m~3kg~(-1)),S/K ratio(1.90) and,characteristic heavy minerals(i.e.mica minerals),probably reflect the interplay between land and sea oscillations.Major sources of sediments within catchment scale were identified,viz.,upland sedimentary rocks(Juran and Bhuj Formation sandstone-shale) and middle reaches volcanic(Deccan Trap Formation basalt) rocks.The present study draw cautions in provenance of sediment discrimination in areas influenced by Deccan basalt that has the overwhelming sediment delivery and a comparatively subdued effects of other provenance signatures.The studied proxies of mineralogy of clays,magnetic minerals and geochemistry of heavy and major elements serve as the potential for fingerprint of sediment source regions and hence behold a strong position in source to sink studies globally.  相似文献   

2.
Clay mineralogy, texture size and statistical analyses were carried out on surface sediments from the continental shelf of Chennai, Bay of Bengal, India. The purpose of this study is to characterize the clay mineral distribution and its relation to the hydrodynamics off Chennai to identify the sources and transport pathways of the marine sediments. Characterization of clay minerals in coastal sediments by Fourier Transform Infrared (FTIR) spectroscopy has provided the association of quartz, feldspar, kaolinite, chlorite, illite and iron oxides (magnetite and hematite) derived from river catchments and coastal erosion. Kaolinite, chlorite, illite, iron oxides, and organic matter are the dominant minerals in Cooum, and Adayar region. High quartz and feldspar zones were identified in Marina, which are being confined the sand zone and paralleling the coast. The strong relationships among the wave energy density, sand, quartz and carbonate revealed that wave induced littoral drift system play a dominant role in transportation and deposition of sediments in the Chennai coast. The sediment texture and minerals data are in agreement well with the previous results of hydrodynamics and littoral drift models in this region. Multivariate statistical analyses (correlation, cluster and factor analyses) were carried out and obtained results suggested that clay minerals and organic matter are trapped in silt and clay particles, whereas quartz, feldspar and carbonate are associated with sand particles. Results of sediment sources and transport processes from this study will be useful to predict the fate of the pollutants released from land or the potential change in sediment delivery to coastal areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号