首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Delayed response means that channels cannot achieve a new equilibrium state immediately following disruption;the channel requires a response time or relaxation time to reach equilibrium.It follows that the morphological state of fluvial system represents the cumulative effects of all previous disturbances and environmental conditions.A unique feature of the delayed response model for bankfull discharge is that the model is capable of representing the cumulative effects of all previous flow conditions when applied to predict the path/trajectories of bankfull discharge in response to altered flow regimes.In this paper,the delayed response model was modified by readjusting the weight for the initial boundary conditions and introducing a variableβwith respect to time.The modified model was then applied to the bankfull discharge calculations for three selected river reaches of the Yellow River,with each reach having different geomorphic settings and constraints. Results indicated that the modified model can predict accurately the bankfull discharge variation in response to changes in flow discharge and sediment load conditions that have been dramatically altered in the past.Results also demonstrated the strong dependence of current bankfull discharge on the previous years’ flow conditions,with the relaxation time varied from 2 to 14 years,meaning that the bankfull discharge was not only affected by the flow discharge and sediment load in the current year,but also by those in previous 1 to 13 years.Furthermore,the relaxation time of bankfull discharge adjustment was inversely proportional to the long-term average suspended sediment concentrations,and this may be explained by fact that high sediment concentrations may have a high potential to perform geomorphic work and there is more sediment readily available to shape the channel boundary and geometry.  相似文献   

2.
The adjustment of the bankfull channel area in the Lower Yellow River has been dramatically affected by altered flow regimes caused by human activities. This paper presents a study on the effects of altered discharge and suspended sediment load on the bankfull area at Gaocun, a representative hydrometric station in the Lower Yellow River. The analysis demonstrates the cumulative effect of previous years' flow and sediment conditions on channel adjustment, a phenomenon commonly occurring in geomorphic systems due to the delayed channel response to flow and sediment conditions. A methodology for the prediction of bankfull area was developed based on the general concept that the rate of adjustment is proportional to the difference between the bankfull area and its equilibrium value. The proposed methodology is not only applicable for the prediction of the bankfull area in response to the changes in flow and sediment conditions in the Lower Yellow River, but can also be extended to other studies where the response times have a key role to play in the assessment of channel adjustment to external changes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
This paper studies relations between bankfull discharge,lateral cross section variation and the incoming flow and sediment condition in the Lower Yellow River using measured data from 1950 to 2003.Since 1950 the bankfull discharge has obviously decreased and the ratio of channel width to flow depth has increased.The critical annual average incoming sediment coefficient(defined as the ratio of sediment concentration to discharge) and discharge at the Huayuankou station are approximately 0.012 and 1,850 m3s-1,respectively,for no accumulative deposition occurring in the reach from Huayuankou to Lijin.On this basis,a mathematical model is used to study the scale of the main channel in the Lower Yellow River and its corresponding bankfull discharge under possible incoming flow and sediment conditions in the near future.The main factors influencing the scale of the main channel are analyzed,and measures to shape and maintain a medium-sized channel are discussed.The results show the effect of various water and sediment combinations released from the Xiaolangdi Reservoir on the shaping of the main channel and suggest that under recent incoming flow and sediment conditions,it is possible to shape and maintain a medium-sized channel with a bankfull discharge of approximate 4,000 m3 s-1.  相似文献   

4.
Bankfull discharge is a key parameter in the context of river engineering and geomorphology, as an indicator of flood discharge capacity in alluvial rivers, and varying in response to the incoming flow and sediment regimes. Bankfull channel dimensions have significantly adjusted along the Lower Yellow River (LYR) due to recent channel degradation, caused by the operation of the Xiaolangdi Reservoir, which has led to longitudinal variability in cross‐sectional bankfull discharges. Therefore, it is more representative to describe the flood discharge capacity of the LYR, using the concept of reach‐averaged bankfull discharge. Previous simple mean methods to estimate reach‐scale bankfull discharge cannot meet the condition of flow continuity or account for the effect of different spacing between two sections. In this study, a general method to calculate cross‐sectional bankfull discharge using the simulated stage‐discharge relation is outlined briefly, and an integrated method is then proposed for estimating reach‐scale bankfull discharge. The proposed method integrates a geometric mean based on the log‐transformation with a weighted average based on the spacing between two consecutive sections, which avoids the shortcomings of previous methods. The post‐flood reach‐scale bankfull discharges in three different channel‐pattern reaches of the LYR were estimated annually during the period from 1999 to 2010 using the proposed method, based on surveyed post‐flood profiles at 91 sedimentation sections and the measured hydrological data at seven hydrometric sections. The calculated results indicate that: (i) the estimated reach‐scale bankfull discharges can effectively represent the flood discharge capacity of different reaches, with their ranges of variation being less than those of typical cross‐sectional bankfull discharges; and (ii) the magnitude of the reach‐scale bankfull discharge in each reach can respond well to the accumulative effect of incoming flow and sediment conditions. Finally, empirical relationships for different reaches in the LYR were developed between the reach‐scale bankfull discharge and the previous four‐year average discharge and incoming sediment coefficient during flood seasons, with relatively high correlation coefficients between them being obtained, and the reach‐scale bankfull discharges in different reaches predicted by the delayed response model were also presented for a comparison. These relations for the prediction of reach‐scale bankfull discharges were validated using the cross‐sectional profiles and hydrological data measured in 2011. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
ON THE SHRINKAGE OF RIVER CHANNEL   总被引:1,自引:0,他引:1  
ONTHESHRINKAGEOFRIVERCHANNELCHENDong1,CAOWenhong2andZHANGQishun3ABSTRACTAlongwiththerapiddevelopmentofsocialeconomy,developme...  相似文献   

6.
The channel boundary conditions along the Lower Yellow River (LYR) have been altered significantly since the 1950s with the continual reinforcement and construction of both main and secondary dykes and river training works. To evaluate how the confined complex channel–floodplain system of the LYR responds to floods, this study presents a detailed investigation of the relationship between the tempo‐spatial distribution of sedimentation/erosion and overbank floods occurred in the LYR. For large overbank floods, we found that when the sediment transport coefficient (ratio of sediment concentration of flow to flow discharge) is less than 0.034, the bankfull channel is subject to significant erosion, whereas the main and secondary floodplains both accumulate sediment. The amount of sediment deposited on the main and secondary floodplains is closely related to the ratio of peak discharge to bankfull discharge, volume of water flowing over the floodplains, and sediment concentration of overbank flow, whereas the degree of erosion in the bankfull channel is related to the amount of sediment deposited on the main and secondary floodplains, water volume, and sediment load in flood season. The significant increase in erosion in the bankfull channel is due to the construction of the main and secondary dykes and river training works, which are largely in a wide and narrow alternated pattern along the LYR such that the water flowing over wider floodplains returns to the channel downstream after it drops sediment. For small overbank floods, the bankfull channel is subject to erosion when the sediment transport coefficient is less than 0.028, whereas the amount of sediment deposited on the secondary floodplain is associated closely with the sediment concentration of flow. Over the entire length of the LYR, the situation of erosion in the bankfull channel and sediment deposition on the main and secondary floodplains occurred mainly in the upper reach of the LYR, in which a channel wandering in planform has been well developed.  相似文献   

7.
The equilibrium relations for water and sediment transport refer to the relative balance of sediment transport and the relative stability of river courses formed by the automatic adjustment of riverbeds.This is the theoretical basis for the comprehensive management of sediment in the Yellow River.Based on the theories of sediment carrying capacity and the delayed response of riverbed evolution,in this study,the equilibrium relations for water and sediment transport in the Yellow River are established.These relations include the equilibrium relationships between water and sediment transport and bankfull discharge in the upper and lower Yellow River and between water and sediment transport and the Tongguan elevation in the middle Yellow River.The results reveal that for the Ningmeng reach,the Tongguan reach,and the lower Yellow River,erosion and deposition in the riverbeds are adjusted automatically,and water and sediment transport can form highly constrained equilibrium relationships.These newly established equilibrium relationships can be applied to calculate the optimal spatial allocation scheme for sediment in the Yellow River.  相似文献   

8.
The lower Yellow River channel was maintained by artificial levees between 1580 and 1849. During this period, 280 levee breaches occurred. To estimate sediment storage on the floodplains outside the levees, a regression model with a decadal time step was developed to calculate the outflow ratio for the years when levee breaching occurred. Uncertainty analysis was used to identify the likely outflow ratio. Key variables of the model include annual water discharge, a proxy for levee conditions, and potential bankfull discharge of the channel before flood season. Uncertainty analysis reveals an outflow ratio of 0.35–0.56. We estimate that during this period, 18.8–30.1% of the total ~312 Gt of sediment load was deposited on the floodplains outside the levees. Human-accelerated erosion in the Loess Plateau caused a 4-fold increase in sediment delivery to the lower Yellow River, which could not be accommodated by channel morphodynamic changes. As a result, 21.2–27.5% of the total sediment load was deposited within the levees, creating a super-elevated channel bed that facilitated an uncommonly high breach outflow ratio. Hence, the factor of a large super-elevation relative to the mean main channel depth should be considered when designing diversions to restore floodplains. © 2018 John Wiley & Sons, Ltd.  相似文献   

9.
We analyzed long daily runoff series at six hydrological stations located along the mainstem Yellow River basin by using power spectra analysis and multifractal detrended fluctuation analysis (MF-DFA) technique with aim to deeply understand the scaling properties of the hydrological series in the Yellow River basin. Research results indicate that: (1) the runoff fluctuations of the Yellow River basin exhibit self-affine fractal behavior and different memory properties at different time scales. Different crossover frequency (1/f) indicates that lower crossover frequency usually corresponds to larger basin area, and vice versa, showing the influences of river size on higher frequency of runoff variations. This may be due to considerable regulations of river channel on the runoff variations in river basin of larger basin size; (2) the runoff fluctuations in the Yellow River basin exhibit short-term memory properties at smaller time scales. Crossover analysis by MF-DFA indicates unchanged annual cycle within the runoff variations, implying dominant influences of climatic changes on changes of runoff amount at longer time scales, e.g. 1 year. Human activities, such as human withdrawal of freshwater and construction of water reservoirs, in different reaches of the Yellow River basin may be responsible for different scaling properties of runoff variations in the Yellow River basin. The results of this study will be helpful for hydrological modeling in different time scales and also for water resource management in the arid and semi-arid regions of China.  相似文献   

10.
Along the lower reaches of the Waipaoa River, New Zealand, cross‐section survey data indicate there was a 23 per cent decrease in bankfull width and a 22 per cent reduction in channel cross‐section area between 1948 and 2000, as the channel responded to increased inputs of fine (suspended) sediment following deforestation of the headwaters in late C19 and early C20. We determined the bankfull discharge within a ~39 km long reach by routing known discharges through the one‐dimensional MIKE 11 flow model. The model runs suggest that the bankfull discharge varies between ~800 and ~2300 m3 s?1 and that the average recurrence interval is 4 ± 2 years on the annual maximum series; by contrast, the effective flow (360 m3 s?1) is equaled or exceeded three times a year. The variability in bankfull discharge arises because the banks tend to be lower in places where flood flows are constricted than in reaches where overbank flow is dispersed over a wide area, and because scour has counteracted aggradation in some locations. There is no downstream variation in Shields stress, or in relative shear stress, within the study reach. Bankfull shear stress is, on average, five times greater than the shear stress required to initiate motion. At the effective discharge it is more than twice the threshold value. The effective discharge probably has more relevance than the bankfull discharge to the overall picture of sediment movement in the lower reaches of the Waipaoa River but, because width is constrained by the stability and resistance of the bank material to erosion during high flows that also scour the bed, the overall channel geometry is likely determined by discharges at or near bankfull. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
We consider the evolution of the hydraulic geometry of sand-bed meandering rivers. We study the difference between the timescale of longitudinal river profile adjustment and that of channel width and depth adjustment. We also study the effect of hydrological regime alteration on the evolution of bankfull channel geometry. To achieve this, a previously developed model for the spatiotemporal co-evolution of bankfull channel characteristics, including bankfull discharge, bankfull width, bankfull depth and down-channel bed slope, is used. In our modelling framework, flow variability is considered in terms of a specified flow duration curve. Taking advantage of this unique feature, we identify the flow range responsible for long-term bankfull channel change within the specified flow duration curve. That is, the relative importance of extremely high short-duration flows compared to moderately high longer duration flows is examined. The Minnesota River, MN, USA, an actively meandering sand-bed stream, is selected for a case study. The longitudinal profile of the study reach has been in adjustment toward equilibrium since the end of the last glaciation, while its bankfull cross-section is rapidly widening due to hydrological regime change in the last several decades. We use the model to demonstrate that the timescale for longitudinal channel profile adjustment is much greater than the timescale for cross-sectional profile adjustment due to a lateral channel shift. We also show that hydrological regime shift is responsible for the recent rapid widening of the Minnesota River. Our analysis suggests that increases in the 5–25% exceedance flows play a more significant role in recent bankfull channel enlargement of the Minnesota River than increase in either the 0.1% exceedance flow or the 90% exceedance flow. © 2020 John Wiley & Sons, Ltd.  相似文献   

12.
Elucidation of the fluvial processes influenced by dams provides better understanding of river protection and basin management. However, less attention has been given to the erosion intensity distribution of riverbeds and its association with channel morphology and hydrological conditions. Based on hydrological and topographic data, the spatial and temporal distributions of erosion intensity (2002–2014) influenced by the Three Gorges Dam (TGD) were analyzed for the Jingjiang reach of the Yangtze River. The mechanisms underlying the distribution of erosion intensity in response to hydrological conditions were investigated. The results are as follows: (1) The erosion intensities of different discharges were not uniform, and moderate flow (10 000–27 000 m3/s) produced the largest erosion magnitude among all flow ranges. Owing to the hydrological changes caused by flood reduction and prolongation of moderate flow duration after the TGD began operating, up to 70% of the erosion amount was caused by moderate flows. (2) The lateral distribution of erosion intensity was extremely uneven, as the proportion of cumulative erosion of the low‐flow channel within the bankfull channel reached 88% in 2013. This caused the channel to become narrower and deeper. (3) The longitudinal distribution of erosion intensity was inhomogeneous. The erosion intensity in the wide reaches was greater than that in the narrow reaches, leading to smaller differences in channel morphology along the river. (4) Changes in hydrological conditions influenced by the TGD, significant reduction of sediment concentration along with flood abatement, and increased duration of moderate flow discharges were the main factors affecting erosion distribution in the post‐dam period. Our conclusions can be applied to the Yangtze River as a basis for riverbed change estimations, and river management strategies. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

13.
Riverine sediments have played an important role in the morphological evolution of river channels and river deltas. However, the sediment regime in the many world's rivers has been altered in the context of global changes. In this study, temporal changes in the sediment regime of the Pearl River were examined at different time scales, that is, annual, seasonal, and monthly time scales, using the Mann–Kendall test. The results revealed that precipitation variability was responsible for monthly and seasonal distribution patterns of the sediment regime and the long‐term changes in the water discharge; however, dam operation has smoothed the seasonal distribution of water discharge and resulted in decreasing trends in the annual, wet‐season, and dry‐season sediment load series since the 1950s. Due to the different regulation magnitudes of dam operation, differences were observed in sediment regime changes among the three tributaries. In addition, human activities have altered the hysteresis of seasonal rating curves and affected hysteresis differences between increasing and decreasing water discharge stages. Sediment supply is an important factor controlling river channel dynamics, affecting channel morphology. From the 1950s to the 1980s, siltation was dominant in river channels across the West River and North River deltas in response to the sediment increases; however, scouring occurred in the East River deltas due to sediment reduction. Significant erosion occurred in river channels in the 1990s, which was mostly due to downcutting of the river bed caused by sand excavations and partly because of the reduced sediment load from upstream. Although sand excavations have been banned and controlled by authority agencies since 2000, the erosion of cross sections was still observed in the 2000s because of reduced sediment caused by dam construction. Our study examines the different effects of human activities on the sediment regime and downstream channel morphology, which is of substantial scientific importance for river management.  相似文献   

14.
《国际泥沙研究》2020,35(6):651-658
Scientific evaluation of the sediment allocation effects in the Yellow River plays an important role in the comprehensive harnessing of the Yellow River. A new evaluation index system for sediment allocation has been established using the Analytic Hierarchy Process, and six main evaluation indexes have been selected for this study. The calculation methods and evaluation criteria of each evaluation index are proposed. The evaluation criterion of bankfull discharge in the upper reach is 2,000 m3/s, that of Tongguan elevation in the middle reach is 325.7 m, and that of bankfull discharge in the lower reach is 4,000 m3/s. The evaluation criteria of water volume and sediment volume into the Yellow River are 25 billion m3/a and 300 million t/a, respectively, and that of sediment volume into the sea to maintain stability of the estuary is 130–260 million t/a. The comprehensive evaluation method and grade index are proposed, and the effect of sediment allocation in the Yellow River from 1960 to 2015 is evaluated. The comprehensive evaluation grades in different periods are determined. The evaluation results objectively reflect the situation of sediment allocation in the Yellow River, and the new comprehensive evaluation method can be applied to evaluate the sediment allocation scheme of the Yellow River in the future.  相似文献   

15.
River corridors exhibit landforms nested within landforms repeatedly down spatial scales. In Pasternack et al. ( 2018 ), a new, scale‐independent, hierarchical river classification was developed that uses five landform types to map the domains of a single fluvial process – flow convergence routing – at each of three–five spatial scales. Given those methods, this study investigated the details of how flow convergence routing organizes nested landform sequences. The method involved analyzing landform abundance, sequencing, and hierarchical nesting along the 35 km gravel/cobble lower Yuba River in California. Independent testing of flow convergence routing found that hydraulic patterns at every flow matched the essential predictions from classification, substantiating the process–morphology link. River width and bed elevation sequences exhibit large, nonrandom, and linked oscillations structured to preferentially yield wide bars and constricted pools at base flow and bankfull flow. At a flow of 8.44 times bankfull, there is still an abundance of wide bar and constricted pool landforms, but larger topographic drivers also yield an abundance of nozzle and oversized landforms. The nested structure of flow convergence routing landforms reveals that base flow and bankfull landforms are nested together within specific floodprone valley landform types, and these landform types control channel morphodynamics during moderate to large floods. As a result, this study calls into question the prevailing theory that the bankfull channel of a gravel/cobble river is controlled by in‐channel, bankfull, and/or small flood flows. Such flows may initiate sediment transport, but they are too small to control landform organization in a gravel/cobble river with topographic complexity. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

16.
The dynamic changes in the sediment discharge over 90 years from 1919 to 2008 in the Yellow River in China were assessed on the basis of annual rainfall series and annual sediment series in Shan County hydrological station. The key factors affecting sediment discharge, such as rainfall, and human activities were studied. Anomaly accumulation method and double mass curve were employed to test the stage changes of sediment discharge, and to determine the main factors of sediment decline. Results showed that the annual average sediment discharge under natural conditions was about 16 × 108 t, but the measured annual average sediment during 1919–2008 was 12.71 × 108 t. The highest annual average during the study period was 39.10 × 108 t in 1933 while the lowest was 1.77 × 108 t in 2008. Sediment discharge in the Yellow River experienced two low sediment stages (1924–1931 and 1979–2008) and a high sediment stage (1932–1971), respectively. Since 1979, there was a significant decreasing trend in the sediment discharge, and the main influencing factor was fierce human activities. Annual average sediment discharge in the post‐development period (1979–2008) was 69.7% lower than that in the pre‐development period (1919–1978), with average reduction of 81 and 19% caused by human activities and rainfall, respectively. These results provide important evidence for making protecting policy for water resources quality and environmental safety of the Yellow River.  相似文献   

17.
三峡工程运行后,坝下游河道发生持续冲刷。本文研究了长江中游(955 km)不同河段沿程演变差异及其原因。总体而言,河床形态调整幅度自上而下减弱,这是因为在河床持续冲刷过程中,水流含沙量沿程恢复,故越往下游冲刷相对缓慢。平面形态方面,长江中游岸线崩退及洲滩变形的强度均呈沿程减弱趋势,且在荆江河段最为显著。断面形态方面,河床冲深幅度在宜枝下段>荆江河段>宜枝上段>城汉河段>汉湖河段。理论上距离三峡工程最近的河段冲刷应最为剧烈,但由于宜枝上段床沙粗化显著,限制了冲刷的进一步发展。过流能力方面,宜枝河段由于距洞庭湖较远,并未受到入汇顶托作用,故其平滩流量的调整基本由进口水沙条件控制,并随着河床冲深下切而增大;对于荆江、城汉和汉湖河段,河床冲刷虽显著,但支流或湖泊的入汇顶托对平滩流量产生的影响大于前者,故平滩流量总体随上下游水位差同步波动。  相似文献   

18.
为研究近期城汉河段河床调整及崩岸特点,利用实测水沙及地形等资料,采用河段平均的方法,计算了城汉河段断面形态的调整过程,主要包括平滩河槽形态调整及其与前期水沙条件之间的关系.计算结果表明:城汉河段平滩河宽由2003年的1710 m增加至2016年的1732 m,增幅为1.28%,平滩水深由2003年的16.47 m增加至2016年的17.95 m,增幅为9.0%;白螺矶、界牌、簰洲及武汉等河段河床调整以纵向冲深为主,但陆溪口河段河床调整横向展宽与纵向冲深同步发展;2006-2016年城汉河段多年平均崩退速率为5.5 m/a,崩岸总长19.6 km,占岸线总长的8.3%,右岸占55.3%.簰洲河段岸线崩长占城汉河段岸线崩退总长的75.9%.此外还分析了河床边界与水沙条件等因素对重点河段(簰洲河段)崩岸过程的影响,来水来沙条件占主导地位,局部区域崩岸的发生依赖于河床边界条件;建立了典型断面平滩河宽与前期水沙条件之间的经验关系,较好地反映了水沙条件变化对崩岸过程的影响.  相似文献   

19.
This paper analyses the processes and mechanisms of a three‐stage channel adjustment over a cycle of the Yellow River mouth channel extension based on data comprising hydrologic measurements and channel geometric surveys. Rapid siltation in the mouth channel takes place in the young stage when the channel is being built by deposits and in the old stage when the channel cannot further adjust itself to keep sediment transport in equilibrium. It is disclosed that the bankfull width–depth ratio, bed material size and slope decrease in the young and mature stages but do not change in the old stage. The reduction of bankfull width–depth ratio and bed material size during the young and mature stages is found to be able to offset the effect of the slope reduction on sediment transport due to continuous mouth progradation. They reach their limits in old stage, and a constant slope is kept by unceasing sediment accumulation. The grain size composition of incoming sediment and the fining mechanism are responsible for the occurrence of lower limit of bed material size. The reason for the existence of a limit of bankfull cross‐sectional shape is that the large flows can fully transport the sediment load they are carrying, and siltation in the channel in the old stage takes place mainly in the low flows. It is suggested that the bankfull discharge plays an important role in shaping the channel but that the entire channel form is the product of both the large and low flows plus the effects of interaction between them. Channel pattern change shows a process from a braided pattern in the young stage to a straight pattern in the mature and old stages, and the straight channel becomes gradually sinuous. The occurrence and transformation of the channel patterns are supported by two planform predictors, but are also facilitated by some other conditions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
On 29 August, 2003, an intense convective storm system affected the Fella River basin, in the eastern Italian Alps, producing rainfall peaks of approximately 390 mm in 12 h. The storm triggered an unusually large debris flow in the ungauged Rio Cucco basin (0·65 km2), with a volume of approximately 78 000 m3. The analysis of the time evolution of the rainstorm over the basin has been based on rainfall estimates from radar observations and data recorded by a raingauge network. Detailed geomorphological field surveys, carried out both before and after the flood of August 2003, and the application of a distributed hydrological model have enabled assessment of flood response, estimation of erosion volumes and sediment supply to the channel network. The accounts of two eyewitnesses have provided useful elements for reconstructing the time evolution and the flow processes involved in the event. Liquid peak discharge estimates cluster around 20 m3 s?1 km?2, placing this event on the flood envelope curve for the eastern Italian Alps. The hydrological analysis has shown that the major controls of the flood response were the exceptional cumulated rainfall amount, required to exceed the large initial losses, and the large rainfall intensities at hourly temporal scales, required to generate high flood response at the considered basin scale. Observations on the deposits accumulated on the alluvial fan indicate that, although the dominant flow process was a debris flow, sheetflood also contributed to fan aggradation and fluvial reworking had an important role in winnowing debris‐flow lobes and redistributing sediment on the fan surface. This points out to the large discharge values during the recession phase of the flood, implying an important role for subsurface flow on runoff generation of this extreme flash flood event. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号